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A theorem is derived that enables a systematic enumeration of  all the linear 
superoperators £P (associated with a two-level quantum system) that generate, 
via the law of  motion ~ p  = [~, mappings p(O) -+ p(t) restricted to the domain 
of  statistical operators. Such dynamical evolutions include the usual Hamiltonian 
motion as a special case, but they also encompass more general motions, 
which are noncyclic and feature a destination state p(t --~ m) that is in some 
cases independent o f  p(O). 

1. INTRODUCTION 

We discussed in a previous publication m (part I of this series) the physical 
rationale for considering the theoretical possibility of generalizing the usual 
dynamical postulate of quantum mechanics so that it would describe, even 
for an isolated system, both reversible and irreversible motions. The idea 
is to retain the basic Liouvillian form 

~ p  = t5 (1) 

where p is the usual statistical operator, but A a, the Liouville superoperator, 
is not  to be constrained to the (reversible) Hamiltonian form 

5eHp = (1/i)[H, p] (2) 

It is essential, however, to demand that an ~ ,  to be admissible, must belong 
to the class of linear superoperators that, through (1), invariably generate 
mappings p ( O ) ~  p(t)  called dynamica l  evolutions,  such that if p(O) is a 
statistical operator, then p(t)  is also. 
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For the case of a two-dimensional Hilbert space ~ ,  we found necessary 
and sufficient characterizations of admissible ~c-e's in two different represen- 
tations. Specifically, if a dyadic "quorum" (a term we use to denote a basis 
for the space , , / o f  operators on the Hilbert space) {Q,~,~} is adopted, i.e., 

{Q.m} ==- {[ an)(a, .  ] t m, n = 1, 2} (3) 

where {i a.)} is a complete orthonormal basis for ~%¢~2, then the matrix 
elements of ~q', defined by 

~go .~ = Tr(Q;,,seOk~ ) (4) 

must satisfy the following conditions: 

m n t g l  

£f'**,~g = ~ Uy,,~g;.,..k~(a, b) X'~,~.~ ~ 0, f :A g (5) 
m n # l  

2 2 

Z 5eY'I,',og -= Z ~ Ues.gg;.~.,k~(a, b) ~gf,,,,~,~t = O, g -- 1, 2 
$=1 f = l  m n k l  

for every a, b such that i a ]2 + ] b 12 = l, where 

with 

(_. 2,) 
On the other hand, if the orthonormal Hermitian quorum 

{ v ~ ' , ~ = 0 ,  I , 2 , 3 } ~ -  

where 

(6) 

(7) 

(8) 

Tr(v~v~) = 8~ (9) 

is chosen, ~ being the Pauli matrices, then the necessary and sufficient con- 
ditions on £f take a simpler form. The matrix elements of £¢, defined by 

5#~ = Tr(v~£av~) (10) 

must be real and must also satisfy these conditions: 

5fo. ~- 0 (11) 
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and 

Tr(PA~P) ~ 0 (12) 

for  every one-dimensional projector P. 
In order to extract from these mathematical conditions a more physical 

classification of  the types of motion that the generalized dynamical postulate 
(1) is capable of describing, we develop next a geometrical interpretation 
of (11) and (12). 

2. LIOUVILLIANS AND ASSOCIATED QUADRIC SURFACES 

Consider the quantity 

G ~ 2 Tr(X~°X) (13) 

where X is a Hermitian operator of the form 

x = (1/V~)O,o + s .  ,,) (14) 

We may conveniently regard s as an element of an auxiliary real 3-space 5C 
Note that if s • s ~ 1, then X is a statistical operator (Hermitian, trace 
unity, nonnegative definite); if s is on the unit sphere in 5P, X is a one-dimen- 
sional projector. These correspondences between statistical operators, 
including projectors, and points of  O ° are one-to-one. 

Now, using (9)-(11), and (14) in (13), we obtain 

3 3 3 

~,= i  'i~=l n = l  

The quadratic form (15) represents, for each value of G, a quadric surface 
in ~ whose exact shape depends on the values of ~m~, ~¢~0, and G. We shall 
call the case G = 0 the critical surface; note that it passes through the origin 
of ~ .  

