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ABSTRACT

A rate equation for a discrete probability
distribution is discussed as a route to describe smooth
relaxation towsrds the maximum entropy distribution
compatible at all times with ons or more linear
constraints. The entropy follows the path of steepest
ascent compatible with the constraints. The rate egquation
is consistent with the Onsager theorem of reciprocity and
the fluctuation-dissipation theorem. The mathematical
formalism was originally developed to obtain a quantum
theoretical unification of mechanics and thermodynemics.
It is presented here as part of an effort to develop tosls
for the treatment of nonequilibrium problems with
engineering applications.

1. INTRODUCTIOH

The determination of a probability distribution of
maximum entropy subject to a set of linear constraints
has applications in many areas of sngineering, physics,
chemistry, and information theory [1-2]. The maximum
entropy distribution typicaily represents an equilibrium or
a constraineg-equilibrium state of the system under study.

This paper addresses @ generalization of the
maximum entropy problem to the nonequilibrium domain,
by discussing a general rate egustion for the description
of smooth constrained relaxation of nonequilibrium
probability distributions towards the maximum entropy
distribution. The nonlinear rate equation for the
probabiiity distribution has the feature that it keeps the

31

constraints constant at their initial values and increases
the entropy until the probabilities converge to the
maximum entropy distribution. The rate equation is also
consistent with an Onsager reciprocity theorem and a
fluctuation-dissipation theorem, both extended to the
entire nonequilibrium domain.

Geometrically, every trajectory generated by the
rate eguation in state space hes the property that it
follows the path of steepest entropy ascent compatible
with the constraints. We also discuss a generalization to
treat  constratnts with  specified time-dependent
magnitudes.

The formalism presented here has features of great
generality, and adaptability to different applications. It
¥as originally developed to obtain a quantum theoretical
unification of mechanics and thermodynamics [3-4]. But
here it has been abstracted from its original physics
purpose and is presented to the thermal engineering
community as a mathematical tool in an attempt to
stimulate discussion on the subject. The hope is that the
discussion will help to identify engtneering applications in
which the treatment of nonequilibrium problems could use
the powerful formatism we present.

Because the sudience is likely to be familiar with
the so-called maximum entropy formalism [1], and with
the constrained-equilibrium method for the treatment of
nonequilibrium in chemical engineering {2}, we present our
rate equation 1s this framework. We have already
presented elsewhere the generalization to @ wider class of
constrained extremum problems [S].



2. WOREQUILIBRIUM PROBLEMS

The maximum eniropy problem which sets our
context is thal of seeking & probability distribution,
namely, a8 probability vector p = {p;,....05,..}, whose entropy

' S(p):-—’Zp,-lnpi (1a)
is maximal subject to given magnitudes <A of one or
more constraints

; Didy = <Ay k=0,1,.n (1b)
where A, is the magnitude of the k-th constraint in state
i, namely, @& state represented by & probability
distribution with p; = 1 and Psi = 0. We will assume that
the first constraint is the normalization condition, so
that &g; = 1 for each i and <Ag> = 1.

The magimizing distribution p* can be written as

n
B = O exp(- Z AAy) (2)
n
Q= ; exp(—g1 M) (2b)
where the Lagrenge  multipliers Ay, .., A, are

determined by the values <A, .., <Ay> of the constraints.

The extension of the maximum entropy problem to
the nonequilibrium domain that we wish to consider is the
following.

Henequilibrium Problem 1

¥e seek g time-dependent probability distribution,
namely, 8 vector function p(t) = {py(t),...;(t),..}, whose
entropy S(p(t)) is strictly increasing with time, and
such thet the megnitudes <A of the constraints are
time-invariant, namely,

k=0,1,.n (3)

2 piltAg = <A
for all times t Alternatively, given an initisl

distribution py we seek a time-dependent distribution p(t)
with p(0) = pg such that at all times t

; piltlAy = z p{0)Ay k=0,1,.n {4a)
and

ds(p)/dt = - d[Z p(L Inp(0)]/at > © (4b)

A further generalization of the above nonequilibrium
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problem is one in which the magnitudes of the constraints
are assigned a definite time-dependence.

