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This part o f  the paper concludes the presentation of  the unified theory. It is 
shown that the theory requires the existence of, and applies only to, irreducible 
quantal dispersions associated with pure or mixed states. Two experimental 
procedures are given for the operational verification of  such dispersions. 
Because the existence of  irreducible dispersions associated with mixed states is 
required by Postulate 4 o f  the theory, and because Postulate 4 expresses the 
basic implications o f  the second law of  classical thermodynamics, it is concluded 
that the second law is a manifestation of  phenomena characteristic o f  irreducible 
quantal dispersions associated with the elementary constituents o f  matter. 

4. O N  T I l E  M E A N I N G  O F  S T A T E  

T h i s  l a s t  p a r t  o f  t he  p a p e r  p r e s e n t s  t he  p rec i se  d e f i n i t i o n  o f  a s t a t e  (pu re  or  

m i x e d )  t h a t  is s u b j e c t  to  t h e  p r e d i c t i o n s  o f  t he  un i f i ed  t h e o r y  a n d  d e v e l o p s  

c r i t e r i a  f o r  t he  u n a m b i g u o u s  i d e n t i f i c a t i o n  o f  s u c h  a s ta te .  

4.1. Quantum Mechanical Considerations 

T h e  d o m i n a n t  t h e m e  o f  q u a n t u m  t h e o r y  is t h a t  i ts  c a u s a l  s t a t e m e n t s  

a b o u t  a s y s t e m  a r e  p r o b a b i l i s t i c .  I n  o t h e r  w o r d s ,  t h e  e p i s t e m i c  ru le  o f  

1 Parts I, IIa, and I ib  of this paper appeared in Found. Phys. 6, 15, 127, 439 (1976), re- 
spectively. The numbering of the sections, equations, and references in this part continues 
from the previous parts. 
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correspondence, aT) which relates experience to quantum-theoretical states, 
involves probabilistic concepts in an essential way. In particular, an essential 
premise of quantum theory is that the physical condition or state of a system 
at a given time cannot be fully disclosed experimentally unless many mea- 
surements are made on replicas of the system prepared in a specified manner. 
Conversely, an inherent prerequisite of quantum theory is that a preparation 
of a system be specified and uniquely associated with a state prior to any 
attempt to reveal experimentally the characteristics of the state. It is this 
prerequisite that clearly distinguishes quantum mechanics from classical 
mechanics. It has been discussed extensively in the literature. (is) 

According to Theorem 2.5, Part I, the index of measurement statistics 
corresponding to a given preparation can be expressed in the form of a 
density operator/3. Some preparations result in states described by density 
operators that are pure, and some in states described by density operators 
that are mixed. In the context of the quantum mechanical Postulates 1-3, 
Part I, the preceding sentence is all that need be said about any given 
preparation and, therefore, any given state. 

It is frequently stated that a mixed density operator refers to an ensemble 
made up of systems each of which is in a pure state. Such a statement, as 
pointed out by Park, Its) is meaningless. In quantum theory, the only 
experimentally observed reality is that which is revealed by the statistics of 
measurements performed on an ensemble of identical systems prepared in 
a specified manner. If  a given preparation results in a mixed density operator, 
then this operator represents the only meaningful reality of the state. Park as) 
points out that a general quantum ensemble characterized by a density 
operator/3 can be numerically (as opposed to operationally) subdivided in an 
infinite variety of ways into pure or mixed subensembles, namely 

/3 = ~. w~/3e and ~ we = 1 (50) 
e e 

where fin is pure or mixed and 0 < we < l for all k. 
On the other hand, we may raise a different question: Is it possible to 

establish an operationally meaningful criterion that will distinguish between 
(i) preparations resulting in dispersions that are due partially to nonquantum 
effects (or to lack of knowledge) and partially to quantum effects and 
(ii) preparations resulting in dispersions that are solely due to quantum 
effects ? The answer to this question is yes. Prior to presenting the criterion, 
however, we shall show in Section 4.2 that the stable-equilibrium postulate 
requires an explicit operational definition of the term identically prepared 
systems. 
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4.2. On Physically Nonequivalent Density Operators 

