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Summary. A novel nonlinear equation of motion is proposed for a
general quantum system consisting of more than one distinguishable
elementary constituent of matter. In the domain of idempotent quantum-
mechanical state operators, it is satisfied by all unitary evolutions
generated by the Schrédinger equation. But, in the broader domain
of nonidempotent state operators not contemplated by conventional
quantum mechanies, it generates a generally nonunitary evolution, it keeps
the energy invariant and causes the entropy to increase with time until
the system reaches a state of equilibrium or a limit eycle.

PACS. 03.65. — Quantum theory; quantum mechanies.

1. — Introduction.

This paper i§ a continuation of work published in this journal (1).

Its

purpose is to present a novel nonlinear equation of motion for a general isolated
quantum system consisting of two or more distinguishable elementary con-
stituents of matter. The equation includes the description of irreversible con-
servative motion from any initial state to a thermodynamiec equilibrium' state.

(*) This work is based on pé,rt of a doctoral dissertation submitted by the first author

%o the Massachusetts Institute of Technology.

() G.P. BERETTA, E. P. GYFrOoPOULOS, J. L. PARK and G. N. HarsorouLos: Nuovo

Oimento B, 82, 169 (1984).
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The sciences of mechanics and thermodynamics developed quite indepen-
dently of each other. They are both concerned with the description of properties
and changes in properties of matter, but all their implications are not identical.
For example, energy is a property of matter that has unified our understanding
of physical phenomena. It appears prominently in both mechanics and thermo-
dynamics and its conservation is a keystone of both microscopic and macroscopic
phenomena. By contrast, entropy is not relevant to mechanies, while it holds a
supreme position in thermodynamics.

The two sciences have enjoyed great successes both in regularizing innumer-
able physical observations and in generating far reaching and verifiable predie-
tions, but in the hierarchy of physical theories they are usually placed on dif-
ferent levels. Mechanies is regarded as providing a complete and fundamental
description of physical reality, whereas thermodynamics is considered as a
statistical approximation to the complicated mechanical behaviour of large
gystems.

For longer than a century, generations of physicists have delved into the
statistical interpretation of thermodynamics, but the results of this intensive
inquiry remain inconclusive. For example, JANCEL (?) states: « Nevertheless,
we cannot say that the problems raised by the foundations of statistical mech-
anics have thus far received a definitive solution; quite the contrary, the numer-
ous points which remain to be explained or defined more precisely can give
birth to interesting projects ».

An alternative that has received limited attention is that perhaps thermo-
dynamies is not a statistical theory. HATSOPOULOS and GYFTOPOULOS (%)
pursued this alternative. They proposed . unified quantum theory which,
within a single structure, encompasses both mechanics and thermodynamies
and which presumes that, in the hierarchy of physical principles, the second
law of thermodynamics deserves a position on the same level as the great
conservation laws and the fundamental postulates of quantum mechanics.
Their unified theory applies to all individual states, equilibrium and non-
equilibrium, of all physical systems, composite and simple, large and small,
macroseopic and microscopie.

A fundamental hypothesis of the theory is that every single strictly isolated
(i.e. uncorrelated and noninteracting) system can exist not only in an individual
state described by a quantum-mechanical one-dimensional orthogonal projection
operator P (¢), but also in an individual state described by a nonidempotent

() R.JaNCEL: Foundations of Olassical and Quantum Statistical Mechanics (Pergamon
Press, Oxford, 1969).

() G.N. Hatsorouros and E. P. GYrrorouLos: Found. Phys., 6, 15, 127, 439, 561
(1976).

(%) 1If |v) is an eigenvector of the idempotent quantum-mechanical state operator P
(P*=P), such that Ply) = |p> and {y|y> =1, then P = |p)<y| and [¥> is the
quantum-mechanical state vector '
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state operator go. The operator g has the same defining mathematical properties
as a statistical or density operator of traditional (von Neumann) quantum-
statistical mechanics, but here it represents an individual state of a single
isolated system and not the index of statistics from a generally heterogeneous
ensemble of identical systems distributed over a range of different idempotent
states. This hypothesis is the key to the present work as well.

For what concerns the time evolution of the postulated broader class of
individual quantum states, HATSOPOULOS and GYFTOPOULOS conclude that, for
a system with Hamiltonian operator H, the von Neumann equation of motion

dg_ %
(1) Friaia ALY

is valid for unitary processes, but is inadequate for a unified theory of mechanics
and thermodynamies because it describes neither nonunitary reversible processes
nor irreversible processes in which a system approaches thermodynamic equi-
librium. For a variety of reasons, statistical, phenomenological, thermodynamie,
information-theoretic, or quantum-theoretic, other investigators have coneluded
that eq. (1) is incomplete even in the framework of von Neumann quantum-
statistical mechanics (), and several mathematical generalizations of the equa-
tion have been considered (¢).

Recently, the first author (*) proposed an equation of motion which satisfies
the requirements of quantum thermodynamies and describes conservative irre-
versible processes even for a single isolated particle. In ref. (1) we presented
the form of the equation for a single isolated constituent of matter (8). Here
we present the form of the equation for a general system consisting of more
than one distinguishable elementary constituent.

(®) See, e.g., R. JANCEL: Foundations of Classical and Quantum Statistical Mechanics
(Pergamon Press, Oxford, 1969); J. MEaRA and E. C. G. SUDARSHAN: Nuovo Oimenio B,
11, 215 (1972); R.8. INGARDEN and A, KossaKowski: Ann. Phys., 89, 451 (1975);
J.L. PAaRK and W, BaND: Found. Phys., 8, 239 (1978); A. WeHRL: Rev. Mod. Phys.,
50, 221 (1978), and references therein.