Honequilibrium Problem 2

Given an initisl distribution py, we seek a time-
dependent distribution p{t) with p(0) = py such that at all
times t ‘ ‘

Qeap/at = - dlZ pAGIAL = lLp(w)
k=0,1,.,n (58)
and
ds(p)/dt = - o[ p(t) Inpt))/at > 0 (5b)

where the rates cq{t,p(t)) are given functions of time and
of the instantaneous probability distribution. For example,
Problem 2 can be applied in the context of the
constrained-equilibrium method for chemical kinetics [2).
According to this method, the chemical composition of &
complex reacting system is assumed at all times to be
that of a constrained-equilibrium siste of magimum
entropy subject to the usual normalizetion, energy, and
stoichiomelry constraints, plus an sdditional set of
constraints each representing a class of rate-controlling
reactions. The magnitudes of these additional constraints
are continuously updsted according to 8 kinetic model for
the rates of the controlling resctions. Problem 2
represents a generslization of the constrained-equilibrium
method where, instead of assuming instenteneous entropy
marimizetion immediately after each update of the rate-
controlling constraints, we assume a smooth approach to
maximum entropy continuously compstible with the
shifting magnitudes of the constraints.

First, we discuss 8 way to construct a differential
equsation for the probability distribution p, namely, an
equation of the form

dp/dt = D(p) (6)

solutions are solutions of Problem 1.
Then, we discuss 8 wey to construct a differential
equation of the form

whose

dp/dt = Ry(1,p) + .. + R,(L,p) + D{p) {7
whose solutions are solutions of Problem 2.

These differentisl equations and their main
properties are presented in terms of the notation
introduced in the Appendix. From here on, we sssume
familiarity with the useful and nontrivisl notation in the
Appendix.



3. STEEPEST-ASCENT INCREASE OF ENTROPY

in terms of the notation defined in the Appendix, we
propose to consider the differential equation

duw/dt = tip)-1 [f - (f)L(ga,g.,.-..gu)] ®

where veclors gy, Gy, -, G, and f oere defined by
Relations A7 and A8, the vector

(N(gy9,...90 ©)
is the orthogonal projection of f onto the linear span of
vectors gg, 9y, -, Gy, and T(p) may be any strictly positive
functional of the probability distribution p including a
constant (with the dimensions of time).

Using Relations A2 and 417, and some procedure to
eliminate from the set ¢q, gy, .., @, those vectors that
are linearly dependent on the others, we may readily
verify that Equation 8 induces an equation for dp/dt which
contains only the square %2 of the new variables and,
therefore, is of the form of Equation 6. ’

By virtue of Relations AQ and A19, we conclude that
the magnitude of each constraint is invariant under
Equation 8, 1.e,

G/t = g -dx/dt = T e[ - (Mg q,.,09]= 0
{10}
By virtue of Relation A10 and A19, we conclude that the

value of the entropy functional is nondecressing under
Equation 8, i.e.,

dS/dt = dF/dt = f-dr/dt = T1 £2[1 - (N(g,q, )]

"

T - (Nigeg,,a01 [T - Ditgpg,,.0]
T dx/dt-dw/dt > 0 (1

and the egual sign in Relation 11 applies if and only if
vector f is in L(gg,dy,.4,) and, therefore, is & linear
combination of vectors gy, 4y, ..., G, namsly, thers is a set
of muitipliers Ag, Ay, ..., Ay such that

n

f= 2 Ml (12)
Using Relations A7 and A8, Condition 12 becomes

- % - g2 = é‘_o,\k,v,iﬁ.ﬁ i=1,2, . (13)
or, multiplying it by x; and using p; = %2,

p; Inp; :-m(1+k}§;:\*éﬁ) i=1,2, .. (14)
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It is noteworthy that Equation 8 cannot alter the
valug of a p; or % which is initially zero, namely, an
initially zero probability remains zero at all times. Thus,
from Relations 11 and 14 it follows that the effect of
Equation 8 is to smoothly rearrange -- without violating
any constraint the nonzero probabilities in the
distribution towards higher entropy distributions until the
distribution tends towards an equilibrium distribution
defined by Equation 14 in which the initially zero.
probabilities are still equal to zero whereas the initially
nonzera probabilities are distributed canonically.

Clearly, such equilibrium distribution would be
unstable as long as there 1s some probability p; equal to
zero, because a minor perturbation of the distribution
which sets this probability to an arbitrarily small nonzero
value would proceed away towsrds a different equilibrium
of higher entropy. If initielly all the probabilities in the
distribution have nonzers values, then Equation 8 takes the
distribution directly towards the unique stable
equilibrium distribution compatible with the initial values
of the constraints and given by Equations 2.

Geometrically, we could visuglize the effect of
Equation 8 as follows. Consider  the hyperplane
defined by Gy(x) = <A> for k = 0,1,..,n where <A,> are the
magnitudes of the constraints fixed by the initial
distribution. On this hyperplane we can identify contour
curves of constant entropy, generated by intersecting the
hyperplane with the constant entropy surfaces F() = S
where S varies from O to the maximum value compstibla
with the magnitudes of the constraints. Every trajectory
%(t) generated by Equation 8 lies on the hyperplane and is
at each point orthegonal to the constant entropy contour
passing through that point. In this sense, the trajectory
follows a path of steepest entropy ascent compatible with
the constraints.