The necessary and sufficient conditions (11) and (12) for ~q~ to generate 
a dynamical evolution are obviously equivalent to (11) plus the algebraic 
statement that G ~ 0 for every s satisfying s • s = 1. This analytic charac- 
terization of  admissible ~ ' s  for 3~2 has been given previously by 
Kossakowski. (2~ In the present investigation we employ instead a geometrical 
interpretation of (1 I) and (12): £e~ are the matrix elements of  an admissible 
if and only if ~0~ = 0 and each quadric surface (15) for which G > 0 does 
not intersect the unit sphere in ~ .  
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To apply this criterion, we examine (15) using standard methods of 
analytic geometry. Define K~n as the symmetric part of £.~',,,~, J~n as the 
antisymmetric part; then 

K.~n = ½(~g?~n -t- ~. , .) ,  j , ~  __ l (~go __ £z ) (16) 

Also let 

Bn = --£'ce.0 (17) 

When (16) and (17) are substituted into (15), the antisymmetric part drops 
out, leaving 

Let R be the rotation in 5/' space that diagonalizes K~,~ ; then the new coordi- 
nates {x~} are related to {s~} by 

= ( 1 9 )  
m 

the new components of vector {B,.} are 

C. ~ ~. R,..B,. (20) 

and the eigenvalues of K,,,n are 

? n n  

The quadratic form (15) thus becomes 

G = Z K . x .  ~ -- Z C.x,.  (22) 

Using (22), we can easily demonstrate the necessity of the condition 

K~ ~< 0 (23) 

if G ~< 0 is demanded whenever x is on the unit sphere. Thus, if xn = 8~j, 
we obtain 

G = K s - - C ~  ~<0 (24) 

while xn -~ --3,~ gives 

G = K j q - G  ~ 0  (25) 

Adding the inequalities (24) and (25) immediately yields the result (23), which 
restricts considerably the shapes of quadric surfaces that may be associated 
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with admissible Liouvillian superoperators. For example, with (23) in force, 
(22) cannot describe hyperboloids. Stated another way, the restriction (23) 
implies that the symmetric part of 5¢m, must be a negative-semidefinite 
matrix. 

Next we seek to enumerate systematically all values of {Kn} and {Cn} 
for which the corresponding 5e generates a dynamical evolution. 

3. THE ELLIPSOID CASE 

In this section we assume that all three Kn are strictly negative. It is 
then permissible to rearrange (22) to obtain 

c .  1 
Z~ Kn 2 K , )  = G - k 4 ~ K , ,  (26) 

There are obviously no points x for which the lhs of (26) is positive; hence 
we are concerned only with 

Cn 2 
+ o 

When the equality holds in (27), then G is positive, since K, < 0, 
and (26) represents only the single point #0 with coordinates {C,,/2K,~}. 
We must therefore demand that this point not lie on the unit sphere. 

When the strict inequality holds in (27), we may rewrite (26) as 

[xn -- (C,J2Kn)] 2 1 (28) 
(1/K,,)[G + ~ Zm (Cm2/K,,)] 

which is a family of  ellipsoids parameterized by G, all centered at d0. The 
limiting case G-+ --~ Z ,  (C,~/K,,) gives the single point discussed above. 
As G decreases from this maximum value, each successive ellipsoid contains 
all preceding ones. Thus all the G > 0 ellipsoids are inside the critical (G = 0) 
ellipsoid, and all G < 0 ellipsoids are outside the critical ellipsoid. It follows 
that the geometrical criterion for admissible &°'s, viz., that each G > 0 
quadric surface not intersect the unit sphere, will be satisfied in this case if 
and only if the critical ellipsoid has no points external to the unit sphere. 