(®) See, e.9., W, H. LoUISELL: Quantum Statistical Properties of Radiation (Wiley,
New York, N. Y., 1973); E. B. Davies: Commun. Math. Phys., 39, 91 (1974); P. PEARLE:
Phys. Rev. D, 13, 857 (1976); I. BIaLYNICKI-BIRULA and J. MYCIELSKI: Ann. Phys.
(N. X.), 100, 62 (1976); G. LINDBLAD: Commun. Math. Phys., 48, 119 (1976); V.GORINI,
A. Kossaxowskl and E.C, G. SupARsHAN: J. Math. Phys. (N. X.), 17, 821 (1976);
V. GoriNi, A. FRIGERIO, M. VERRI, A. K0ssakowskI and E.C.G. SUDARSHAN: Rep.
Math. Phys., 13, 149 (1978); R.F. SmmmoNs jr. and J.L. Park: Found. Phys., 11,
297 (1981); N. GisiNn and C. PiroN: Lett. Math. Phys., 5, 379 (1981); P. CALDIROLA
and L. A. Luciaro: Physica A, 116, 248 (1982), and references therein.

() G.P. BEreTTA: Sc.D. Thesis, M.I.T. (1981), unpublished.

(®) See also G.P. BERETTA: in Frontiers of Nonequilibrium Statistical Physics, edited
by G.T. MoorEe and M. O. ScoLLY (Plenum Press, New York, N. Y., 1985), in press,
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The new equation of motion conforms to the following essential and stringent
requirements: a) It is satisfied by idempotent states evolving according to the
Schrédinger equation of motion, and by a special class of nonidempotent states
evolving according to the von Neumann equation; thus, it includes the unitary
processes of conventional quantum mechanics. b) It keeps the energy functional
¢(¢) = Tr(Hp) invariant; thus it is consistent with the first law of thermo-
dynamies. ¢) It causes the state functional s(¢) = — %k Tr(gIn ¢) to increase
until the system reaches a state of equilibrium or a limit cyele, and implies
that s(p) satisfies all the requirements of entropy of thermodynamics, where %
is the Boltzmann constant; thus it conforms to the requirement that s() is
the only expression (®) for the entropy consistent with the von Neumann
equation. d) It reduces to several independent equations of motion for several
noninteracting and uncorrelated constituents; thus it is compatible with the
definition of an isolated system. e) Subject to the proof of a conjecture, it
implies the existence of a unique stable equilibrium state for each set of values
of the constants of the motion; thus it is consistent with the second law of
thermodynamies (3).

The paper is organized as follows. Statements of the nondynamieal postulates
of quantum theory and the proposed equation of motion are given in sect. 2,
some important theorems in sect. 3 and conclusions in sect. 4.

To avoid unnecessary repetitions, we use many results from ref. (1).

2. — Postulates.

The postulates of the proposed quantum theory are as foliows.

2'1. Postulate 1: Systems. — To every physical system there corresponds a
Hilbert space ##. In general, given M distinguishable elementary constituents
of matter (single particles, single assemblies of indistinguishable particles and
single fields), each associated with a Hilbert space %, for L=1,2,..., M,
the Hilbert space # of the overall composite system is the direct product space

(2) H = ®Jf‘ HRQHRD .. ®9f“ .9?"’@9!‘”
where 7 denotes the space of all constituents except the J-th, so that

(3) ®”L ”1®xa®.‘®#.r—1®xl+l® ®'%0M

L#J

for each J =1,2,..., M.
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For a single constituent of matter, this postulate reduces to postulate 1
of ref. (1).

Postulate 2: The correspondence principle; Postulate 3: State preparations,
and Postulate 4: Obgervables, measurements, data and ensembles are identical
to the respective postulates in ref. (). As a result of postulate 4, we have that
the mean value e¢(gp) of the energy of the composite system in state g is given
by the value of the functional

(4) (o) = Tr(Hp) .

Again, if elementary constituent J is a field (i.e. /#7 is a Fock space) and the
composite system is in state p, the value n,(p) of the number of particles in
field J is given by the value of the functional

(6) ny(0) = Tr{ (N ()@ I()))e] »

where N(J) is the particle number operator on s and I(J) the identity on J#7.

Postulates 1 to 4, or some equivalent statements, represent the quantum
foundations of the kinematics of any system. For the dynamics, we will adopt
the equation of motion proposed by BERETTA (?). As discussed in ref. (1), the
dynamics of a single isolated elementary constituent of matter is determined
by a set of linearly independent generators of the motion, in addition to the
Hamiltonian. We will see that these generators also determine the dynamics
of the eomposite system.

2'2. Postulate 5: FEquation of motion for a general quantum system. — For
an isolated composite system of M distinguishable elementary constituents of
matter, the state operator ¢ evolves according to the equation

do 4 Do
(6) -d_t-__%[H’Q]_i—B—t_’

where [H, ¢] = Hg — pH, Dp/Di is a linear, self-adjoint operator on the Hilbert
space of the system, defined as a nonlinear function of ¢ by

- Dg . M i -
(7) T)T—_JZI s 'DJ®Q'J.’
(8) D, =3%(+e,D, + (We,D,1),

7, is a positive time constant for constituent o,

9) e, = Tr;(0), 97=’]_‘r’(9). : . on
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Tr; denotes the partial trace over #7, Tr; the partial trace over s#7, Xt the
adjoint of operator X,

Vvo,(Blng)’ Vo, (Bos)’ Ve By) . Ve Buns)’
(Ro.h Bln o) (Rosy Rog)? (Rosy Byy) ... (Ro.l, Ro.)
(B.s, B In o)’ (Rys, Rys)? (-Rl.ly B ) A (B, K.}’

(10) DJ = (R.sys, Blng)’ (Bonsy Bos)?  (Buorrs Bug)’ ... (Benrsy Rens)’
I(g; Ry, Bygy ooy Boinns) !