In the next section we discuss two further
properties of Equation 8 related to Onsager's reciprocity
and the fluctuation-dissipation theorem. The
mathematical structure of Equation 8 was originally
developed by the suthor within the context of a unified
theory of mechanics and thermodynamics that we call
quantum thermodynamics [3-4}.

4. ORSAGER RECIPROCITY AND
FLUCTUATIOR-DISSIPATION RELATIDHS

An indirect way to specify a probability distribution
p is to specify the mean velues of a sufficient number of
independent linesr functionals of the distribution such as

0,1,..0,... a3

Z Pt = <Ay K=
where the first n+1 functionals coincide with the
constraints, but the set is now extended to ss many
functionals as needed ts completely specify the
distribution p. I the functionals are all linearly
independent, then we need as many as there are



probabilities in the distribution {(minus one because of
normalization). We call such a set of functionals a
complete set of independent properties of the probability
distribution.

¥e will denote by Yg, ¥y, .., Y, .. 8 COmplete set of

property functionals of the variables k32, namely,

k=0,1,. {16}

YK(X) z ‘2 X.,ZA’G
such thet if the values of ell these functionals are given,
then the wvalues of &l the %2 are determined. For
simplicity, we shall further assume that functional
Yo is the normalization constraint, i.e., Agi = | for each i.
¥e then define the gradient vectors of the functionals Yy
as

B o= {aYk/aX1 ,...,aYk/aX",...} = {2?11 A«} ,...,2?41'%,...}

k=0,1,. {(17)

in terms of the gradient vectors, the functionals Yy may be
writlen as

yk = 14 yﬂ' &( (18)
In terms of functionais ¥, we may 81sc Tarm the following
useful nonlinesar functionals

Yim(®) = 2 x2A4n - 2 528y 2 x2An; (19)

= 4l Un - (%Yo Y04 g ) (20)
which represent the covariance or codispersion of
properties Y, and Y. In particular, the functional Yis
represents the variance or dispersion (also, fluctuation) of
property Y,. We now consider the entropy functional

F(xd=- ‘Z %2 Inx2 (21)
and its gradient vector
T ={9F/3%,,.,9F/3x%,..}
= {=2%-2x11n%y2,.,-2%;-2%1n%2,.. } (22)

and further assume thst, when evaluated at s given
distribution %, the property functionals ¥y in the complete
sel have gradient vectors y, thet are sll linearly
indeperdent and span the entire set of vectors with zero
entries corresponding to the zerc x's, so that there is a
unigus set of scalars Ag, Ay, ... such that the vector f can
be v.~iiten as
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f= % Al (23)
where the scalars A, Ay, .. are determined by the set of
equations

1=1,2,.. {24) )

%Ak.qﬁzﬂdnx? (% 20)
with the index i restricted to the set of nonzero &'S.
The entropy functionsl F may aiso be written as

F(x):—12 %21nx2 = 4(1 + gy~ )

:%+%§Akgo-g(:%+%z\k'fk (25)
where we used Equations 23 and 18. We see from
Relation 25 that the scaler A, can be interpreted as an
affinity or generalized “force” representing the marginsl
Impact of property Y, onto the value of the entropy about
& given distribution x.

We are now ready to consider the time dependence
Of the properties Y, and the entropy F as induced by the
Equation 8 for the probability distribution, i.e., by the rate
equation

dx/dt= T 1 - (Nygg,, . 0] (26)
which can now also be written as
dr/dt = t-i % /\.,,,[gm - (&n)[’(%gh""%}] (27)

where we used Equation 23 for . The rates of change of
properties Y, are then given by

dY,/dt = Y -dx/0t = g A Liem (28
vhere we defined the functionals

Lem = T [y, - (gm),_(%gh__,&)] (29a)

= T4 - Wiay0,,...80) [ = Wndiges,... 0] (290)

and in writing Equation 29b we have used Equation A13
with g = (gk)L(gﬁ,gbm&) and subtracted & zero from
Equation 29a. Relation 28 shows that the rates of change
(or generalized “fluxes™) dY,/dt and the sffinities (or
generalized “forces™) A, are linesrly interrelated by the
coefficients (or generalized “conductivities™) L



If we use Equation AI7 to write an explicit
expression for the generalized conductivities Ly, e find