To reformulate this geometrical constraint analytically, let 

g(x) ~ Z Kn x.2 -- Z C,xn (29) 
n 

Then 

g(x) = 0 (30) 

82518f~ t~-4 
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is the equation of the critical ellipsoid and Vg(x) is a vector normal to the 
ellipsoid at a surface point x. Since the critical ellipsoid passes through the 
origin, the points on the critical ellipsoid that are farthest from the origin 
will satisfy the equation 

x x Vg(x) = 0 (3 l) 

i.e., the radius vectors locating such points will be parallel (or antiparallel) 
to the surface normals at those points. We may therefore express the criterion 
that the critical ellipsoid shall have no points external to the unit sphere 
by requiring 

x0"Xo ~< 1 (32) 

for all Xo satisfying both (30) and (31). [There will of course sometimes be 
points x o other than those farthest from the origin that satisfy (30) and (31), 
but this in no way affects the validity of the condition (32), which must in 
any case hold for all such Xo .] 

Equation (31) is equivalent to the three relations 

2yz(K3 -- /<2)  + C2z - -  C3 y = 0 

2xz (K3 - -  1<1) + Clz  - -  C.~x = 0 (33) 

2xy(K~ - -  1<1) + C1 y - -  C2x = 0 

where 

(x, y, z) ~ (xl,  x~, :%) (34) 

multiplied by x,  the second by y, and the two If the first equation in (33) is 
are then subtracted, the result is the third equation multiplied by z. Thus (33) 
is a functionally dependent set, only two of which are actually independent 
conditions. 

We conclude that if/<1,/<2, K3 < 0, then the Cn must be chosen so 
that every solution x 0 of(30) and (33) satisfies (32). It is geometrically obvious 
that there are in general many acceptable critical ellipsoids. 

4. THE ELLIPTIC-PARABOLOID AND ELLIPTIC-CYLINDER CASES 

The next case to be considered is when one eigenvalue of K,n~ vanishes, 
the other two being strictly negative. To be explicit, we take K 1 , Ks < 0, 
/<3 = 0. The quadratic form (22) of interest then becomes 

2 

o = Z K . x .  2 - Z C . x , )  - G x 3  (35) 
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which may be rearranged as 

If  Ca "/: 0, we can obtain from (36) the form 

,~. [x= -- (C,/2K,)] 2 _ x a -- {--(1/Ca)[G + ¼ Z~ (C,~2/K,,)]} 
(37) Z. ,, - - l / K .  - - I /C~ 

which describes a family of elliptic paraboloids parametrized by G. The 
vertices of these paraboloids all lie on a straight line do1 parallel to the 
xa axis and intersecting the x lx  2 plane at (C1/2K1, C2/2K~). The G = 0 
paraboloid, which passes through the origin, divides the 3-space into two 
regions, one containing all G > 0, the other all G < 0 paraboloids. It is 
therefore impossible to avoid intersections of G > 0 paraboloids with the 
unit sphere, and we must conclude that no acceptable Liouvillians 2, ° are 
associated with/(1, /£2 < 0, Ka = 0, Ca # 0. 

If  Ca = 0, we reduce (36) to 

2 C~2 (38) Y, Kn(xn C~ 2 l s  
, ,  2 K~. ) = G -? 7~ ~ K,~ 

The lhs of (38) cannot be positive, so we are interested only in values of  
G such that 

1 ~ Cn 2 
G + ~  ~ K 7  ~<0 (39) 

When the equality holds in (39), the expression (38) represents the straight 
line .g'x described above. I f  the strict inequality holds in (39), we may rearrange 
(38) to obtain 

(Cd2K.)]~ 
(l/X.l[x~ + ~ E.~ (c,. / ~)] 2 2 K = 1 (40) 

which describes a family of elliptic cylinders all centered on the line C~. 
As usual, the critical cylinder G = 0 passes through the origin; all G > 0 
cylinders are contained within the critical cylinder, while all G < 0 cylinders 
are outside. Thus if the critical cylinder has an interior, it will be impossible 
to prevent intersections of G > 0 cylinders with the unit sphere. This implies 
that the straight line g~ must itself be the (degenerate) critical cylinder; i.e., 

1 ~ C,, 2 
G= - - ~ - . ~ =  0 (41) 

which means that C~ = Cz =: 0. 
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We conclude that the case/£1, K2 < 0, K3 = 0 is of physical interest 
only if C~ = C2 = Cz = 0. By symmetry we infer that if one and only one 
K ,  vanishes, all C,  must vanish. 

