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Essential equivalence of the general equation for the nonequilibrium reversible-irreversible
coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium
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By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics
in the mathematical language of differential geometry, we compare it with the primitive formulation of the
general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main
technical differences of the two approaches. In both dynamical models the description of dissipation is of the
“entropy-gradient” type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time
evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density
field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of
the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and
uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC
formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the
SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies
in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative
component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics.
As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity
makes it automatically SEA on metric leaves.
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I. INTRODUCTION

The basic concepts and applications of equilibrium ther-
modynamics are among the most consolidated milestones in
physics. On the other hand, thermodynamic theories capable
of describing nonequilibrium states and their time evolution
are still at the forefront of research in physics, fostered by a
wide variety of applications and new technologies that are in
need of such modeling capability.

Various theories and approaches to nonequilibrium dy-
namics have been put forward since the pioneering work by
Onsager in 1931 [1]. It is not our purpose here to review
such huge scientific literature, nor to even acknowledge the
many pioneers of this broad topic. Therefore, the reader
interested in such reconstructions should not start from our
list of references.

The scope of this paper is to compare two quite general
geometrical constructions that have evolved independently,
with somewhat different purposes, but that turn out to
provide almost equivalent—or at least very closely related—
dissipative structures that guarantee the compatibility of a
nonequilibrium thermodynamics theory with the second law
of thermodynamics.

At any level of description, the geometrization of a theory of
nonequilibrium (thermo-)dynamics consists in identifying (a)
the state spaceM assumed for the physical system under study,
(b) the structure of this space, (c) the time evolution equation in
terms of this structure, (d) the compatibility of dynamics with
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the statement of the second law of thermodynamics [2], and
(e) the symmetry group of the theory, i.e., the group preserving
the geometrical structure of M [3].

Not all existing nonequilibrium thermodynamics theories
have been clearly geometrized yet in this sense. However,
much progress along these lines has been made and constitutes
the background of the present work:

(i) Classical mechanics has been formulated in an abstract
(general) setting, in the context of geometric mechanics
[4,5]: The natural arenas are symplectic manifolds, and their
generalization, i.e., Poisson manifolds.

(ii) Equilibrium thermodynamics has been geometrized in
the work by Carathodory [6], the book by Hermann [7], and,
for example, the references in Ref. [8].

(iii) Some formulations of nonequilibrium thermodynam-
ics have been reformulated using the important geometric
structure of metriplectic manifolds (see some history and
references in Refs. [9] and [10]).

(iv) In its most renowned presentation, metriplectic dy-
namics has been called the general equation for the nonequilib-
rium reversible-irreversible coupling (GENERIC) [11], which
represents also a generalization in the context of contact
manifolds.

(v) An apparently less structured approach, SEA dynam-
ics, was proposed in the simplest quantum thermodynamic
landscape [12–17] and in a general probabilistic framework
[18–22] and recently adapted and generalized for meso- and
macroscopic systems in Ref. [23].

In general, a nondissipative evolution is modeled with
an antisymmetric tensor, while the dissipative one with a
symmetric object. When the latter is a tensor, clearly it may
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be represented by a kind of metric tensor. This is why below
we shall associate dissipation with a metric tensor.

Although we shall focus here only on the mathematical
formulation, it is worth noting that thermodynamic theories
(equilibrium and nonequilibrium) have often been attached
very different physical (and philosophical) interpretations. For
example:

(a) The Keenan school of thermodynamics has advanced
the position that thermodynamics is valid at every scale and that
entropy is an intrinsic property of matter which, like energy,
builds up from the microscopic level. The SEA geometrical
approach originated from probing the extreme consequences
of this line of reasoning to seeing how the quantum dynamics
should be modified if entropy and dissipation existed even
microscopically.

(b) On the other hand, the multiscale dynamics advanced
by Grmela sees thermodynamics as “a meta-theory addressing
relations among dynamical theories formulated on different
levels of description” [24]; these relations are expressed in the
framework of contact structures [25]. At every scale there is a
GENERIC, and in passing from a more detailed level to a less
detailed one through “pattern recognition” (or coarse graining
[26]) one sees dissipation, even if microscopic dynamics is
reversible.