Postulate 4, Part 1, reveals that the quantity - -k  Tr(fi In/3) measures 
the fraction of the energy of a system that cannot be extracted adiabatically 
from the system. It thus provides the present theory with the means to 
account for classical thermodynamics, a branch of science that abounds in 
experimental information. But close examination of which types of fi's are 
consistent with classical thermodynamics reveals an inconsistency that can be 
resolved only through a more refined definition of state than that used in 
expositions of quantum mechanics. 

Postulate 4 avers the existence of stable equilibrium states. By virtue of 
Theorem 3.6, Part IIa, the energy of such a state cannot be reduced by means 
of any adiabatic CCP process. In view of the relation between preparation 
and state discussed in Section 4.1, we may say that Postulate 4 avers the 
existence of systems that have been so prepared that no energy can be 
extracted from them by means of any adiabatic CCP process. We shall call 
such a preparation stable. It follows from Theorem 3.23, Part lib, that to 
every stable preparation there corresponds a canonical operator fi0 repre- 
senting the measurement statistics. 

But a canonical operator representing measurement statistics does not 
necessarily correspond to a stable preparation. That is, some such operators 
represent states from which work may be extracted by means of an adiabatic 
process, as shown by the following example. 

We will consider a number N of distinctly different preparations 
Z~, Z2 ,..., ZN having the following properties: (1) If applied to a system 
separately, they would result in quantum ensembles characterized by density 
operators fil, t~2 .... , fiN ; (2) none of the operators t~l,/~2 ,..-, fin is canonical; 
and (3) the sum ( l /N) Z~/~t~ is a canonical operator t~0, namely 

~o = (l/N) Z t~ (51) 
k 

We will prepare a system by a preparation Z consisting in applying prepa- 
rations Z1, Z2 ,..., ZN consecutively and repeatedly; in other words, we will 
form a quantum ensemble in which the k ÷ nN members, for each k 
(k = 1, 2,..., N) and for n = 0, 1, 2,..., are prepared by applying preparation 
Zk.  It is clear that the act of periodically applying preparations Z1, Z2 ,..., Z~ 
is under the control of the preparer and does not represent any known 
quantum phenomenon. By definition, however, measurements on the 
ensemble of preparation Z will result in a canonical operator rio, and 
measurements on the k + nN members, for each k and n = 0, 1, 2,..., will 
result in statistics that cannot be represented by a canonical operator/~0 ; 
in effect, preparation Z results in a quantum ensemble that can be subdivided 
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prior to measurement into N subensembles each of which is characterized 
by a density operator different than the canonical operator of Z. According 
to the present theory, each of these subensembles must represent a nonstable 
state and, therefore, must have a positive adiabatic availability (Theorem 3.7, 
Part IIa). It follows that the work that could be extracted adiabatically 
from the system prepared according to preparation Z is at least the sum of 
these positive adiabatic availabilities. 

Thus, we conclude that a stable preparation corresponding to a canonical 
operator/3o and preparation Z are characterized by the same density operator, 
and yet they result in adiabatic availabilities that can be substantially different. 

It is clear that in a unified theory of mechanics and thermodynamics 
this conclusion creates an inconsistency. For given values of parameters, 
adiabatic availability is uniquely determined by the values of energy and 
entropy of the system, which in turn are uniquely determined by the density 
operator. Yet, preparation Z and the stable preparation have different 
availabilities, although these two preparations result in the same density 
operator t~0. This inconsistency has physically unacceptable consequences, 
and leads to the need for an expliict operational circumscription of the terms 
identically prepared systems or unambiguous preparation associated with a 
state. 

