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From the thermodynamic equilibrium properties of a two-level system with variable energy-level
gap ∆, and a careful distinction between the Gibbs relation dE = T dS + (E/∆) d∆ and the
energy balance equation dE = δQ← − δW→, we infer some important aspects of the second law
of thermodynamics and, contrary to a recent suggestion based on the analysis of an Otto-like
thermodynamic cycle between two values of ∆ of a spin-1/2 system, we show that a quantum
thermodynamic Carnot cycle, with the celebrated optimal efficiency 1 − (Tlow/Thigh), is possible in
principle with no need of an infinite number of infinitesimal processes, provided we cycle smoothly
over at least three (in general four) values of ∆, and we change ∆ not only along the isoentropics,
but also along the isotherms, e.g., by use of the recently suggested maser-laser tandem technique.
We derive general bounds to the net-work to high-temperature-heat ratio for a Carnot cycle and for
the ’inscribed’ Otto-like cycle, and represent these cycles on useful thermodynamic diagrams.
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INTRODUCTION

Recent studies [1–6] of Maxwell demons, quantum
heat-engines (often called Carnot engines even if the cy-
cle is not a Carnot cycle), and quantum heat pump, re-
frigeration and cryogenic cycles operating between two
heat sources at Thigh and Tlow find maximal efficien-
cies lower than the celebrated Carnot net-work to high-
temperature-heat ratio, 1 − (Tlow/Thigh). In particular,
Ref. [4], in studying a specific two-iso-energy-gap/two-
isoentropic-processes Otto-type cycle for a spin-1/2 sys-
tem, seems to hint that the quantum nature of the work-
ing substance implies a fundamental bound to the ther-
modynamic efficiency of heat-to-work conversion, lower
than the celebrated Carnot bound.

Pioneering studies [7] of quantum equivalents of the
Carnot cycle for multilevel atomic and spin systems ap-
peared soon after the association of negative tempera-
tures with inverted population equilibrium states of pairs
of energy levels [8, 9] and the experimental proof of the
maser principle [10].

In tune with these early studies, here we show that a
Carnot cycle for a two-level system is possible, at least
in principle, but requires cycling over a range of values of
the energy-level gap ∆. A critical and characteristic fea-
ture of this cycle is that along the isotherms the value of
∆ must vary continuously and hence the two-level system
must experience simultaneously a work and a heat inter-
action. Usually, the different typical time scales under-
lying mechanical and thermal interactions imply funda-
mental technological difficulties that are among the main
reasons why the Carnot cycle has hardly ever been en-
gineered with normal substances. In the framework of
quantum thermodynamics the understanding and mod-
eling of mechanical and thermal interactions is a current
research topic, having to do with entanglement, decoher-
ence [11], relaxation [12], adiabatic (unitary) accessibility

[13], but a recent suggestion by Scully [1] indicates that
the use of a “maser-laser tandem” may provide an effec-
tive experimental means to implement the simultaneous
heat and work interaction by smooth continuous change
of the magnetic field necessary to realize the isotherms
of our Carnot cycle: the maser serves as the incoherent
(heat) energy exchange mechanism, the laser as the co-
herent (work) energy exchange.

Consider a two-level system with a one-parameter
Hamiltonian H(∆) such that the energy levels are ε1 =
−∆/2 and ε2 = ∆/2, for example a spin-1/2 system,
in a magnetic field of intensity B, with ∆ = 2µBB and
µB = e~/2me = 9.274 × 10−24 J/T Bohr’s magneton
constant.