Our scope here is not to elaborate on any of these interpre-
tational issues, nor on the operational definitions and empirical
meanings of basic concepts such as energy and entropy. We
take the view that, regardless of their interpretation, two
theories are identical if their mathematical structures are
equivalent.

The paper is structured as follows. In Sec. II we reformulate
the SEA and the GENERIC approaches to emphasize their
analogies and differences, which we further discuss in Sec. III.
In Sec. IV we implement our formalism to the case of the
Boltzmann equation. In Sec. V we further elaborate our
notation and analysis to establish when and in what sense
SEA and GENERIC can be considered equivalent. In Sec. VI
we summarize our conclusions.

II. MATHEMATICAL FORMULATION

In this section, we present a mathematical and abstract
formulation of the SEA and GENERIC principles that allows
a clear comparison between the respective underlying assump-
tions. To help the reader go through the mathematics and grasp
the general meaning without getting sidetracked by the details,
we will try to guide the reading as much as possible by adding
some nontechnical comments that, albeit strictly unnecessary
from the mathematical point of view, are meant to allow a
simpler interpretation of the abstract setup.

We will focus on the dynamics. Regarding the kinematics,
for both SEA and GENERIC we will assume it to be given.
In particular, when in Sec. V we derive relations between
the structures of dissipative dynamics in SEA and GENERIC
models, we do so under the assumption that the two models
adopt the same kinematics. In general, for both SEA and
GENERIC, the kinematics is chosen so the state space is
a Banach manifold M, i.e., a manifold which—locally—is
topologically equivalent to a Banach space.

The time evolution of the state is represented by a curve
α : I → M (I ⊆ R) on M, and this is an integral curve
of a vector field (i.e., the velocity vector is equal to the
vector field at each point of the curve). The vector field
is composed of two distinguished parts: The first one is a
nondissipative contribution, XH , which, depending on the
framework, represents Hamiltonian dynamics and/or the local
effects of transport due to convective and diffusive fluxes
between adjacent elements of a continuum; the second one
is a dissipative contribution, which models the irreversible
aspects of the dynamics (such as the dissipation of mechanical
or electrical forms of energy into thermal energy) responsible
for the entropy production (the local entropy production in the
case of a continuum). In symbols, the time evolution α(t) is an
integral curve of the sum of the nondissipative and dissipative
vector fields,

α̇(t) = XH
α(t) + Y S

α(t). (1)

Our comparison between the SEA and the GENERIC
constructions will focus the attention on the dissipative part
because this has been the focus of the SEA construction,
namely to define the dissipative part Y S in nonequilibrium
frameworks where the nondissipative or transport part XH

is prescribed by other considerations. Instead, the GENERIC
construction provides specifications also for XH .

As we will see below in detail, both the SEA and the
GENERIC constructions assume that the dissipative part Y S

of the dynamical equation (1) is directly related to the entropy
differential. In the SEA construction, it is related to the
projection of the gradient of the local entropy functional
onto a linear manifold orthogonal to the gradients of the
local functionals representing the conserved properties. In the
GENERIC construction we consider in this article (where M
is a metriplectic manifold), it is related to a weaker notion of
“gradient.”

First, also to establish the notation, we recall some basic
notions of differential geometry. The most useful definition of
(tangent) vector on a manifold passes through the concept of
derivation. A tangent vector vp to a point p of the manifold
M is a derivation on C∞(M); that is, a linear map

vp : C∞(M) → R
(2)

A �→ vp(A),

which takes any smooth functional A on M, gives a real
number vp(A), and satisfies the Leibniz rule

vp(AB) = vp(A) Bp + Ap vp(B) (3)

for any functionals A and B, where Ap and Bp denote their
values at p. The set of all tangent vectors to p is a vector
space, called the tangent space to M at p and denoted by
TpM. The disjoint union of all tangent spaces is the tangent
bundle, denoted by TM. A vector field X is a map

X : M → TM
(4)

p �→ Xp,

with the property that Xp ∈ TpM ∀p ∈ M: i.e., it assigns a
tangent vector Xp in TpM to each point p of M.
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By referring to the model space of the manifold, one may
express a tangent vector by the linear combination

vp = vk
p∂k, (5)

where {∂k} is a basis of derivations for the tangent space,
or—in other words—the partial derivatives with respect to the
coordinates. By the same consideration, one is allowed to see
vp(A) as the directional derivative of A at p along the tangent
vector vp.

