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NEWS ANDVIEWS

Uniting mechanics and statistics

An adventurous scheme which seeks to incorporate thermodynamics
may end arguments about the arrow of time — but only if it works.

THE logical relationship between the laws | accumulated a rich literature on the :

of mechanics and those of thermodynam-
ics deserves more attention than it usually
receives. Thermodynamics and statistical
mechanics are ways of describing the
behaviour of macroscopic systems made
from components whose behaviour is
determined by the laws of mechanics, clas-
sically those of Newton (as amended), but
otherwise the equations of motion of
quantum mechanics. Where the first law
of thermodynamics is concerned, there is
no difficulty. In both classical and quan-
tum mechanics, total energy is a constant
of the motion and is thus always con-
served, at least in a closed system.

The difficulty arises chiefly with the
second law of thermodynamics, and not
only because there is such a variety of
ways in which this principle can be de-
fined. But now a group of three theoreti-
cians has put forward an intriguing way in
which the laws of quantum mechanics may
be modified so as to incorporate the sec-
ond law from what appears to be the out-
set (Beretta, G. P., Gyptopoulos, E. P. &
Park, J. L., Il Nuovo Cimento B81,77-97,
1985). Whether the modification pro-
posed is sufficient, only time will tell, but
the objective seems well worth the trouble
Beretta et al. have taken.

The difficulty is well illustrated by the
way in which some kind of correspond-
ence is established between the mechani-
cal behaviour of a system and its thermo-
dynamic properties. For more than a
century, people have been brooding on
the.paradox that while the laws of classical
(and, for that matter, quantum) mechan-
ics are symmetrical with respect to time
inversion, the second law selects from all
possible trajectories of motion only those
corresponding to a continual increase of
the entropy. The arrow of time is conjured
like a rabbit from a hat.

The definition of entropy in terms of the
mechanical properties of the constituents
of asystem is similarly clouded. The classi-
cal model is Boltzmann's H-theorem
(1872), which shows that the rate of
change with time of a certain mathemati-
cal construct from the probability distribu-
tion of single particles in phase space will
always be zero or negative. So Boltzmann
argued, his quantity H is admirably suited
to be the negative of what is known in
thermodynamics as entropy. This is argu-
ment by analogy, but none the worse for
that — if it works.

Since Boltzmann’s time, there has

implied paradox of the conflict between
the irreversibility of macroscopic pro-
cesses and the reversibility (in time) of the
laws of mechanics and thus of microscopic
processes. Indeed, the argument was
begun by Loschmidt in 1976, but now
even elementary text-books of thermo-
dynamics reckon to give some kind of
account of it.

The standard explanation is that the
apparent paradox is not a paradox at all,
but a confusion about timescales. Any
measure of entropy, that derived from
Boltzmann’s H or otherwise, will fluctuate
(and so decrease as well as increase on a
short timescale), which is not inconsistent
with the notion that the average value of
the entropy should increase steadily over
long periods of time (or remain unchang-
ed when the system is in equilibrium).

Much the same is said of the recurrence

paradox, based on the observation due to

Poincaré that the point in phase space
(momentum as well as position) repres-
enting the state of a classical system wiil

return to more or less the same place after
a sufficient length of time. On the face of
things, that means that non-equilibrium !
states of a system will repeatedly recur.

The standard resolution of that paradox is
the observation that, for any realistic sys-
tem, the interval of time between recur-

rences will be huge, much greater than, °
say, the age of the Universe. Again there
is nothing wrong with these arguments,

but they are far from being rigorous.
So why not take the bull by the horns,

and build irreversibility into the laws of -
mechanics? That is the point from which :

Beretta er al. start. Properly, they
acknowledge that they are not the first to
tread this path. They work with quantum
statistical mechanics, where the formalism

is easier. They start from the equation of

motion for the operator representing the
state of a physical system, say m, which is,
in operator language, dm/dt=—i/h[H,m],
where ¢ is time, H the Hamiltonian oper-

ator of the system and i and # the square .
route of minus once and Planck's constant :

(divided by 2x) respectively. The quantity
in square brackets is the commutator of its
two components, mH—Hm.

The natural way to proceed is to assume
that this equation is modified in such a way
that the night-hand side is some other
function of the state operator m than in
the standard form. The objective is to find
a form of the function which is compatible