4.3. Definition of Unambiguous Preparation 

We shall define a preparation as unambiguous and the resulting ensemble 
as consisting of identically prepared systems that are in a state/3 and that are 
subject to the predictions of the present unified theory if and only if the 
subdivision of the ensemble prior to measurement into two or more sub- 
ensembles, according to any conceivable operational rule, will always result 
in each subensemble being in the same state/3; in other words, the statistics 
of  measurements performed on any subensemble after subdivision will be 
representable by the same density operator/3 as the statistics of the overall 
ensemble. If  measurements performed on the subensembles after subdivisoin 
yield statistics that are represented by density operators that are different 
than that of the overall ensemble, the preparation will he called ambiguous. 

These definitions are motivated by the stable-equilibrium postulate and 
their importance will become evident from the subsequent discussion. 

4.4. Theorem 

Given an ensemble of systems prepared by a preparation Z and con- 
sisting of several subensembles, the preparation is unambiguous if: 
(1) measurements performed from time to time on each system of the ensemble 
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and on each system of the subensembles yield results that are statistically 
independent; and (2) the joint probabilities for such results are the same for 
both the ensemble and the collection of the subensembles. 

Consistent with the ideas of Margenau (19,2°~ and Park (Ref. 2, p. 221) 
this theorem presumes that single measurements do not fix the state of an 
entire ensemble, i.e., that the projection postulate of von Newmann is invalid. 

Proof'. We will assume that prior to measurement two subensembles 1 
and 2 are identified with density operators fil and /32 (81 v a 82 -~ 8) and 
fractional contributions wl and w2 (w~ ÷ w2 = 1), respectively, so that the 
density operator 8 of the ensemble is given by the relation 

8 = wlA + w282 (52) 

After subdivision, sequential measurements in each of the two subensembles 
at times t. and to would yield the density operators 8~(t.) and/31(tb) and 
fi2(t.) and 82(tb), respectively. Because of the statistical independence, joint 
probabilities for measurement results of a given observable at times t. and b, 
would be derivable from the operator/)s given by the relation 

f~s ~- W18~(ta) Pl(tb) @ W282(ta) /32(tb) (53) 

namely as weighted averages of joint probabilities obtained from the two 
subensembles. On the other hand, measurement results of quantum 
mechanical observables of the overall ensemble at times t. and tb yield the 
overall density operators 

8(la) = Wl~l(ta ) ~- W282(ta), 8(t~) ~- WX81(tb) @ W2p2(tb) (54)  

Again, because of the statistical independence, joint probabilities for 
measurement results of a given observable at times t~ and tb would be 
derivable from the operator/~, given by the relations 

~0, = 8(t~) 8(tb) 
2A , 2A 

-k w~w2[fi~(t~) fi2(to) -k ~(tv) 82(ta)] (55) 

Comparing Eqs. (53) and (55), we see that equality between ~ and /~ is 
achieved if and only if 

8 ~ 8 ~  ~ 8 2  (56) 

namely, if and only if preparation Z is unambiguous, otherwise/~ @/)~. 
Inequality between _~ and/)e implies the existence of correlations between 
measurements at t a a n d  t b . 

825/6/5-6 
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The equality of the joint probability operators Rs and /), provides an 
operational criterion for deciding whether a preparation is unambiguous or 
ambiguous. If  this equality is ascertained for all possible subdivisions of the 
ensemble into subensembles, then all systems in the ensemble are identically 
prepared according to an unambiguous preparation that cannot be sub- 
divided into other unambiguous preparations. It is clear that operationally 
the density operator (pure or mixed) resulting from an unambiguous 
preparation does not have the ambiguities that revealed the inconsistency of 
Section 4.2. The state represented by a 13 of an unambiguous preparation is 
the type of state that is subject to the predictions of the unified theory 
presented in this work. 