(11) FJ(Q; .RoJ’ 'RlJy crey .R,(J)J) =

(-Ro.ly Ro-l)J (-RO-H -RIJ)J e (-Ro.h R:(J)J)J
(R:lJy ROJ)J (Rl.h —RIJ)J ooe (Rl.h -Rz(J)J)J

. ’

(-Rx(.l).l; -ROJ)J (-Rz(J)Jy —RIJ)J ---' (Rz(J)Jy -R:(J)J)J
(12) (F)? = Tr; (1, ® ;) F] = (F)’,

(13)  (F, @) = (@, F)’ =} T, (e, {(F), (6)7}) =
= (Ve BV Ve, ’) = (Ve (&) |ve, F)),

(14)  (F,|@)) = (G|F,) = } Tr, (FiG, + GIF)),

lesl = Vet o, (), {¥s, G;} = F,G,+ G,F,, F and G are self-adjoint operators
on #, F, and G, operators (in general non—self-adjoint) on 57, ¢, and g; (eq. (9))
the reduced state operators of constituent J and of the composite of constituents
1,2,...,d—1, J41,..., M, respectively, IV(¢; Ros, Ry, ..., B.y) (€q. (11)) is
the Gram determinant of operators Vg, (Rw)’, Ve, (Ry), ..., Ve, (Run) (in
general, non—self-adjoint) with respect to the real sealar product defined by
eq. (14) on the set of linear operators on s#”, B the idempotent operator obtained
from p by substituting unity for each nonzero eigenvalue of g, and operators E,,,
for 1 = 0,1, ...,2(J), are determined as follows.

For each elementary constituent J considered as isolated, the generators ot
the motion are defined in ref. (*). They are the linearly independent self-adjoint
operators {I(J),H(J), NuJ), ey N;,(,)(J)} on the Hilbert space #’ of the ele-
mentary constituent, where I(J) is the identity, H(J) the Hamiltonian and

(*) See footnote (%) in G.P. BErETTA, E.P. GYFTOPOULOS, J.L. PARK and G.N.
Hatsorouros: Nuovo Cimento B, 82, 168 (1984).
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each N(J), for ¢ =1, ..., n(J), commutes with the Hamiltonian. Any linear
combination with real coefficients of the linearly independent generators of
the motion, which always include the identity and the Hamiltonian, is also
a well-defined self-adjoint operator on #7, and has been shown to represent;
a constant of the motion () of the isolated constituent J. Thus the generators
of the motion define both the causal evolution and the time invariants of each
isolated elementary constituent oJ. .

For each elementary constituent J considered as part of the isolated com-
posite system of M distinguishable constituents, we define the set of linearly
independent self-adjoint operators {I, H,Nyy.oy N, ,.(,,,} on the Hilbert space
H# of the composite system by the relations

(15) I=INRIJ),
(16) H=EH(L)®I(E)+V,

amn Ny=N(®IJ) for ¢ =1, ..., n(J),

where V is the Hamiltonian operator that represents the interactions among the
constituents of the composite. In essence, operators I and N,, are represen-
tations on the Hilbert space S of the non-Hamiltonian generators of the motion
of elementary constituent J. But H is the Hamiltonian operator of the composite
and accounts for all interactions between constituents. We call the set of oper-
ators I, H and N, for ¢=1,2,...,n(J) and J=1,2, ..., M, the generators
of the motion of the composite system.

For each operator ¢ and each elementary constituent J, if the operators
Ve, 1y, Vo, (@Y, Vo, (NwuY,y s Ve, (Nuns)’} are linearly independent, then
#(J) = n(J) 41 and operators R, are the generators of the motion {Ro, =1,
Ry, = H, By = Ny, ..., Ry;}. If the operators {\/Q_J(I)J, Ve, Y, Ve, (NyY,
ey V@, (N )’} are linearly dependent, then 2(J) < n(J) + 1 and the set {B.}
is any smaller subset of generators of the motion of the composite such that
operators {v'o_(Ru,)’, Vo, (RyY, .y V 0,(R.n.)’} are linearly independent and
span the set {v/g, (I)’, Vo, (HY, v/ 0,(NwY,y ...y Ve, (Nuns)’}. Using well-known
properties of determinants, it can be readily verified that operator D, is invariant
under transformation from one set {R,;} to any other set {E|;} with the same
defining properties. Moreover, it follows from the definition of operators E,,
that the Gram determinant defined by eq. (11) is always strictly positive.

For a single constituent (M =1), eq. (6) reduces to the form presented
in ref. ().

If some generators of the motion are unbounded, the self-adjoint operator
dg/dt (eq. (6)) will be well defined only on a subset g of the linear, self-adjoint,
unit-trace operators ¢ on . The technical problem to find necessary and
sufficient conditions that define the set § remains to be solved. An operator-
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valued function g(f) defined for ¢>0 will be called a solution if and only if
0(0) is in @ and o(t) satisfies eq. (6) for every :>0. We will see that solutions
remain in @ for every #>0 because g(f) remains self-adjoint and unit trace
(theorems 1 and 2). A solution g(t) will be called physical if and only if o(f)
is also nonnegative definite, i.e. |o(?)] = o(t) for every ¢>0. We will denote
by @ the subset of operators g in @ through which there passes a physical
solution. Thus, by definition, every physical solution lies entirely in ¢. Only
the operators ¢ in @ will qualify as state operators. The technical problem to
prove that, for every nonnegative definite o(0) in @, the equation of motion
admits of a unique physical solution remains to be solved (:°). To proceed, we
will assume that physical solutions exist in addition to the trivial unitary solu-
tions discussed. in theorems 3 and 8.

Similar technical problems were identified in the analysis of the equation
of motion for a single constituent (}). There, in support of the assumption
of existence of physical solutions, we derived a particular class of nontrivial,
nonunitary, approximate solutions (**). Moreover, in support of our conjectures
on the general existence and uniqueness of physical solutions, we discussed the
rudiments of an approach to the proofs of an existence and uniqueness theorem,
and a nonnegativity conservation theorem. Those heuristic and circumstantial
arguments have also some bearing on the technical issues regarding the general
form of the equation of motion discussed here.