Yol G oo b

Yn-fy Rychy oo Behy

I W T SRR

Lk-mz'f" (30)
hy-hy e Boehy
hy-h <oe by

and, because determinants “are inveriant  under

transposition, we find that the conductivities Ly, satisfy
the reciprocity relations

Lign = Ly

Moreaver, it follows from Relstion 29b that the matrix of
generalized conductivities

(31

Log Lot Lom
Lig Lyt Lim

[L]= (32)
Lo L Lim

is & Gram matrix and as such it is nonnegative. Matrix [L]
is strictly positive only if the vectors Uy-(U)i(g,g,,...8
gre all linearly independent, in which case the set of
Equations 28 may be solved to yield

M = 3 QL D /0t (33)

The rate of entropy increase (Equation 11) may be
rewritien in the following several ways

ds/dt = dF/dt = 1-dr/dt

= T M Yeodx/dt = T A dY,/dt (348)
= T dx/dt-dx/dt = %%ﬁ M L A (34p)
“and, if [L] is strictly positive,
= 2Z d¥n /0t (L] )y de/at (35)-
'Finang, comparing Relation 20, for  the
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codispersion Yy, of properties Y, and ¥, and Relation 30,
for the generglized conductivities Ly, we see that there
is a relation between Ly, Yim and all the codispersions of
the constraints, and properties Yy and ¥, We may greatly
simplify these relations if, for a given distribution %, we
further restrict the choice of the complete set of linearly
independent property functionals Yy so that yg = hy, 4y = hs,
ws Uy = B where hy, .., h, are linearly independent
vectors spanning the manifold L{gg,9;,.,8,) generated by
the constraints and, moreover, we select the functionals
for k > r so that the codispersions Y, Y, .. Yige-1)

(Equation 20) are all equal to zero (notice that Y = O
implies Y, = 0). For this particular choice, by studying
Relation 30 for the generalized conductivities, we may
readily verify that

Ly = 0 whenever k<r or m<r (36a)
Lign = 4 Y/ T for kK2r and mar (360)

and, therefore, we find a direct relation between the
covarigance and the generalized conductivity of the pair
of properties ¥, end Y. Inparticular, for k = m>r we find
Ly = 4/ T which is a relation between the variance (or
fluctuation) and the direct conductivity (or dissipation) of
property Y.

5. TIME-DEPERDENT CORSTRAINTS

In terms of the notation already introduced, let us
consider the differential equation
dx/dt = vt gy - (%)L(%,%m,gk-i.Qkﬂ,-«,%n)] (37a)

where

e = Belt. 2 g[8 - (GL(e0.81,-.8k-1.8k01, 0] B7D)

and B {t,2(1) = oo (t,p(t)) as specified by Equation Sa of



Problem 2. Again, we may readily verify that Equation 37
induces an equation for dp/dt which contains only the
square x2 of the new variables and, therefore, is of the
form

dp/dt = Ry(t,p) (38)

ve may also readily verify that Equation 37 induces
an evolution of the probability distribution p elong which
the magnitudes of all the constrainis except the k-th are
time-invariant, whereas the magnitude of the k-th
constraint varies with 8 rate of change equal to
o (t,plt)).

Geometrically, we could visuslize the effect of
Equstion 37 as follows. ¥e consider the hyperplane
gefined by G,(x) = <A,> for m = 0,1, k-1,k+1,.,n where
<Ap> are the magnitudes of the constreints (except the

k-th) fized by the initial distribution. On this hyperplane
we can identify contour lines along which the K-th
constraint is constant, generated by intersecting the
hyperplane just defined with the hyperplane G{x) = <Ay
where <Ay> varies over g feasible range of values. Every
{rajectory p{t) generated by Eguation 37 lies on the
hyperplane of the fixed constraints and is at each point
orthogonal to the constant-G, contour line passing
through that point. In this sense, the trajectory foliows
a path elong the gredient of G competible with the
other constraints. In this sense, Equation 37 determines
the minimal change in X that is necessary in order to
change the k-th constraint at the specified rate .

Clearly, when two or more constraints have a
specified rete of change, then Equation 7 yields many
orthogonal contributions to dz/dt. The terms R;,..R,
(each with structure similar to that given by Equation 37}
cause the shifting constraints tg follow the specified
rates of change «q,..,&, The contribution of these terms
to the rate of entropy change does not have a definite sign.
The term D {(as given by Equation 8) gives instead a
positive definite contribution to the rate of entropy
change snd tends to attract the distribution X towards a
path of steepest entropy ascent compatible with the
instantaneous values of the constraints.

