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We discuss the unresolved problem of proving rigorously that in the classical limit 0, the
quantum-thermodynamic entropy functional tends to the classical entropy functional. We state
rather restrictive conditions that define the general problem of finding a complete classical phase-
space representation of quantum kinematics. Whether the problem admits of solutions remains an
unresolved question. We discuss a physically interesting attempt to relate the structure in the
classical limit #—0 of the well-known Blokhintzev, Wigner, and Wehrl phase-space functions to

the spectral expansion of the quantum state operator.

PACS numbers: 05.30. — d, 02.50. + s

I. INTRODUCTION: PHYSICAL CONTEXT OF THE
PROBLEM

The purpose of this paper is to discuss the problem of
proving that in the classical limit #—0 the quantum-thermo-
dynamic entropy functional

s(p)= —kTrplnp (1)
tends to the classical entropy functional
) = — k[ L 41q,pin urg, p, @

where p is the quantum state operator and w a properly de-
fined classical state function. As recently stated by Wehrl,'
“It is usually claimed that in the limit #—0, the quantum-
mechanical expression tends towards the classical one, how-
ever, a rigorous proof of this is nowhere found in the litera-
ture.”

In this paper, we state conditions that define the prob-
lem of finding a classical phase-space representation of
quantum kinematics. One such condition is that a properly
defined classical state function w (the definition of which
may involve limits as #—0) should be such that s*(w) = s{ p).
Whether the problem thus defined admits of solutions re-
mains an unresolved question which is worth further investi-
gations. We gain some insight in the problem by studying the
phase-space structure induced in the classical limit by the
spectral expansion of the quantum state operator.

Our interest in this problem arises for physical reasons
essentially distinct from the traditional. Indeed, even the
physical meaning that we assign to the mathematical objects,
especially p and w, is entirely different from the convention-
al. In our attempts to unify the laws of quantum mechanics
and thermodynamics into a quantum thermodynamics,*> an
underlying hypothesis has been that no layer of statistical or
information-theoretic reasoning should be required to
bridge the gap between mechanics and thermodynamics. In-
deed, in our theory there is no such gap. Quantum thermo-
dynamics is a nonstatistical theory concerned exclusively
with a causal description of the individual quantum states of
a system, including a single particle.

A most important fundamental hypothesis® of quan-
tum thermodynamics is that the general mathematical re-
presentation of the individual quantum states of a single iso-
lated system cannot be in terms of the traditional state
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vectors |#) in the Hilbert space % of the system, but must be
in terms of self-adjoint, nonnegative-definite, unit-trace op-
erators p on ¥ that are not necessarily idempotent. State
operators p have the same mathematical properties ( p* = p,
p>0, Tr p = 1) as the statistical or density operators consid-
ered in traditional (von Neumann) quantum statistical me-
chanics.* But in quantum thermodynamics, their physical
meaning is entirely different. The operators p represent indi-
vidual states of a single system and not the index of statistics
from a generally heterogeneous ensemble of identical sys-
tems. Thus, for example, the entropy functional s( p), defined
by Eq. (1), represents the entropy® of the single system in any
of its states, equilibrium and nonequilibrium, dissipative and
nondissipative,® and not a measure of statistical or informa-
tion-theoretic uncertainty.

With this background, the problem of studying the clas-
sical limit #—0 acquires for us a special physical meaning.
The phase-space functions w(g, p) represent individual classi-
cal states of a single system and not the index of statistics
from a Gibbsian ensemble. The functional s*(w) represents
the individual classical entropy of the single system in any of
its classical states, and not the Gibbsian index of probability
of phase.

However, we wish to emphasize that all the mathemat-
ical observations reported in this paper may obviously be
interpreted also in the traditional way.

We restrict our discussion to the case of a single degree
of freedom (e.g., a one-dimensional harmonic oscillator) so
that the Hilbert space is & = L ? (R) and the classical phase
space is 2 = R%.