3. — Theorems.

Some important consequences of the theory represented by postulates 1
to 6 are the following. ’

“Theorem 1. Any solution g(¢) of eq. (8) is self-adjoint.

Theorem 2. Any solution p(t) of eq. (6) is unit trace.
The proofs of these two theorems are analogous to the proofs of theorems
1 and 2 in ref. ().

Theorem 3. If y(t) is a solution of the Schrédinger equation

(18) Sv_ % gy,

(1% See also G. P. BErETTA: Int. J. Theor. Phys., 24, 119 (1985), where existence and
uniqueness of solutions in both forward and backward time are proved rigorously for
a single isolated two-level system.
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then o(t) = Py is a physical solution of eq. (6), where Py is the projector
onto the one-dimensional subspace of # spanned by vector p(?).

Proof. Substituting projector Py into eq. (6), we find that all entries of
the first column of determinant D, (eq. (10)), for J=1,..., M, vanish for
every ¢ because B(f) = Pyy and Py In Py, is the null operator. With each
operator D, equal to the null operator, eq. (6) reduces for every ¢ to the von
Neumann equation which is satisfied by Pyy,. Thus theorem 3 is proved.

If uniqueness of physical solutions were proved, then theorem 3 would be
strengthened so that « given a solution () with g(0) = Py, then o(f) = Py
for all times ¢». In other words, for idempotent states eq. (6) would reduce
to the Schrddinger equation.

In what follows, we establish conditions under which a physical observable
is a constant of the motion. We will see that all such constants are also invari-
ants of the von Neumann equation, but that the converse is not true.

Definition 1. Preconstants of the motion.
A physical observable represented by a linear, self-adjoint: operator 4 will
be called a preconstant of the motion if and only if for all state operators o

(19) Tr (A g‘t’) 0.

Theorem 4. A physical observable represented by a linear, self-adjoint
operator A is a preconstant of the motion if there exist scalars A;;, Azs and 4.,
for i =1,...,n(J) and J=1, ..., M, such that operator A satisfies the set of
M equations

niJ)
(20) A=Al + Ag,H + 2 ANy, J=1,.., M.

=1

Another less restrictive sufficient condition is that there exist real state fune-
tionals A,,(g), Aus(e) and Au(e), for ¢ =1, ..., n(J) and J=1, ..., M, such that
for every g operator A satisfies the set of M equations .

(21) (A)’=g,[zu VI(J) + Aaslo) H)J—}-}_“}.,, N;J)] 1., M.

Proof. By virtue of definition 1 and eqs. (6)-(14), we find
De
(22) Tr (A D t)
M
= —E (DJI\/E(A) ) [ty = —sz g)/'r,,f'" QyRo.n Riyy.eey Buna) s

Ju=] J=1
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where o ‘
R 8 (4, Blng)’ (4, Byy)? (4, Bp)? ... (4, R.o)’
: : v | Bosy Blng)? (Bosy Bog)?  (Bogy B} oo (Bosy Bunrs)?
(23) msQ)=| (B, Blng)’ (Ru, Ros)’ (B, B’ .. (Rus,Runs)’
‘ (-RZ(J)J’ B ln Q)J ('RZ(J)J’ “ROJ)J (RZ(J)J7 'RIJ)J oo ('RB(J)J, RZ(J)J)"

‘When either condition (20) or (21) is satisfied, then m,(g) (eq. (23)) vanishes for
every o and J because operator \/E;(A)J is a linear combination of operators
\/Q—J(Ru)-’ and, therefore, the first row of determinant m,(p) is a linear combina-
tion of the other rows. It follows that the right-hand side of eq. (22) vanishes
and, thus, theorem 4 is proved.

Corollary 1. Each generator of the motion is a preconstant of the motion.
Indeed, each generator of the motion satisfies condition (20) with all the
A’s equal to zero except one that equals unity.

Definition 2: Constants of the motion.

A physical observable represented by a linear, self-adjoint operator ¢ will
be called a constant of the motion of the system if and only if for all state
operators o :
de(p) _d

(24) it  at

Tr (Cp) = T’r(o%)= 0.

Corollary 2. A physical observable represented by a well-defined self-adjoint
operator C is a constant of the motion if

q
(25) 0= 277,0;,,
=1

where O, is a constant of the motion and y, a real scalar, for k=1, ..., q.
This follows immediately from'condition (24) and the linearity of the trace
functional.

Theorem 5. A physical observable repregsented by operator C is a constant
of the motion if and only if C commutes with the Hamiltonian operator H
and is a preconstant of the motion.

Proof. By virtue of éq. (6), the rate of the change of mean value c(g) of ob-
servable O is given by the relation

d i Do
(26) e (052) = 57 (10, Hle) + (0 52)-




QUANTUM THERMODYNAMICS ETC. . 87

For ¢ to be a constant of the motion, the right-hand side of eq. (26) must
vanish for every g. This occurs if and only if each of the two terms vanishes
independently because the first term is a linear and the second a nonlinear
functional of g. The first term vanishes for every o if and only if [0, H] = 0.
The second term vanishes if and only if C is a preconstant of the motion. Thus
theorem 5 is proved. : ‘

Corollary 8. The Hamiltonian H is a constant of the motion.

Indeed, [H, H] = 0 and H satisfies conditions (20) with 4z, =1 for every
J, and all the other scalar constants equal to zero. i

Corollary 3 shows that state property energy, ¢(p) = Tr(Hp), is conserved.
In addition, the change of this property in any adiabatic process is uniquely
related to the amount of work involved in the process (3). Hence we conclude
that the proposed equation of motion implies the first law of thermodynamies.