5. THE PARABOLIC CYLINDER AND PLANE CASES 

Let only one eignenvalue of K~n be nonvanishing; e.g., /£1 = I £ 2  = 0, 
Kz < 0. The basic quadratic form is then 

2 

G = K3x3 2 - -  C3x3 - -  ~.  C,~xn (42) 

o r  

K~ (x. - C3 ]2 2 
n 4Kg 

If we now rotate axes about the xz axis until the vector C with old corn- 
ponents (CI,  C~, Ca) has new components (D, O, C3), the transform of (43) is 

(y~_ G ~'~ 1 c~ 
K3 2K-33! = D y l  + G + - 4  Kz  (44) 

where { y,~} are the new coordinates. 
If  D @ 0, we can rearrange (44) to obtain 

(45) 

which describes a family of parabolic cylinders. Again the critical cylinder 
G = 0 divides the space into G < 0 and G > 0 regions, and it is impossible 
to keep G ~ 0 on the unit sphere. 

If  D = 0, then CI = C2 = 0 and (43) becomes 

(x, c, ~, c,, K8 (46) 

Since the lhs cannot be positive, we have 

C3 ~ G + ~ ~ 0 (47) 

and (46) may be solved to obtain 

C3 1 (G C3Z ]]~/2 
x3 = 2K3 [-~8 \ + 4-K~-~]J (48) 
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which describes a family of planes perpendicular to the x3 axis. The critical 
plane G = 0 divides the space into G < 0 and G > 0 regions. It is therefore 
impossible to keep G ~< 0 on the unit sphere unless C3 - 0, in which case 
(46) degenerates to 

K~xa 2 = G (49) 

and G ~< 0 everywhere. 
Accordingly, we conclude that the case K1 = K~ = 0, Ka < 0 is asso- 

ciated with dynamical evolution only if Ca = C2 = Ca = 0. Again by 
symmetry we may infer that if one and only one Kn is nonvanishing all C,~ 
must vanish. 

We have so far omitted the case where/(1 = /£2  = K3 = 0. Here the 
quadratic form degenerates to 

= - Z C . x .  (50) 
n 

There is no ellipsoid, only a family of  parallel planes whose critical member 
G = 0 divides the space into G < 0 and G > 0 regions. There is again no 
way to maintain G ~< 0 on the unit sphere unless all the Cn = 0. 

Having considered now all possible cases, we may summarize our 
findings as follows. In the ellipsoid case, where none of  the K,  vanishes, it 
is generally possible to find nonzero C, such that the corresponding Liouville 
superoperator is acceptable; in all other cases, where one or more of the K,~ 
vanish, it is always necessary and sufficient that all Cn = 0. We have then 
the following general result. 

Theorem: A superoperator ~ generates a dynamical evolution for a 
two-level system if and only if (a) ~o~ = 0; (b) K,n~, the symmetric part of  
A ° ~ ,  is a negative-semidefinite matrix; and (c) A°~o meets these requirements: 
(i) if det(Km~) < 0, .~°~ 0 must be associated via (17) and (20) with Cm such 
that (32) is satisfied; or, (ii) if det(Km~) = 0, S~0 = 0. 

6. H A M I L T O N I A N  A N D  NON-HAMILTONIAN PARTS OF A a 

To obtain the traditional Hamiltonian form of  quantum dynamics we 
can interpret the equation of motion 

(1/i)[H, p] = p (51) 

as an example of Liouvillian evolution, 

f ~ p  = ~ (52) 
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with the superoperator generator defined by 

~A~Hp = (l/i)[H, p] (53) 

In terms of some arbitrary dyadic quorum, we write the Hamiltonian 

H = y. hij [ o@(a~ i (54) 
ij 

where 

and hence 

hij = (c~ i H i  o~:) (55) 

~au  ~,,,, _-°-Tr(Q~.zSUQ.~0 = --i(ha.,,8.:~ .- 8~.fl.~a) (56) 

The relevant components needed to verify" the conditions (5) for the case 
a = I , b = 0 a r e  

Lll ,11 = 0, L22,~ = 0, Ln,22 = 0, L2a,,l - 0  (57) 

It is obvious that since the representation was arbitrary, the same zero 
values will be found in all representations, and hence for all a, b, (5) wilt be 
satisfied by £aH. It is a routine chore to verify this by performing the trans- 
formations described by (5)-(7). Thus, as expected, Hamiltonian evolution 
is a trivial illustration of the generalized dynamical evolution we wish to 
study. 