We may finally note that by substituting
1(8o,91,, 01, 81,0} In Equstion 37 with
L{f,00,8¢ ,~Oi1,0i+1-8) We would obtain & rate equation
causing the k-th constraint to follow the specified rate
o while maintsining a zero change for the other
constraints, and also a zero rate of change of the sniropy.
In ather words, this would describe an isoentropic change
of the magnitude of the k-th constraint.

¥We conclude that the notation introduced in the
Appendix and the structure of the rate equations discussed
in this paper represent a flexible framewark in which to
cast nonequilibrium problems where it is necessary to
describe a smooth constrained approach {o a maximum
entropy distribution with or without varying magnitudes
of the constreints.
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It is noteworthy that the time evelution generated
by our rate Equstion § is more general than any equation
assuming thal the probability distribution aiways
meximizes the entropy functions! subject to some
“possibly unknown" set of constraints [1,6).

APPENDIX

Because the variables pq,..B,.. represent .
probabilities, sll the nonequilibrium problems defined in
Sectien 2 are subject to the additional set of inequality
constraints

;20 or p{t)20 (A1)

For this reason, it is convenient to change variables to s
new set x={x,.%,.] from which probabilities may
be computed according to the reistions

Di=:<.‘2 i= 1,... (A2)

We now rewrite Problem 2 as follows

dB, (x(1))/dt = B (1, 201N (A3a)
and

dF(x(t))/dt> 0 (A3b)
where

2 = {8y, 8,0} (ad4)

G (%) = ; XA k=0,1,.,n (AS)

Fg) =~ '2;_' %2 Ing2 {a6)

Next, we define vectors representing gradienis of the
constraints Gy(x) and of the entropy functional F(x),

G =1{36,70%,..,06,/0%;,..} = {281 Auq,., 2% A,...)
k=0,1,..,n (A7)
T = {3F/3x,,.,3F/0%,;,..}
= {-2%7-2811n%42,...,~28;-2%1n82, .} (AB)
s0 that the rates of change of the functions Gy, Gy, ..., Gy,
and F are given by
dG,/dt = g, -dx/dt (a9)



dF/dt = T-dg/dt (A10)

where, clearly, du/dt = {dx,/dt,.,d%/dt,..} and the dot

product has the obvious mesning {for example, f-dx/dt =
fyd%, /0t + . + fdx/dt + ).
Given a set of vectors gy, g1, .., §,, the symbol

L(gy.95,--.8,) (A1)

will denote their linear span, ie, the linear manifold
containing all the vectors that are linear combinations of
8. 81, .., O, Glven another vector b, the symbol

(b)L(gﬂlgh_’%) (A 12)

vill denote the orthogonal projection of b onto the
linear manifold L{gy,9;,--.4,), namely, the unigue vector in
L{89.8;,--.8,) such that its dot product with eny other
vector g in L{gg,gy,...8,) equals the dot product of b with

q,ie,

9-(bli(gg gy,..80 = 9°D (A13)

for every g in L(gy,8y,--.8,)-
In terms of a set of linearly independent vectors

hy,..0 spanning the manifold L{(8Qp.G;.-.G,), where
clearly r ¢ n, we can write two eguivalent explicit
expressions for the projection (Bli(gy,g;,...8,) Of vector b

onto L{gg,8y,...,.8,). The first is

(DNtaoy,e) = 2 2 (o) (MR e ey (A1)

Kz1 m=1

where M(hy,...h.)"' s the Inverse of the Gram matrix

Mihy,...h)

The second expression is a ratio of two determinants

ey

By by

- h-hy

. hr'hr

(A15)

37

f-hy hy+hy <o« h-h

f-h. hy-h +«o hh,

(a16)

(h)L(%Jgil‘"l%) ="
R

hyh, -eo bl

where the determinant at the denomtnator s always
strictly positive because the vectors hy,..h. arelinearly

independent. In the paper, we often make use of vector
differences such as
f ny S
f<hy hyehy -0 Bpehy
fh, hyh <-c hohy
b- (b)L(%’%w%) = (A17)
hy-hy ooc Rl
By - Ry

where in writing Equation A17 we used Equation A16.
The vector represented by Equation Al7 has the
relevant property

k=0,1,.,n (A18)

&b - (b)L(gO,gb...,gn)] =0



which follows directly from Relation A13, ie, the
vector b - (D)L(%r@h--vﬂm) is orthogonal to manifold
L(go.91,.-.8,). Moreover, we have the other relevant
property

b'[b - (b)L(%;gh--:g“)]

=[b - B)gy,g1,..a0] (B - (B)icgrgy,.. 5] 2 0
(&19)

where the strict ineguality applies whenever b is not in
L{g0, Gy, 8.

In the paper, we make extensive use of the notation
and relations just discussed [5,7].
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