For a composite system, it is clear that not every preconstant of the motion
is necessarily a constant of the motion. For example, each non-Hamiltonian
generator of the motion of the composite system is a preconstant of the motion
(corollary 1), but is not necessarily a constant of the motion because it does
not necessarily commute with the Hamiltonian. By contrast, for a system
consisting of a single constituent of matter, it can be readily verified that every
preconstant of the motion is also a constant of the motion because the operator
corresponding to such an observable commutes with the Hamiltonian operator (2).

Corollary 4. All constants of the motion are also constants of the motion
according to the von Neumann equation because they all commute with H
(see corollary 1 in ref. *)- -

In general, however, not all constants of the motion according to the von
Neumann equation are constants of the motion according to eq. (6) becaunse
not all of them are preconstants of the motion. For example, the square of
the Hamiltonian operator, H2, does not represent a constant of the motion as
it should because energy fluctuations are not conserved when an isolated system
evolves from a nonequilibrium state towards an equilibrium state. ’

It is noteworthy that, whereas the invariance properties of the von Neumann
equation under the usual symmetry groups are fully and uniquely determined
by the invariance properties of the Hamiltonian operator H, the invariance
Properties of eq. (6) are determined not only by the symmetry properties of
the Hamiltonian but also by the non-Hamiltonian generators and the nonlinear
structure of the equation. The invariance properties of eq. (6) under the usual
symmetry groups remain to be carefully investigated. ‘

" The next theorem is important because it is shown later that the functional
8(¢) = — k Tr(g In ) represents the thermodynamic entropy of the composite
system in any state . S
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Theorem 6. State property s(g) = — k Tr(p Ing) is a nondecreasing function
of time,

Proof: Using eq. (6), eqs. (7)-(14) and theorem 2, we find (**)

dale) _ (d_e _ d_e)
(27a) 3 = kI 3 Blne)—kTr(F )
ds(Q) _ & %
(27b) dt —ngTJ

(Blng,Blng)! (Blnpg,R,;)’ (Blng,Ryy)’ ... (Blng,Byus)’
(-Ro.ly Bln Q)J (Ro.n -RoJ)" (-RoJ, -RIJ)J (-Ro.l, -Rz(J)J)J
(Bys, BIng)? (B, Bos)? (B, Ry .. (Rigy Bairs)?

(-Rz(.l).l’ BlIl Q)J (-R'(J)J’ -ROJ)J (-Rﬂ(J)Jy -RIJ)J eee (Rz(J)Jy RQ(J)J)J
I'J(Q; Ro-l’ th seey Rz(J)J) !

ds(e) — ¥ k_ FJ(Q; Bln Q, -ROJ’ .Rl_], ceny .R‘(J)J)
&t S, IV By By ooy Bans)

(27¢)

e1a) BO_SE pp,,,

‘ ds J=1Ty

where the last of relations (27) follows from the fact that (D,|ve, (Rw)’)’= 0 for
every ¢ and J and, therefore, (ﬁ,l\/g_l (Bl g’y = (D,|D,)’. The right-hand
gide of eq. (27¢) is nonnegative because each Gram determinant IV(g; Bln g,
Rysy Ryyy ooey Byny) is nonnegative and, by definition, IV (05 Rosy Busy euvy Bonrs)
is strictly positive. Similarly, the scalar product (D,]DJ 7 in eq. (27d) is non-
negative. Thus ds(e)/d¢ is nonnegative and theorem 6 is proved.

The equation of motion implies two alternative classifications of states,
the first is into dissipative and nondissipative states, and the second into non-
equilibrium, nonstable equilibrium and stable equilibrium states. Each class
entails physically interesting characteristies which we discuss below.

Definition 3: nondissipative states.
A state operator p is said to be nondissipative if and only if for that state
ds(p)/dt = 0. Otherwise, the state operator will be called dissipative.

(1) By the definition of operator B given in postulate 5, ¢ = Be = ¢B and B?= B.
It follows that i) ¢= ¢B + eB, ii) B= BB + BB and, therefore, iii) BBB = 0.
Hence, dTr(plng)/dt= Tr(¢lng) + Tr(g) = Tr(¢Blng) + Tr(eBlng) + Tr(¢). Bub
Tr(eB1n g) = Tr(eBBIng) = Tr(BBeglng) = Tr(BBBglng) = 0 and thus eq. (27a)
is proved.
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Corollary 5. The operator Dg/Di (eq. (7)) is the null operator if and only
if ¢ is nondissipative.

Indeed, relations (27) imply that ds(g)/dt = 0 if and only if D, =0 for each J.
Thus, if ¢ is nondissipative, Dg/Dt = 0. Conversely, if Dg/Dt = 0, dg/d? is
given by eq. (1) and then it is well known that ds(g)/dt = 0 and, hence, ¢ is
nondissipative.

Theorem 7. A given state operator g is nondissipative if and only if there
exist real scalars Ay, Ags and Ay, for ¢ =1,...,n(J), and J=1,..., M, such
that operator g satisfies the M equations

(28) 0:(B1n )Y = 0s[ AnsT(J) + Amsl H)’ +3 z”N,(J)] . J=1,.., M.

{=1

Proof. Using definition 3, relation (27¢) and the fact that Gram determinants
are nonnegative, we find that ds(g)/dt = 0 for the given state operator g if
and only if for each J

(29) PJ(Q; Blng, By, By, ..., R,s)=0.

The Gram determinant IV vanishes if and only if operators Vg, (BIn g),
Vo, (B, Ve, (BuY, ..., Ve, (B arelinearly dependent. Using the definition
of operators R,, (postulate 5) and relations (12), (15) and (17), we find that for
every ¢ and each J

(30) Iy =1(J),
(31) (Nu)y = Nu(J)

and that the requirement of linear dependence is given by condition (28).
Thus, theorem 7 is proved.

Corollary 6. A given state operator o is nondissipative if there exists a
preconstant of the motion 4 such that, for each J,

(32) o/(BIng)’ = o/4)’ .