To see where the Hamiltonian-type Liouvitlian fits into the complete 
family of admissible supergenerators described in the theorem in the preceding 
section, we first find the matrix elements of £~'g in the {v~} quorum. 

Using (10) and (53), we obtain 

where 

1 [H, ~1) = S ~  = Tr (v~ 7 h. Tr(vB[v~, u.]) (58) 

H = V2 ~ h.v. (59) 

Recalling (8), (9), and the commutation properties of the Pauli matrices, 
we find from (58) that 

£.ag~ = ~a~ = 0 (60) 

and 

2.ef~ = 2 Z h,. E %,k~Sna -- 2 E h.:,,,k. (6i) 
~ g m 
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where e~k. is the skew-symmetric Levi-Civita symbol. In matrix form, we 
have therefore 0 0) 

O --h3 h~ (62) 
(~e~) = 2 h~ o -h~  

--h2 hi 0 

Inspection of (62) readily shows that Hamiltonian-type dynamical evolution 
corresponds to the simplest case considered in our general analysis--all the 
K~ vanish. Thus the critical quadric surface for 5¢ H is merely the point at 
the origin of 5". 

For the most general 5q, it is apparent that the following decomposition 
always exists uniquely: /o000) 

( ~ ) =  l o l  
/ o', (J,~) 
\ o  ~, 

/ ° 1 ° °  % + !  . . . . . . . . .  | 

where B~, J ~ . ,  and K ~  are defined as in (16) and (17). We may therefore 
define the first term in (63) as the Hamiltonian part of the given 5¢, the corre- 
sponding H being determined by substituting into (59) the h~ given by 

hr = - - 2 ~ e  ...... J~,  (64) 
~ , n  

which follows from (61). Note that h0 is not determined by ~¢. (This occasions 
no concern, however, since h 0 plays no rote in generating Hamiltonian 
motion; it only determines the value of, say, the lower energy level.) 

The second term in (63), the non-Hamiltonian part of ~o, contains the 
parameters whose admissible values are given by the theorem in Section 5. 

It is also possible to write decompositions like (63) using the dyadic 
quorum {Q~} -- {J ~)(c%/}- If the superoperator Ae is first restricted by 
the two obvious constraints, implied in the conditions (5), that 5¢p = /5  has 
to be Hermitian and to have a zero trace, we find after a rather tedious 
argument that in this sense the most general form of Y is 

1 0 d 0 00 1 
(~°'~"'~3 = 7 --0" 0 --A + 7 

0 --0" 0 
-~*  A - ¢ *  -~- '1 

ip --~1 7" --iq / 
(65) 
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where A, p, and q are real, and p, q ~ 0. The first term in (65) is a 
Hamiltonian-type Liouvillian of the form (56), with A and 0 related as 
follows to the matrix elements of H in the {] c~,)} representation: 

A : / / 1 1  -- H22, 0 : --HI~ (66) 

Again we note as above under (64) that the Hamiltonian part of ~ does not 
determine H completely, since not all matrix elements of H enter indepen- 
dently into the commutator [H, p]. 