When/)~ differs from /)~, then the preparation is ambiguous and the 
density operator 13 cannot be used to represent a state because the ensemble 
consists of more than one state. For example, if the preparation for 13 consists 
of two unambiguous preparations 131 and 13~ so that 13 : w1131 + w~132, then 
one subensemble in the overall ensemble is in state 131 and the other in state t3z. 
Accordingly, the overall ensemble cannot be regarded as being in state /5. 
Such a 13 and the associated ensemble of systems are not subject to the 
predictions of the stable-equilibrium postulate. Ambiguous 13's and the 
associated ensembles may be analyzed by means of information theory, as 
will be discussed in a future communication. 

4.5. Theorem 

Given an ensemble of identical systems having a Hamiltonian operator 
and a density operator 13, and consisting of two or more subensembles each 
of which is prepared by means of an unambiguous preparation, the entropy 
defined in terms of available energy is either equal to --k Tr(13 In 13) if the 
preparations of the subensembles are identical, or smaller than --k Tr(13 In 13) 
if the preparations of the subensembles are different. 

Proof'. We will consider two subensembles 1 and 2, having density 
operators t31 and 13z, respectively, each prepared by means of an unambiguous 
preparation and such that 13 is given by Eq. (52). Prior to any measurement, 
an observer could subdivide the ensemble into the two subensembles. Then 
he would establish experimentally (either through measurements of adiabatic 
availability or through measurements of available energy) entropies 
S(131) --k Tr(131 In t31) and (pz) = --k Tr(t3~ In 132) for the two sub- 
ensembles, and would assign an average entropy Say to the overall ensemble 
given by the relation 

s~v = wlS(131) + w~S(fi~) (57) 
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On the other hand, the observer could also use the density operator 
13 = w~131 q-w2132 obtained from these measurements to compute the 
quantity --k Tr(13 In fi). it  can be shown (21) that if and only if13~ ~ 13~ ~ / 3  
then and only then  

Say = --k rr(~ In t3) (58) 

Otherwise 

Say < --k Tr(13 lu t3) (59) 

These results can be easily extended to more than two subensembles. 
Equations (58) and (59) are formal proofs of Theorem 4.5, and provide 
another operational criterion for distinguishing between unambiguous and 
ambiguous preparations. 

4.6. An Analogy from Probability Theory 

The concept of an unambiguous preparation presented in Sections 4.3- 
4.5 may be illustrated by means of a simple example from probability 
theory. Suppose that we cut a large number of metallic rods each appearing 
to have the same length, and that we wish to verify through measurements if 
indeed the cutting process results in identical lengths. Suppose further, 
however, that because of either the available measurement technique or some 
inherent characteristics of the rods, or both, the results of the measurements 
include a random but statistically unique error so that, even if all the rods 
were cut to identical lengths, the measurement results would be dispersed. 
Under these conditions, the question arises: Is it possible to determine 
whether the rods were prepared by the same cutting procedure ? 

We may answer this question by proceeding as follows. First, we measure 
the lengths of the set of all the rods, make a graph of frequency vs. length, 
and find the average length. Next we divide the rods into two subsets: one 
consisting of the rods having measured lengths longer than the average, and 
the other consisting of the rods having lengths shorter than the average. 
Then we repeat the length measurements and make frequency vs. length 
graphs for each subset. Elementary probability theory indicates that if 
indeed all the rods were prepared by the same cutting procedure and the 
observed dispersions were solely due to random effects not associated with the 
cutting procedure, then the frequency graphs corresponding to the two subsets 
would be identical. On the other hand, if the rods were not prepared by the 
same cutting procedure, then the frequency graphs of the two subsets 
would not be identical. This example would be valid if the length of each rod 
were changing with time provided, of course, that the time evolution was the 
same for each rod. 
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4.7. On Irreducible Dispersions 

The criterion for unambiguous preparations given in Section 4.3 provides 
an operational means for distinguishing between dispersions of measurement 
results that are inherent in the nature of a system and those that are related 
to voluntary or involuntary incompleteness of experimentation. The former 
represent characteristics of a system that are beyond the control of an ob- 
server. They cannot be reduced by any means, including quantum mechanical 
measurement, short of processes that result in entropy transfer from the 
system to the environment. For pure states, these irreducible dispersions are, 
of course, the essence of Heisenberg's uncertainty principle. For mixed states, 
they limit the amount of energy that can be extracted adiabatically from the 
system. 