Indeed, for the given state operator g, substituting ¢ (B In g)’ by e,(4)
in eq. (27), we find that IV(g; BIn g, Rosy Risy ...y Burs) = my(g) (eq. (23)) for
each J. Thus eq. (27) becomes ds(g)/dt = — k Tr (A(Dg/Dt)). But the right-
hand side of the last relation is equal to zero because A is a preconstant of the
motion (condition (19)).

Definition 4: Nondissipa,tive solutions or limit cycles.
A physical solution g(t) is said to be nondissipative or, equivalently, to be
a limit cyele if and only if ds(e(t))/dt = 0 for every i ‘
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Definition 5: Strongly nondissipative states.
A state operator g is said to be strongly nondissipative if and only if it
belongs to a nondissipative solution. :

Corollary 7. A physical solution o(t) is nondissipative if and only if o(t)
satisfies conditions (28) for every f, i.e. e(t) is nondissipative for every t.

However, a physical solution passing through a nondissipative state is not
necessarily nondissipative because the faet that condition (28) is satisfied at
one time does not necessarily imply that it is satisfied at all times. In other
words, a nondissipative state is not necessarily also strongly nondissipative.
By contrast, for a system composed of a single constituent of matter every
physical solution passing through a nondissipative state is nondissipative (1),
i.e. every nondissipative state is also strongly nondissipative.

Corollary 8. Every nondissipative solution satisfies the von Neumann
equation.

Indeed, a nondissipative solution o(t) of eq. (6) is also a solution of eq. (1)
because Do()/Dt = 0 for every ¢ (corollary 3).

Corollary 8 implies that conventional Hamiltonian dynamies is included in
the proposed dynamics as a special case. Said differently, conventional quantum
dynamics describes only the unitary limit eyeles of quantum thermodynamics.
A special class of nondissipative solutions is discussed in theorem 8.

Theorem 8. For M noninteracting elementary constituents, i.e. for V=0
in eq. (16), a solution g,(t) of the von Neumann equation is also a nondissipative
physical solution of eq. (6) if and only if ,(0) is nondissipative.

Proof. Being a solution of eq. (1), 04(t) = U(¢) 0.(0) U~1(t), where the unitary
transformation U(f) = exp [— itH /%] = exp[— #H(1)/A]R®...® exp [— WtH(M)/#]
because V'=0. If g,(0) is nondissipative, then we find that condition (28) is
satisfied by @.(0) and g,(¢) for every ¢ for the same scalars Ay Ags and A,
It follows that ¢,(?) is nondissipative for every i, Do, ({)/Dt = 0 for every ¢
(corollary 5) and, therefore, g,(t) satisfies eq. (6). Conversely, if g,(t) is a solution
of both eqs. (1) and (6), then Dg,(t)/Dt =0 for every ¢ and, therefore, o,(¢) is
nondissipative for every ¢ (corollary 5). Thus theorem 8 is proved.

If uniqueness of physical solutions were proved, then theorem 8 would be
strengthened so that «if initially in a nondissipative state, a physical solution
for M noninteracting constituents evolves only through such states. » In other
words, for such initial states, eq. (6) would reduce to the von Neumann equation.

Theorem 9. A state operator ¢ represents an equilibrium state (definition 3
in ref. (2)) if o commutes with the Hamiltonian operator H and is nondissipative.
The proof of this theorem is analogous to that of theorem ‘9 in ref. .

Definition 6: Complete set of constants of the motion.
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A set of ¢+ 2 linear, self-adjoint, linearly independent operators
{I , H, K, ..., Kq} is said to represent a complete set of constants of the motion
if and only if every constant of the motion C of the system can be expressed as

(33) C =il +cgH + > ¢;K;,

=1

where ¢;, ¢y and ¢,, for j =1, 2, ..., ¢, are real scalars.

The linearly independent constants of the motion I and H (theorem 2 and
corollary 3) are always members of the complete set. Clearly, each of the re-
maining members K,, ..., K, commutes with H (theorem 5) and can be selected
in a variety of ways. For a given system, however, the number ¢ is fixed by
the completeness and linear independence conditions.

Theorem 10. For given finite mean values of the operators in a complete
set of constants of the motion {I, H,K,.., K,,}, there exists one and only
one state operator g, for which s(g,) = — % Tr (g, In g,) is greater than s(o)
of any other state operator corresponding to the same mean values. The state
operator g, is given by the relation

(34) Qo = €XP -[—ﬂH —+- ix,K,] /Tr [exp [——ﬂH - ix,K,” ,

=1 =1

where the coefficients § and %,, for j =1, 2, ..., ¢, are determined by the given
mean values.

The theorem is proved in the literature (12). Relation (34) is a generalization
of the known thermodynamic equilibrium distributions. If 5# is infinite-
dimensional and some generators of the motion are unbounded, we will impose
on the generators of the motion the additional condition that, for each given
set of finite mean values of the constants of the motion, the state operator
0o (relation (34)) be well defined.

By virtue of theorems 7 and 9, it is clear that g, is an equilibrium state.
For given mean values of the constants of the motion, the system may admit
other equilibrium states in addition to g, In what follows, we examine the
stability of the equilibrium states in the special sense that, as we explained
in ref. (¥), captures the essence of the second law of thermodynamies.

Definition T7: Subset Q.
‘We denote by £2 the set of all the linear, self-adjoint, unit trace, nonnegative-
definite operators ¢ on s# that correspond to given finite mean values of a

(1) A. Karz: Principles of Statistical Mechanics (W. H. Freeman, San Francisco, Cal.,
1967), p. 45.
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complete set of constants of the motion H and K,, i.e. such that Tr (Hp) =
= ¢< oo and Tr (K,0) = k; < oo, where ¢ and k; are fixed given constants,
fori=1,..,4q

Clearly, every physical solution g(¢) with ¢(0) in 2 lies entirely in £.