Moreover, one may define the cotangent space at p

[T ∗
pM

def= (TpM)∗] as the space of all linear functionals
(named covectors) on TpM. The disjoint union of all cotangent
spaces is the cotangent bundle T ∗M. The most important
of these linear functionals is the differential dA of a smooth
functional A onM, which computes the directional derivatives
of A at every point p of M along the tangent vectors to p, i.e.,
at each point p takes any tangent vector vp as input and yields
the directional derivative vp(A) as output,

dAp(vp) = vp(A). (6)

The notion of gradient of a smooth functional requires
an additional structure on the manifold. Indeed, it can be
defined in an invariant way (i.e., independent of the choice of
coordinates) only with respect to a nondegenerate bilinear map
on the tangent bundle (or some sub-bundle), which essentially
equips the manifold with a metric. The most common case
is represented by (strong) Riemannian manifolds. These are
defined as pairs of a smooth manifold and a (strongly
nondegenerate) Riemannian metric tensor field gp which, at
every point p of M, takes as input two vectors in the tangent
space TpM and yields

gp : TpM × TpM → R
(7)

(up,vp) �→ gp(up,vp)

with gp(up,vp) > 0 for any nonzero up and vp. The property
of strong nondegeneracy implies that the vector bundle (linear)
map (at every point p) g

�
p : TpM → T ∗

pM, defined by[
g�

p(up)
]
(vp) = gp(up,vp) ∀vp ∈ TpM, (8)

which brings a vector up into the covector g
�
p(up) (i.e., into a

linear functional on the tangent space at p), is an isomorphism
(often called musical isomorphism). Therefore, the inverse
map g

�
p : T ∗

pM → TpM is defined, too. We may also define
the “inverse” metric tensor, or cometric tensor, by

g

p(ωp,ηp) = gp(g�
p(ωp),g�

p(ηp)). (9)

In coordinates and finite dimensions, a physicist would talk
about lowering and raising the indexes:(

g�
p

)
ij
vj

p = vp,i ,
(
g�

p

)ij
vp,j = vi

p, (10)

where vj and vj are, respectively, the components of a vector
and a covector with respect to some chosen basis for the tangent
space TpM and the cotangent space T ∗

pM; (g�
p)ij = gp,ij and

(g�
p)ij = g

ij
p are the matrix representations of the maps g

�
p

and g
�
p with respect to the same bases, and of course [gij

p ] =
[gp,ij ]−1.

One then defines the gradient at p of a smooth functional
A to be the only vector at p satisfying

dAp(vp) = gp(gradg A|p,vp) ∀vp ∈ TpM and p ∈ M.

(11)

Uniqueness is guaranteed by the nondegeneracy of the metric
field. This may also be restated more explicitly as

gradg A|p = g�
p(dAp). (12)

When M is a vector space V , the tangent space to each
point p may be identified with the vector space itself (we write
TpV ∼= V ∀p). Moreover, if the vector space is a Hilbert space
H, it is equipped with an inner product, i.e., a nondegenerate
bilinear map,

〈,〉 : H × H → R
(13)

(p,q) �→ 〈p,q〉.
If we take the manifold viewpoint, this may also be seen as

〈,〉 : TpH × TpH → R
(14)

(up,vp) �→ 〈up,vp〉,
since TpH ∼= H ∀p. Then the particular gradient of a func-
tional A at point q, called variational derivative of A, is defined
implicitly by

dAq(vq) =
〈
δA

δp

∣∣∣∣
q

,vq

〉
∀q ∈ H and vq ∈ TqH (∼= H).