Additional dispersions introduced by voluntary or involuntary incom- 
pleteness of experimentation represent inadequacies in the knowledge of 
observers. As such, though subject to improvement, they are not subject 
to the full prescriptions of the laws of physics. 

The existence of irreducible dispersions associated with mixed states is 
required by Postulate 4, which expresses the basic implications of the second 
law of classical thermodynamics. Alternatively, the present work demon- 
strates that the second law is a manifestation of phenomena characteristic 
of irreducible quantal dispersions associated with the elementary con- 
stituents of matter. 

The possibility of a relation between the second law (in the form of the 
impossibility of a Maxwellian demon) and irreducible dispersions associated 
with pure states (represented by Heisenberg's uncertainty principle) was 
suggested by Slater. (22) His suggestion was not adopted, however, because 
Demers (~3) proved that dispersions associated with pure states are insufficient 
to account for the implications of the second law, especially with regard to 
heavy atoms at low pressures. In the present work we can relate the second 
law to quantal dispersions of mixed states because we have disclosed the 
existence of dispersions of mixed states that are irreducible. 

4.8. Remark on Large Systems 

When systems having large numbers of degrees of freedom are in states 
not far from stable equilibrium, the products of probability distributions 
and degeneracy distributions that yield the frequencies of values of mea- 
surement results generally possess a single and extremely narrow peak. (~) 
The dispersions associated with such states are practically undetectable; in 
other words, repetitive measurements are not usually required in practice 
to determine expectation values. For example, for a system with many 
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degrees of freedom, the expectation value of the energy for a stable 
equilibrium state can be established with a great degree of confidence by 
means of a single measurement because the probability that a measurement 
would yield a value significantly different from the expectation value is 
extremely small. Moreover, the adiabatic availability of such a state can be 
established accurately by means of a single measurement. 

Although undetectable in direct property measurements of large 
systems, the irreducible dispersions not only determine the value of Tr(t~ in t~) 
of large systems, but also relate causally to the large differences between 
energies and adiabatic availabilities that are consistently observed for certain 
states, such as stable equilibrium states. These dispersions play a key role 
in determining the modes of interaction of the system with others (for 
example, heat interactions), and introduce irreducible limitations in the 
behavior of the system. 

5. CONCLUSIONS 

The work presented in Parts I-III, though expressed only in terms of 
quantum states of ultimate possible detail, brings within a single theory both 
quantum mechanics and classical thermodynamics. In this theory the state of 
any system is described by means of probabilities that are inherent in the 
nature of the system and that are associated with measurement results ob- 
tained from an ensemble of systems of unambiguous preparation. Moreover, 
the second law of thermodynamics emerges as a fundamental law related 
to irreducible quantal dispersions of mixed states and applicable to systems 
of any size, including a single particle. 

A key element of the theory is the statement of operational criteria for 
the distinction between ambiguous and unambiguous preparations (pure 
or mixed). 

For unambiguous preparations, the theory reveals limitations on the 
amount of work that can be done by a system adiabatically and without net 
changes in parameters. These limitations are due to irreducible dispersions 
inherent in the state of the system. They are maximal when the dispersions 
correspond to a stable equilibrium state. 

The theory indicates that a measure of the limitations is provided by the 
quantity S (Theorem 3.15, Part IIa) which has physical meaning and unique 
value for any state, stable equilibrium, equilibrium, or nonequilibrium. 
The larger the value of S, the smaller the amount of work that can be 
extracted adiabatically from the system. For any state the quantity S is called 
entropy because for stable equilibrium states it behaves like the entropy of 
classical thermodynamics. 
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Finally, the theory discloses the limited applicability of the known 
equation of motion. This equation is open to question not only for irreversible 
processes but also for many frequently encountered reversible processes. 
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