For our purposes here it suffices to consider the canon-
ical Gibbs states (the stable equilibrium states of quan-
tum thermodynamics), i.e., the two-parameter family of
density operators ρ(T, ∆) with eigenvalues p and 1 − p,
mean value of the energy E, and entropy S given by the
relations

ρ(T, ∆) =
exp[−H(∆)/kBT ]

Tr exp[−H(∆)/kBT ]
, (1)

p =
1

1 + exp(∆/kBT )
=

1

2
+

E

∆
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∆

2
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[
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∆/2
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]

, (3)
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[(
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∆

)

ln
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)
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(
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)

ln
(

1
2
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. (4)

We note the following dependences on the two parame-
ters (temperature T and energy-level gap ∆),

p = p(∆/T ) , E/∆ = e(∆/T ) , S = S(∆/T ) , (5)

and observe that the thermodynamic-equilibrium ’fun-
damental relation’ S = S(E, ∆) for this simplest system
takes the explicit form S = S(E/∆) given by the last of
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Eqs. (4). As is well known, all equilibrium properties
can be derived from the fundamental relation.

It is clear from (5) that for an isoentropic process,

S = const ⇔
E

∆
= const ⇔

∆

T
= const ⇔

E

T
= const

(6)
and, hence, also the Massieu characteristic function M =
S− (E/T ) is constant. More generally, it is easy to show
that dS = (∆/T )d(E/∆) or, equivalently, that the fol-
lowing Gibbs relation holds for all processes in which the
initial and final states of the two-level system are neigh-
boring thermodynamic equilibrium states,

dE = T dS + (E/∆) d∆ . (7)

Next we write the energy balance equation assuming
that the system experiences both net heat and work inter-
actions with other systems in its environment (typically a
heat bath or thermal reservoir at some temperature TQ,
and a work sink or source, respectively),

dE = δQ← − δW→ , (8)

where we adopt the standard notation by which a left
(right) arrow on symbol δQ (δW ) means heat (work)
received by (extracted from) the system, when δQ←

(δW→) is positive (negative).
Comparing the right hand sides of Eqs. (7) and (8),

the following identification of addenda,

δQ← = T dS , (9)

δW→ = (−E/∆) d∆ , (10)

is tempting and often made and valid, but not granted in
general unless we make further important assumptions.
To prove and clarify this last assertion, we consider two
counterexamples, in both of which the system changes
between neighboring thermodynamic equilibrium states
so that both Eqs. (7) and (8) hold.

As a first counterexample, consider a system which
experiences a work interaction with no heat interaction
(δQ← = 0). The energy change dE is provided by the
work interaction only, while the entropy change dS, re-
quired to maintain the system at thermodynamic equi-
librium, is generated within the system by irreversible
relaxation and decoherence (dS = δSgen). The work is

δW→ = −
E

∆
d∆ − T δSgen [≤ −

E

∆
d∆ if T > 0], (11)

and, of course, the process is possible only if dS ≥ 0.
As a second counterexample, consider a system which

experiences no (net) work interaction and a heat inter-
action with a source at temperature TQ so that the en-
tropy exchanged with the heat source is δS← = δQ←/TQ.
In this case, the energy change dE is provided by the
heat interaction only, while the entropy change dS re-
quired to maintain the system at thermodynamic equi-
librium is partly provided by the heat source and partly

generated within the system by irreversibility (dS =
δQ←/TQ + δSgen). The heat is

δQ← = T dS +
E

∆
d∆ [6= T dS if d∆ 6= 0], (12)

and the process is possible, for T > 0, only if

E

∆
d∆ ≤

(

1 −
T

TQ

)

dE . (13)

It is clear from these two examples, that the correct
association between the work and the heat exchanged,
and the energy and entropy changes, cannot be made by
just comparing Eqs. (7) and (8) without considering also
the entropy balance equation, which specifies unambigu-
ously what part of the entropy change is provided by
exchange via heat interaction(s) and what part is gen-
erated spontaneously within the system by its internal
dynamics (relaxation, decoherence). Assuming that the
system experiences both a work interaction and a heat
interaction with a heat bath or thermal reservoir at tem-
perature TQ, the entropy balance equation is

dS =
δQ←

TQ
+ δSgen , with δSgen ≥ 0. (14)

Now, by eliminating dE and dS from Eqs. (7), (8) and
(14), we find

δW→ = −
E

∆
d∆ +

(

1 −
T

TQ

)

δQ← − T δSgen , (15)

which reduces to Eq. (10) if and only if

δSgen =
δQ←

T
−

δQ←

TQ
, (16)

i.e., only when entropy generation is due exclusively to
the heat interaction across the finite temperature differ-
ence between the system and the heat source, and not to
other irreversible spontaneous processes induced in the
system by other interactions that tend to pull the sys-
tem off thermodynamic equilibrium.