The paper is organized as follows. Coherent states and
three well-known phase-space maps are briefly reviewed in
Sec. I1, conditions defining a complete phase-space represen-
tation of quantum kinematics are given in Sec. I11, a discus-
sion on the classical limit of the three phase-space maps is
given in Sec. IV, and conclusions in Sec. V.

ll. COHERENT STATES AND PHASE-SPACE
FUNCTIONS

We denote the position and momentum operators by Q
and P ([Q, P] = ifil ), and their eigenvalues by g and p so that
Q|9) = q|g) and P |p) = p|p). Theannihilationand creation
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operators Z and Z * ([Z, Z 1] = I) are then defined by the
relations®

Z=\1/2h0lwQ + iP), Q=E20(Z'+Z),
3)
Z'=\1/2k0(wQ — iP), P=\ohi/2iZt—
We call the normalized eigenvectors |z) of Z (Z |z) = z|z))
coherent vectors with “natural frequency” w. For each
eigenvalue z of Z, we define the real variables x and y (with

dimensions of position and momentum, respectively) by the
relations

x=V#20(z* —2), z=1/2%0(ox + iy),
4
y=Voh/2iz* +z), z*=1/2%0(ox — iy).
The representation of coherent vector |z) in configuration
space is

(ql2) = (@/mh)"/*

Xexp| — w(x — 9)*/2% + iyg/# — ixp/2#), (5)
whereas in momentum space it is
(plz) = (1/mhw)'"*

Xexp[ — (v — p)*/2%w — ixp/# + ixy/2#].16)
Withz = 0(x = 0,y = 0), Egs. (5) and (6) give the representa-
tions of coherent vector [0). Moreover, we have the well-
known relation |z) = W (z)|0), where W (z) is the unitary
(Weyl) operator

W (2)=exp(zZt —2z*Z)
= Wi(x, y) = exp[ilyQ — xP)/#]. (7

We say that a system is in a coherent state if and only if its
(individual) state operator is

p =P, =lz)(z| =p* @)
These pure states are minimum uncertainty in phase space
(AQAP = 1i/2).

Several linear mappings from the set of self-adjoint op-
erators A on & to the set of complex-valued functions on the
classical phase space f2 have been considered in the litera-
ture.” In our physical context, these mappings are attempts
to find a phase-space representation of an individual quan-
tum system. We will consider only three important exam-
ples, namely, the Blokhintzev phase-space map®

ng, p; A }=2m#i(q|4 |p){ plg) (9a)
= f M e~ 16q+ m)/#rr(eiag/ﬁ 4 eirP/ﬁ)’
2rhi
(9b)

the Wigner phase-space map®

glg, p; A )Eff gziﬁﬂ e~ 189+ VAT (47100 + TPV/%) (10q)

- f f 51_%7_ g +&p + 14 )%, (10b)

and the Wehrl phase-space map'

flg,p;A)=(q,p|4 |q,p) (11a)
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f f B0 g 1 £+ mid r/he — 04+ v,
Vit
(11b)

where |g, p) is the coherent vector |z) with x = g and y=p
The Blokhintzev and the Wigner maps are not real (ie.,
r*s#rand g* #g), while the Wehrl map is real and nonnega-
tive (i.e., f* = f > 0). For every p and 4, we have

[ - [

g(q,p,p)
H 949 o pip)=Tep=1
(12)
dqdp *
P s ’A » D5
ff Fy=- r*(g, p; 4)rq, p; p)
dq dp *
= Bt S’ o4 , D; A)8lg, p; p) = Tr Ap. 13
f 27Tﬁg(qp 18(q, p; p) = Tr Ap (13)
For the Wehrl map, instead, the relation
dgd
f [4 AL fig.p; AV g, 5;) = Te dp (14)

holds for every 4 only for the special class of (Wehrl) states P
for which

o= [ 42 14,p;p)g. p)<a; 1. (15)

The usual interpretation of these relations is that the
maps g, p; p), 8(g, p; p), and f1g, p; p) play a role analog to
that of the classical phase-space state function, and the maps
r*(g,p;4),g*(q.p;4 ),andf(g, p; A ) arole analog to that of the
classical phase-space function associated with observable 4.
A discussion of the time evolution of Hg, p; p) under Hamil-
tonian dynamics is given in Ref. 8.