Theorem 11. For given finite mean values of a complete set of constants
of the motion, the equilibrium state g, corresponding to the maximum value
8(0o) of 8(p) (theorem 10) is stable (definition 6 in ref. (1)).

The proof of this theorem is the same as given in ref. ().

Conjecture. For given finite mean values of a complete set of constants of
the motion, all equilibrium states other than p, of theorem 10 are unstable
(definition 7 in ref. (1)).

Arguments in support of this conjecture are given in ref. (*). They can be
readily extended to the conjecture for a composite system.

For each combination of finite mean values of a complete set of constants
of the motion, the conjecture and theorem 11 imply that a composite system
admits one and only one stable equilibrium state. This is a generalization of
the statement of the second law of thermodynamics used by HATSOPOULOS
and GYFTOPOULOS (?) in their unified theory. Hence we conclude that the
proposed equation of motion implies the second law of thermodynamies.

From consideration of the second law and unitary processes obeying eq. (1),
it has been proved () that — &k Tr (o In ) is the only state functional that
satisfies all the requirements that must be imposed on the entropy of a system.
Because all arguments of the proof are valid here, we conclude that s(p) =
= — k Tr (¢ In p) represents the entropy also when the dynamics of a system
is described by eq. (6).

In what follows, we study the effects of interactions and correlation between
two subsystems of a composite isolated system. Thus we establish conditions
under which each subsystem can be analysed independently of the other. The
extension of the results to more than two subsystems is straightforward.

Definition 8: Subsystems.

Given a system of M distinguishable constituents, we define subsystems 4
and B by partitioning the set of constituents 1, 2,..., M into two disjoint
subsets of M, and M, constituents, respectively (M, Mpz= M).

With subsystems A and B are associated Hilbert spaces s£4 and 2
(postulate 1) such that

(35) HARQHE=H
and with every state g of the composite are associated the reduced state operators
36) 04= Trale) and gs= Tr4lo).

Subseripts 4 and B will denote operators on 4 and J#%, respectively.
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Definition 9: Noninteracting subsystems.

Subsystems A and B will be said to be noninteracting if and only if the
interaction Hamiltonian operator V and, therefore, the overall Hamiltonian
operator H (eq. (16)) can be written as

(37) V= VA®IB + IA'® Ve ’
(38) H=H,QIs+ I.® Hs.
In words, two subsystems A and B are noninteracting if and only if the inter-

action Hamiltonian between the constituents of 4 and those of B is equal
to the null operator.

Theorem 12. If two subsystems A and B are noninteracting, then both
operators H,® I, and I, Hy represent constants of the motion of the com-
posite system, and have constant mean values equal to Tr(H s0.) and Trz(Hpgz),
respectively.

Proof. By virtue of eq. (38), [H, (H,& Iz)] = [H, (I,& Hg)] = 0. Moreover,
it can be readily verified that for every state operator o

(39a) (H,® Lo = — I, Tra(osHs) + (HY it Jed,

(390) (Ha® Ig)’ = I, Tra(o.H,) if Je B,
and

(40a) (I1.® Hp)’ = I, Trs(osHs) itJed,
(400) (La® HzY = — I, Tra(e.H,) + (HY if JeB:

Thus each of the operators H,® Ip and I,® Hp commutes with the Hamil-
tonian operator H and satisfies condition (21) and, therefore, represents a
constant of the motion. Moreover,.

Trl(Hs® Ip)p] = Tru(H,04) and Tr[(I,Q Hp)e] = Tra(Hzps).

Thus theorem 12 is proved.
For noninteracting subsystems, theorem 12 asserts that an energy can be
assigned to each subsystem and that such an energy is conserved.

Theorem 13. If the two subsystems A and B are noninteracting, then the
reduced state operators g, and g satisfy the equations of motion

(41a4) L _tm, 94]—2 - D,® (043,

JGA.

. v 1
(413) =7 Hsr 02— 2 = Ds® (00l

JEB
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where operator D,, for J=1, 2, ..., M, is defined by egs. (8)-(14), (0.)7 = Tr.(04)
and (gs); = Tr,(ps). For J in subset A (subset B), each operator D, in
eqs. (41) is identical to the corresponding operator defined by eqs. (8)-(14)
for an overall system composed of only the elementary constituents in sub-
set 4 (subset B) except for the logarithmic entries which are expressed in
terms of operator (B In g)’ rather than operator (B, ln g,)’ for A and operator
(Bg In gp)’ for B.

Proof. Equations (41a) and (41b) follow immediately from eq. (6), condi-
tion (38), and the fact that dg,/df = Trg(dp/dt) and des/dt = Tr,(do/dt). Thus,
theorem 13 is proved.

In general, operator (Bln g)’ differs from both operators (B,ln g,)’ and
(BzIn g5)’ and, therefore, the time evolution of the reduced state operator
04(gs) depends not only on g, (gs) but also on o. The lack of interactions
between the two subsystems guarantees that the energy of each subsystem
is conserved (theorem 12), but does not imply that each subsystem evolves
independently of the other.

Definition 10: Independent states of subsystems.
Given a system in state g, two subsystems A and B are said to be in
independent states g, and gz, respectively, if and only if

(42) 1R os=2¢.

For independent states, we can readily verify that

(43) Bhlg=341n94®IB+IA®B31nQB,
(44a) (B1n gy = (B, In g.) + I, Trs(os In g5) it Jed,
(44b) (B1n @)’ = (BzIn gs)’ + I, Tra(esIn o) if JeB.

Theorem 14. Ifinitially in independent states, two noninteracting subsystems
A and B evolve only through such states. Specifically, the equations of motion
for the state o of the system and the reduced states g, and gz are "

do dQA dQB
d D
(46a) % ﬁ[ 4 04+ De;’ o
~» . D
(465) S i, 0]+ 222,

where the operator Dg /Dt (Dg,/Dt) 'js given by the right-hand side of eq. (7)
for a system consisting of only the elementary constituents of A (B).
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Proof. Using eqs. (42)-(44) into eqs. (41), we can readily verify that Dg,/D¢
and Dg,/Dt depend only on g, and g5, respectively. Thus, theorem 14 is proved.