Eq. (16) and the condition δSgen ≥ 0 imply that the
system can receive heat only if −1/TQ ≥ −1/T , which
for positive temperatures implies TQ ≥ T . As evidenced
by Ramsey [9], −1/T measures the thermodynamic equi-
librium escaping tendency of energy by heat interaction,
and is a better indicator of “hotness” than the temper-
ature T because it validly extends to negative tempera-
ture states. Figure 1 shows graphs of energy E, entropy
S, and Massieu function plotted as functions of −1/kBT
and ∆, as well as graphs of E, S and ∆ versus S.

Each graph in Figure 1 shows a Carnot cycle, i.e., a
sequence of an isothermal process 1-2 at a high temper-
ature Thigh, an isoentropic 2-3, another isothermal pro-
cess at a temperature Tlow < Thigh, and another isoen-
tropic 4-1. Because S = S(∆/T ) (S decreasing with



3

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−20

  1

 2

3

4
1’  2’

3’

4’

E
  [

J]

∆
1
 = 2.968 10−20

∆
4
 = 1.484 10−20

∆
2
 = 0.9274 10−20

∆
3
 = 0.4637 10−20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−23

 1

 23

4

1’

 2’3’

4’S
  [

J/
K

]

−5 −4 −3 −2 −1 0 1 2

x 10
20

1

1.5

2

2.5

3

3.5

x 10
−23

 1

 2
3

4

1’

 2’
3’

4’

−1/k
B
T  [J−1]

M
 =

 S
 −

 E
/T

  [
J/

K
]

(a) ∆2 < ∆4, T3′ < T1′

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−20

  1

 2

 3

  4   1’  2’

 3’  4’

  Q
12
←

  W
12
←

     W
23
←

Q
34
→

W
34
→

W
41
→

E
  [

J]

∆
1

∆
4

∆
2

∆
3

0

200

400

600

800

1000

1  2

 34

1’

 2’

 3’

4’

T
  [

K
]

∆
1

∆
4

∆
2

∆
3

0 0.2 0.4 0.6 0.8 1

x 10
−23

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−20

1

 2

3

4 1’  2’

 3’
4’

∆ 
 [J

]

S  [J/K]

T = 1200 K
T = 600 K
T = 300 K
T = 150 K

(b) ∆2 < ∆4, T3′ < T1′

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−20

 1

 2

3

4

 1’

3’

E
  [

J]

∆
1
 = 2.968 10−20

∆
2
 = 1.855 10−20

∆
4
 = 1.484 10−20

∆
3
 = 0.9274 10−20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−23

 1

 23

4
1’

3’

S
  [

J/
K

]

−5 −4 −3 −2 −1 0 1 2

x 10
20

1

1.5

2

2.5

3

3.5

x 10
−23

 1

 23

4
1’

3’

−1/k
B
T  [J−1]

M
 =

 S
 −

 E
/T

  [
J/

K
]

(c) ∆2 > ∆4, T3′ > T1′
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(d) ∆2 > ∆4, T3′ > T1′