Ill. CLASSICAL REPRESENTATION OF QUANTUM
KINEMATICS

Ideally, a classical phase-space representation of a
quantum system would be complete if it were possible to
solve the following general problem. Given a system with
quantum-mechanical Hilbert space #° and classical-me-
chanical phase space {2, find two mappings w(g, p; p) and
alg, p; A) that satisfy the following rather restrictive condi-
tions. For every state operator p on 57, every well-defined
self-adjoint operator 4 on 57, every point ¢, p in £2, and every
continuous real function F (¢ ) of the real variable ¢,

(i) wig, p; p) is real and nonnegative,

(ii) a(g, p; A ) is real,

i) f f %F(w(q,p;p)):TrF(p),

(iv) f f % #‘;" Flalg, p; A)Jwig, p; p) = Tr F(d p.

Clearly, for F(t)= — ktIntif0<¢<1and F(t) = O else-
where, condition (iii) implies that s*(w) = s p).

No rigorous solution to this problem is known. To the
best of our knowledge, even the physically interesting ques-
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tion whether the problem admits of solutions, let alone to
find them, remains unresolved. In what follows, we discuss
the rudiments of an approach that may provide useful in-
sight towards a resolution of the question.

IV. CLASSICAL LIMIT OF PHASE-SPACE FUNCTIONS
Let us consider the spectral expansion of the state oper-

ator
= SwP, (16)
J
I=3P, (17)
j
PP, =8,P, (18)

where / is the identity and P, the projector onto the eigen-
space belonging to eigenvalue w;, with degeneracy d;
= Tr P;. We readily verify that

[[ %2 g s p)=Te P, =4, (19)
2Hap P =1, (20)
ng, p; p) = Yw;ng, p; P)), (21)

and similar relations hold for the mappings g and f.
Using the relations

J‘f d§ d77 é—n m l§17/ﬁ __5 nﬁn (22)
f f dé dn %9, ﬂmelg‘n/ﬁ — (@2 + )20

if n 4+ m odd,

= M(ﬁw)’"”(ﬁ/w)”” if n+m even, 23

2n+m

and the expansion

w© o an + mr é— 'lﬂm
+&p+md)=
r(q § ? K ) n§0m2=0 aqn (9p"' ap A nim!
(24)
into Eqgs. (10b) and (11b), we find
g md)=rapd)+ S 2T ""”', 25)
n=1 5 3p n!
flg,p;4)=rig, p; 4)
© 2 Pr 132 —1) ,_»&
+ " ",
nglkzo 3g"p* —* |4 pa 4
(26)

and, after some manipulations involving Relations (18) and
(22),

g, p; P;)rig, p; Py)

(—ir# ar
- s M P)—
jkr(q P j) ,,Z] n' aq

7
a.p P dp"

4P Py

(27)
Relations (20) and (27) imply that the functions
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Ng; p; P;) have overlapping supports which cover the whole
phase space {2, i.c.,

w2, =0, (28)

J

D00, #6502, (29)
where

2,={4q, pIrig, p; P;)#0}. (30)
However, the relative importance of the overlap is small. For
example, | §7;7, |*/|§7}||5rz| is of order #°/d,d, for j#k.
Thus we conclude that, in the classical limit %0, the spec-
tral expansion of the state operator p induces a partition of
the phase-space {2 into disjoint cells £2, each belonging to a
distinct eigenvalue w; of p.

From Eqgs. (25) and (26), it follows that if the Blokhint-
zev map r{g, p; A ), the Wigner map g(q, p; A ), and the Wehrl
map f(q, p; A ) each admit of a classical limit as #—0, then
they tend to the same map. Assuming that such limits exist,
we introduce the following notation

wlg, p)=lim rg, p; p) = lim g(g, p; p) = lim f(g, p; p),  (31)
%0 #fi—0 -0

alg, p)=lim r*(q, p; A) = lim g*(q, p; 4) = lim f (g, p; 4 ),
A0 #A—0 A0
(32)
aj(q,p)%g rg, p; P;) = Lllgg(q,p; P)= }}_gf (g, p; P;).
(33)
It then follows from Relations (20), (21), and (27) that
zaj(q’p) = 1! (34)
J
wlg, p) = Y w;a;(g, p), (35)
j
a;(g, Pl (g, p) = Su;(q, P)s (36)

and, therefore, the functions ;(g, p) can only take the values
0 and 1, and have nonoverlapping supports covering the
whole phase space. Thus the structure of the function w is
such that