By starting from the form (65) and demanding that the conditions (5) 
be fulfilled, straightforward but lengthy computation using (6) and (7) leads 
finally to these necessary and sufficient conditions for the S~ ° given by (65) 
to generate a dynamical evolution: 

(1/i){ab* ] a 12(e, _ ~q) + a*b I a 12(~ * -- e) -k I a [4 ip 
+ ab* [ b [2(~q + z*) + a*b [ b 12(--~/* - -  T) + t b ]4 iq 

+ [ a ]2 [ b [~[--i(p ÷ q) -- (4 -- q~*)] + (a 'b )  2 A* -- 0b*) 2 A} ~> 0 

(67) 

(1/i){ab* [ a [2(--~ 7 -- r*) -k a*b ] a 12(~/, ÷ r) ÷ [ a t 4 iq 

+ ab* [ b [~(--~ * -k ~7) -]- a*b [ b 12(E -- ~7") -k l b 14 ip 

-k [ a 12 I b t2[-- i (p  -k, q) - -  ((~ - -  4*)] -k (a 'b )  ~ A* - -  (ab*) 2 A} ~ 0 

for every a, b such that [ a ]2 _+_ [ b [ 2 : 1. Note that the only parameters 
in (65) that occur in (67) are those associated with the non-Hamiltonian 
second term of (65). 

7. COMPLETELY NON-HAMILTONIAN STATE EVOLUTION 

When the second term in (63) or (65) vanishes, the remaining 
(Hamiltonian) part of ~ generates via (1) the familiar unitary motion of 
traditional quantum mechanics. Since our present objective is to investigate 
other possibilities, it is of interest to consider the nature of the motion 
generated by A ° when the first term in (63) or (65) vanishes. Such completely  
non-Hamil tonian evolution is markedly different from the periodic motion 
that is characteristic of two-level Hamiltonian systems. 

Without loss of generality we may assume that the rotation (19)-(21) 
has been performed so that our completely non-Hamiltonian ~qo now has, 
in the quorum {v~}, the matrix elements (0 00 ) 

- - C  1 K 1 0 (68)  
( ~ ) =  - c ~  0 K2 

--C~ 0 0 K8 
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Combining (68) with the fundamental law of motion (1), we obtain three 
uncoupled linear differential equations: 

~.(t) -= - - C .  + K.sn(t),  n = 1, 2, 3 (69) 

where {s.(t)}, the coordinates of the point in 5~, give the corresponding 
statistical operator through the relation 

p ( t )  = (1/V/2)[v0 -}- s(t)" -1 (70) 

Now, according to the theorem in Section 5, each Kn ~ 0; and each 
Cn = 0 unless each Kn is nonzero, in which case the Cn and Kn must charac- 
terize a critical ellipsoid with no points external to the unit sphere in St. 
We consider first the simpler case where at least one of the Kn vanishes. 
Then (69) becomes 

in(t) = Knsn(t) (71) 

and the solution is 

s.( t )  = s.(0) e K"~ (72) 

Thus for KI = 0 the corresponding component sf of s remains stationary 
at its initial value, while for Km < 0, sm exponentially approaches zero. 
Unlike Hamiltonian evolution, this motion is not cyclic; moreover, as t ~ 0% 
there is in 5¢ a "destination" point, some of whose coordinates (those for 
which KI = 0) are determined by the initial quantum state. 

Next we suppose that each K,~ < 0 and that the Ca are such that the 
geometrical criterion (32) is satisfied. The solution to (69) is in this case 

s . ( t )  = c .  c .  + [sn(0) -- ~ - ]  e K'~ (73) 

Again we find that the motion has a destination, viz., 

lim s.( t )  - -  C.  (74) 
t ~  K n 

but now that destination is independent of the initial conditions. Interestingly, 
this destination point is on the critical ellipsoid at the intersection of that 
ellipsoid with the straight line determined by the center of the ellipsoid and 
the origin of 5 t~, as may be readily inferred from (28) and (73). 

Such completely non-Hamiltonian motion is of course by itself of no 
great physical interest. However, its nonperiodic nature and its peculiar 
destination points are clear indications that there exist superoperators ~¢ 
in which both terms of (63) or (65) are nonzero and which do in fact generate 
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motions of physical interest. In particular, there exist such generalized 
Liouvillians that are capable of describing energy-conserving but entropy- 
increasing evolutions of the statistical operator. In the sequel (part I l l  of this 
series) we shall study in detail, for a two-level system, this physically 
important class of non-Hamiltonian motions. 
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