FIG. 1: (Color online) Graphs of thermodynamic equilibrium properties of a spin-1/2 system. (a) and (c): graphs of energy
E, entropy S, Massieu function M = S − (E/T ) versus −1/kBT at four values of the energy-level gap ∆. (b) and (d): graphs
of energy E and temperature T versus entropy S at four values of ∆, and of energy-level gap ∆ versus S at four values
of temperature. The four values of ∆ in (a) and (b) correspond to magnetic field intensities of 1600, 500, 250, and 800 T,
respectively; in (b) and (d) of 1600, 1000, 500, and 800 T (these extremely large values are chosen for ease of visualization
at ordinary temperatures and intermediate entropies). On each graph, the 1-2-3-4 paths represents a Carnot cycle: isotherm
1-2 at Thigh = 600 K, isoentropic 2-3, isotherm 3-4 at Tlow = 300 K, isoentropic 4-1. For these cycles, Q←12 = Thigh(S2 − S1),
W←

12 = E2−E1 −Q←12, W←

23 = E3 −E2, Q→34 = Tlow(S2 −S1), W→

34 = E3 −E4−Q→34, W→

41 = E4 −E1 and, therefore, W→

net,1234 =
W→

34 +W→

41 −W←

12 −W←

23 = (Thigh−Tlow)(S2 −S1) = Q←12[1− (Tlow/Thigh)]. The 1’-2’-3’-4’ paths [2’=2 and 4’=4 in (c) and (d)]
represent instead an Otto-type cycle of the kind considered in Refs. [4, 6]: iso-energy-gap process 1’-2’ with T ≤ Thigh = 600
K, isoentropic 2’-3’, iso-energy-gap 3’-4’ with T ≥ Tlow = 300 K, isoentropic 4’-1’. For these Otto-type cycles, ∆1′ = ∆2′ =
∆′high = max(∆2, ∆4), ∆3′ = ∆4′ = ∆′low = min(∆2, ∆4), Q←1′2′ = E2′ − E1′ , W→

4′1′ = E4′ − E1′ = E1′ [(∆
′

low/∆′high) − 1],
W←

2′3′ = E3′ − E2′ = E2′ [(∆
′

low/∆′high) − 1] and, therefore, W→

net,1′2′3′4′ = W→

4′1′ − W←

2′3′ = Q←1′2′ [1 − (∆′low/∆′high)].

∆/T for T > 0), it is clear that the isoentropic changes
between Tlow and Thigh and the isothermal changes be-
tween S1 = S4 and S2 = S3 are possible only by changing
the energy-level gap ∆. Therefore, to have S2 > S1, we
need ∆2/Thigh = ∆3/Tlow < ∆4/Tlow = ∆1/Thigh, i.e.,

∆high

∆low

[

Tlow

Thigh

]2

=
∆4

∆2

>
∆4

∆1

=
Tlow

Thigh

=
∆3

∆2

>
∆low

∆high

,

(17)
where, noting that ∆3 < ∆2 < ∆1 and ∆3 < ∆4 < ∆1,

we set ∆low = ∆3 and ∆high = ∆1. Relations (17) imply
(see also Figure legend) general bounds on the net-work
to high-temperature-heat ratio (Carnot coefficient),

1−
∆high

∆low

[

Tlow

Thigh

]2

<
W→

net,1234

Q←12
= 1−

Tlow

Thigh

< 1−
∆low

∆high

.

(18)
Notice that ∆2 ≷ ∆4 depending on whether
∆low/∆high ≷ (Tlow/Thigh)

2. Indeed, we may choose
arbitrarily Thigh, Tlow < Thigh, ∆high = ∆1, and
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∆low = ∆3 < ∆highTlow/Thigh. Then, we must set
∆2 = ∆lowThigh/Tlow and ∆4 = ∆highTlow/Thigh. So,
if we choose ∆low = ∆high(Tlow/Thigh)

2, ∆2 = ∆4 and
we obtain a Carnot cycle between only three values of ∆.

Of course, if the cycle is reversed, we obtain, instead of
a heat-engine effect, a refrigeration or heat-pump effect.