Theorems 12 and 14 imply that two subsystems of a composite system can
be analysed independently if and only if they are noninteracting and, initially,
in independent (uncorrelated) states, .. if and only if each of the two subsystems
conforms to the definition of a strictly isolated system ().

Defimition 11: Correlation functional.
Given a system partitioned into two subsystems A and B, the correlation
functional between A and B will be defined by

(47a) 0ua(e) = Tr(o In ) — Try(e. In o,) — Trs(gs In g5) =
(470) = Tre(ln g — B,In 0,® Is— L,® B In g5)].

By the well-known subadditivity property of the functional Tr(o In p) (u),
functional o,s(¢) is nonnegative definite. Moreover, 045(0) = 0 if and only if
the two subsystems are in independent states (condition (42)). In this sense,
the terms independent and uncorrelated are interchangeable.

Theorem 15. The rate of change of the correlation functional is given ‘by

oo
(48) “ett) — tunly—duso,

where . ]

(49) Ginle = 5 Tx (Hlo, BuIn 0a® Ir + L@ By In 0],

(50)  dulo= 3> =DV Blne—Bn g @ L) +

J=1 - 1
+ 2 = (Diives(BIng —Li® By In ¢s)’)".

JE4
JEB

Proof. Equations (48)-(50) can be obtained by differentiating eq. (47),
using ref. (1), relations dg,/dt = Trz(de/dt) and dgs/dt = Tr,(de/dt), eq. (6),
and relations (7)-(14). Equations (49) and (50) represent the contributions to
do,s(g)/d? arising from the Hamiltonian term (— i[H, g]/%) and the dissipative
term (Do/D?) in eq. (6), respectively. Thus, theorem 15 is proved.

(**) A system is said to be strictly isolated if and only if it interacts with no other
system, and is at some time and, hence, at all times in an independent state when
viewed as a subsystem of any conceivable composite system containing it.

(1) H. Araxr and E. Lies: Commun. Math. Phys., 18, 160 (1970). See also A. WEHRL:
Rev. Mod. Phys., 50, 242 (1978). ~
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Based on our understanding of the properties of the equation of motion,
we conjecture that 6.s|p is always nonnegative, i.e. that the dissipative term
in the equation of motion can destroy but cannot create correlations between
subsystems.

4. — Conclusions.

The proposed quantum theory appears to be in accord with both mechanics
and thermodynamies. In particular, it includes the consequences of the first
and second laws of thermodynamics as manifestations of inherent dynamical
features of the elementary constituents of matter. Hence, those two laws
need not be stated explicitly because the foundations of the theory include
their implications. All the results have been achieved without information-
theoretic or statistical reasoning, and without restrictions to and distinctions
between microscopic and maecroscopic descriptions.

The proposed theory, that we call quantum thermodynamics, maintains
the fundamental conceptual structure of quantum physics, but extends the
nonstatistical deseription of individual states from the zero entropy domain
covered by quantum mechanics to an unexplored broader domain of nonzero
entropy states, and contemplates a nonstatistical deterministic description of
their irreversible causal evolution.

Our present knowledge of the mathematical properties of the new equation
is far from complete. Several technical mathematical issues related to un-
bounded operators on infinite-dimensional Hilbert space and to the general
question of existence and uniqueness of physical solutions remain to be resolved.
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® RIASSUNTO

Si propone una nuova equazione non lineare di evoluzione per un sistema quantistico
generale costituito da pid costituenti materiali elementari distinguibili. Nel dominjo
degli operatori di stato idempotenti della meccanica quantistica, 1’equazione & soddi-
sfatta da tutte le evoluzioni unitarie generate dall’equazione di Schrodinger. Ma, nel
dominio piG ampio degli operatori di stato non idempotenti, non contemplati dalla
meccanica quantistica convenzionale, I’equazione genera un’evoluzione generalmente
non unitaria, mantiene costante il valor medio dell’energia e causa aumenti di entropia
finchd il sistema non raggiunge uno stato di equilibrio oppure un ciclo limite.




QUANTUM THERMODYNAMICS ETC. 97

KsanroBass TepmoxunaMuka. HoBoe ypaBreHHe QBIKeHHs! I8 OOLICH KBAHTOBOH CHCTEMBI.

Pestome (*). — Tlpemmaraercs HOBoe HeMMHEHHOE YpaBHEHHE MBIOKCHHS IUIA OBIIEH KBaH-
TOBOH cHCTeMe, cocTosAmIeH 3 6oee YeM OMHOM SIEMEHTAPHON COCTABISIOMEH BEMECTBa.
B obnacte HIEMIOTEHTHBIX KBAHTOBOMEXAHHYECKHX OMEPATOPOB COCTOSHHI YIAOBIIETBO-
PAIOTCA BCS YHHTApHEBIC 3BOJIOLAM, I'éHCpAPOBaHHEIE ypaBHeHHeM Ipeauurepa. B Gonee
IIAPOKO# 06IacTH HEHMIOEMIOTEHTHBIX OIEPAaTOPOR COCTOSHHM, HE paccMaTpHBaeMOM B
OOBIMHOM KBaHTOBOM MexaHUKe, BOSHHKAET HEYHHTAPHAS 3BOIIOLMS, IIPH 3TOM 3HEPIHA
ABJICTCA HHBADHAHTHOM, & SHTPOIHS YBETHIABAETCA CO BDEMEHEM, TIOKA CHCTEMA TOCTHTAET
COCTOSIHMSI PaBHOBECHS WIH NPEICITHHOrO IAKIA.

(*) Iepesedeno pedaxyuei.