F(w(g, p)) = Y F (w;)a;(g, p) (37)
J
in analogy with the general relation
F(p)= Y F(w)P,. (38)
J
To proceed further, we conjecture that
dgd
[[ 22 4,51 =, 39)

We have no proof for this. The conjecture is based only on
some heuristic arguments. We first note that Relation (39) is
consistent with the improper formal relations

”dqdp 1_fqud” ,(q,p,1)=Tr1=;d,-, (40)
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[ o [[ e 5,

=3 d" d" a,(g, p), (41)

where we used that fact that r(q, p;I)=1and Relation (34).
Moreover, we note that it is consistent with the requirement
that if w(g, p) is to represent a classical state function, then it
must be normalized and, therefore,

dq dp _ dq dp
f EPy wig, p) = ;wjff Erry a;(q, p)

=1=Ywd, (42)

Finally, we observe that the conjecture and the normaliza-
tion condition for w(q, p) would follow if there were a mean-
ing to saying that the phase-space measure dg dp/2#i is in-
dependent of # so that the following relation would make
sense at least for A4 in the trace class

dq d, ] dqd,
Trd = f 494p o b, A)=hmff—q—£r(q,p;A)
A0, 2mh

- f WD i ig,p; ). 3)

If the conjecture could be proved, then from Relations
(37) and (38) it would follow that

J] %2 Fuie. o= [ [ 22 5w,
=;F(wj)d,-

which would prove that the function w{g, p) [Relation (31)]

satisfies conditions (i) and (iii) of Sec. III and that, in particu-
lar, s(w) = s( p). In a similar manner, and with similar con-
jectures, we would show that the function a(g, p) [Relation

(32)] satisfies conditions {ii) and (iv).

Because it is not clear whether Relations (39)}-+43) admit
of a rigorous justification, we conclude that the question of
existence of solutions to the problem defined in Sec. III re-
mains unresolved.

=TrF(p),  (44)

V. CONCLUSIONS

We have given restrictive conditions defining a com-
plete classical phase-space representation of quantum kine-
matics for systems with both a classical and a quantum de-
scription. Whether such representations exist is an
unresolved problem. We presented heuristic arguments in
support of the usual unproved claim that s( p}—s"(w) in the
classical limit #—0.

We have observed that, in the limit #—0, the spectral
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expansion of the quantum state operator p induces a parti-
tion of the phase space £2 into disjoint cells £2; each belonging
to a distinct eigenvalue w; of p. Over cell £2,, the classical
state function w has the constant value w;. We conjectured
that the phase-space volume of cell £2; equals the degeneracy
d; of eigenvalue w;. Accordingly, the phase-space volume of
the support of w, i.e., of the complement of cell £2, belonging
to the zero eigenvalue of p, cannot be smaller than the value 1
attained for every idempotent or pure state ( p* = p).

We conclude with a remark on dynamics, namely, on
the distinction between conservation of volume in phase
space and thermodynamic reversibility. It is true that the
Liouville-von Neumann equation for the unitary evolution
of p induces in the classical limit an evolution of w which
preserves both the volume of the support of w and the value
of the entropy. However, it is seldom recognized explicitly
that conservation of volume in phase space is not equivalent
to thermodynamic reversibility. For example, we could con-
ceive of nonunitary evolution equations which preserve the
volume of the support of w (i.e., equations that preserve the
zero eigenvalues of p) but not the value of the entropy (i.e.,
such that the nonzero eigenvalues of p are not invariant). We
believe® this to be an interesting and physically important
feature of a recently proposed'° nonlinear quantum equation
of motion for a single elementary constituent of matter.
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