Each graph in Figure 1 shows also an Otto-type cy-
cle [4, 6] bound by the same Thigh and Tlow, i.e., a se-
quence of an iso-energy-gap process 1’-2’ at ∆′high, an
isoentropic 2’-3’, another iso-energy-gap process 3’-4’ at
∆′low, and another isoentropic 4’-1’. Here, the fact that
S = S(∆/T ) is a decreasing function of ∆/T for T > 0,
implies that to have S2′ > S1′ , we need ∆′high/Thigh =
∆′low/T3′ < ∆′high/T1′ = ∆′low/Tlow, i.e.,

Thigh

Tlow

[

∆′low
∆′high

]2

=
T3′

T1′

>
T3′

Thigh

=
∆′low
∆′high

=
Tlow

T1′

>
Tlow

Thigh

.

(19)
Relations (19) imply (see also Figure legend) general
bounds on the net-work to high-temperature-heat ratio,

1−
Thigh

Tlow

[

∆′low
∆′high

]2

<
W→

net,1′2′3′4′

Q←1′2′

= 1−
∆′low
∆′high

< 1−
Tlow

Thigh

.

(20)
Notice that T3′ ≷ T1′ depending on whether

(∆′low/∆′high)
2 ≷ Tlow/Thigh, so that if we choose

(∆′low/∆′high)
2 = Tlow/Thigh, ∆2 = ∆4 and we obtain

a special Otto-like cycle with T3′ = T1′ and efficiency
1 − (Tlow/Thigh)

1/2. Notice also that in terms of the
iso-energy-level gaps of the Carnot cycle that circum-
scribes the Otto cycle, the case T3′ > T1′ obtains for
(Tlow/Thigh)

5/2 < ∆low/∆high < (Tlow/Thigh)
3/2. In this

range, the Otto cycle cannot be run in reverse (refriger-
ation or heat-pump) mode between two heat baths, for
in such mode the hot bath temperature must be at most
T1′ and the cold bath at least T3′ .

Because the iso-energy-gap processes (iso-magnetic
field for spin-1/2 system) which characterize the Otto-
type cycle are not isotherms, if they are obtained [4] by
contacts with heat baths at Thigh and Tlow, respectively,
they involve entropy generation due to irreversibility re-
sulting from the heat exchange [see Eq. (16)] across a
large temperature difference (decreasing as T1′ → Thigh

and T3′ → Tlow). These and other realistic irreversibili-
ties are modeled in Ref. [6] with a Kossakowski-Lindblad-
type linear dissipative term in the quantum dynamical
law, as a means to describe relaxation to equilibrium and
decoherence, required for example to decouple the system
from the heat source, i.e., to model dynamically the heat
interactions. The only way to avoid these inefficiencies
is the impractical (infinite) sequence of infinitesimal con-
tacts with heat baths at different temperatures in the
ranges T1′ ÷ Thigh and T3′ ÷ Tlow.

In this paper, instead, by showing the feasibility of a
Carnot cycle for a two-level system, with no need of se-

quences of infinitesimal heat exchanges with an infinite
number of heat baths, we show that the quantum nature
of the working substance does not impose any fundamen-
tal bound, other than the celebrated Carnot bound, to
the thermodynamic efficiency of heat-to-work conversion
when two different temperature thermal reservoirs are
available. The possibility of engineering simultaneously
heat and work interactions as needed for the isotherms
of the Carnot cycle seems within reach of current experi-
ments, e.g., via a maser-laser tandem technique [1]. The
Carnot cycle “efficiency” is higher, as it should, than that
of the ’inscribed’ Otto-like cycle at the center of recent
studies [1–6].

Only twenty years ago quantum thermodynamics and
pioneering proposals to incorporate the second law of
thermodynamics into the quantum level of description
were considered “adventurous” schemes [14]. Discussions
in quantum terms of old thermodynamic problems such
as that of “unitary accessibility” [13] or of defining en-
tropy for non-equilibrium states, were perceived as al-
most irrelevant speculations. Today’s experimental tech-
niques bring thermodynamics questions back to the fore-
front of quantum theory. Remarkably, the rigorous appli-
cation of energy and entropy balances, provides ideas and
guidance, and the second law remains a perpetual source
of inspiration towards the discovery of new physics.

∗ Electronic address: beretta@unibs.it

[1] M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002).
[2] S. Lloyd, Phys. Rev. A 56, 3374 (1997); S. Lloyd and

W.H. Zurek, J. Stat. Phys. 62, 819 (1991).
[3] J. He, J. Chen, and B. Hua, Phys. Rev. E 65, 036145

(2002); C.M. Bender, D.C. Brody, and B.K. Meister, J.
Phys. A 33, 4427 (2000).

[4] T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004).
[5] E. Geva and R. Kosloff, J. Chem. Phys. 96, 3054 (1992),

97, 4398 (1992), 104, 7681 (1996); R. Kosloff, E. Geva,
and J. Gordon, J. Appl. Phys. 87, 8093 (2000).

[6] T. Feldmann and R. Kosloff, Phys. Rev. E 70, 046110
(2004), and references therein.

[7] H. Scovil and E.O. Schulz-Dubois, Phys. Rev. Lett. 2, 262
(1959); J.E. Geusic, E.O. Schulz-Dubois, and H. Scovil,
Phys. Rev. 156, 343 (1967), and references therein.

[8] E.M. Purcell and R.V. Pound, Phys. Rev. 81, 279 (1951).
[9] N.F. Ramsey, Phys. Rev. 103, 20 (1956).

[10] J.P. Gordon, H.J. Zeiger, and C.H. Townes, Phys. Rev.
95, 282 (1954).

[11] W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[12] S. Gheorghiu-Svirschevski, Phys. Rev. A 63, 54102

(2001), and references therein.
[13] A.E. Allahverdyan, R. Balian, and T.M. Nieuwenhuizen,

Europhys. Lett. 67, 565 (2004); but the problem of uni-
tary accessibility is first addressed in G.N. Hatsopoulos
and E.P. Gyftopoulos, Found. Phys. 6, 127 (1976) and
defines what engineers call “adiabatic availability”.

[14] J. Maddox, Nature 316, 11 (1985).
[15] G.P. Beretta, Phys. Rev. E 73, 026113 (2006).



−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−20

  1

 2

3

4
1’  2’

3’

4’

E
  [

J]

∆
1
 = 2.968 10−20

∆
4
 = 1.484 10−20

∆
2
 = 0.9274 10−20

∆
3
 = 0.4637 10−20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−23

 1

 23

4

1’

 2’3’

4’S
  [

J/
K

]

−5 −4 −3 −2 −1 0 1 2

x 10
20

1

1.5

2

2.5

3

3.5

x 10
−23

 1

 2
3

4

1’

 2’
3’

4’

−1/k
B
T  [J−1]

M
 =

 S
 −

 E
/T

  [
J/

K
]

(a) ∆2 < ∆4, T3′ < T1′

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−20

  1

 2

 3

  4   1’  2’

 3’  4’

  Q
12
←

  W
12
←

     W
23
←

Q
34
→

W
34
→

W
41
→

E
  [

J]

∆
1

∆
4

∆
2

∆
3

0

200

400

600

800

1000

1  2

 34

1’

 2’

 3’

4’

T
  [

K
]

∆
1

∆
4

∆
2

∆
3

0 0.2 0.4 0.6 0.8 1

x 10
−23

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−20

1

 2

3

4 1’  2’

 3’
4’

∆ 
 [J

]

S  [J/K]

T = 1200 K
T = 600 K
T = 300 K
T = 150 K

(b) ∆2 < ∆4, T3′ < T1′
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(c) ∆2 > ∆4, T3′ > T1′
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(d) ∆2 > ∆4, T3′ > T1′

Figure 1