(15)

Given the inner product, we may denote by Rp the Riesz
isomorphism Rp : T ∗

pH → TpH such that

〈Rp(ωp),vp〉 = ωp(vp) ∀vp ∈ TpH, ∀ωp ∈ T ∗
pH, (16)

and hence we may alternatively define the variational deriva-
tive explicitly by

δA

δp

∣∣∣∣
q

def= Rq(dAq). (17)

When both structures (an inner product and a metric) are
present on a Hilbert space H, we have

gradg A|p = g�
p

[
R−1

p

(
δA

δp

∣∣∣∣
p

)]
= Ĝ−1

p

(
δA

δp

∣∣∣∣
p

)
, (18)

where Ĝ−1
p denotes the inverse of the positive definite and

symmetric linear operator Ĝ : TpM → TpM defined by

Ĝp(vp)
def= Rp

[
g�

p(vp)
] ∀vp ∈ TpH. (19)

A. Steepest entropy ascent

The SEA principle to model the nonequilibrium dynamics
of a thermodynamic system was originally proposed as part
of an attempt to design a thermodynamically consistent
dynamical law for a unified quantum theory of mechanics
and thermodynamics obtained by embedding the second law
directly into the set of fundamental postulates [12–16,27–31].
Subsequently, it was extended as a generic modeling tool
for probabilistic, constrained maximum-entropy landscapes
[18–22,32]. Since in these landscapes the state representative
is a probability distribution or its quantum equivalent, the
density operator, it seemed natural to define gradients with
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respect to the Fisher-Rao metric which is known to exhibit
the required invariance features in the absence of additional
physical constraints. However, the Fisher metric is not general
enough to reproduce the dynamics in other nonequilibrium
thermodynamics frameworks. Therefore, an extension of the
SEA formulation that adopts a generic metric has been
provided in Ref. [23]. In this section we present the structure
of such more general formulation. Actually, as part of our
effort to cast the construction in the language of differential
geometry, we first present a further generalization whereby
the state space is not required to be a vector space but may
be any (Banach) manifold, and then we present the original
formulation where the state manifold is equipped with an inner
product so variational derivatives are defined.

The idea behind the SEA construction is to “geometrize” the
thermodynamic state space and assume that the part of the local
evolution equation that is responsible for irreversible dynamics
is in the “direction” of maximal entropy production compatible
with the local conservation constraints. The formulation of the
SEA principle may be expressed as follows: The time evolution
of the local state is the result of a balance between the effects of
transport or Hamiltonian dynamics and the spontaneous and
irreversible tendency to advance the local state representative
in the direction of maximal entropy production per unit
of distance traveled in state space compatible with the
conservation constraints [23].

The mathematical implementation consists in assuming
that the dissipative part of the dynamics pushes the states in
the direction of the gradient of the restriction of the entropy
functional onto the submanifold with constant values of the
conserved quantities. Therefore, the dissipative vector field
is assumed to point in the direction of maximal directional
derivative of the entropy compatible with the conservation
constraints.

1. Generalized abstract formulation

Each thermodynamically consistent nonequilibrium theory
assumes a level of description for a given physical system
(possibly modeled as a continuum) which mathematically
amounts to assuming:

(i) a (possibly infinite-dimensional) smooth real Banach
manifold M whose points represent the possible states of
the system or, for nonequilibrium states of a continuum, the
possible local states at position q;

(ii) a set of functionals ci : M → R, which represent
the conserved properties of the system or, for a continuum,
the local densities of the conserved properties; we denote the
submanifold {p ∈ M : ci(p) = consti ∀i} with Mc;

(iii) another functional s : M → R, which represents the
thermodynamic entropy [33–36] of the system or, for a
continuum, the local entropy density;

(iv) for each submanifold Mc, a (strongly nondegenerate)
metric tensor field g which, at every point p of the submanifold
Mc(p), takes as input two vectors in the tangent space TpMc(p)

and yields

gp : TpMc(p) × TpMc(p) → R
(20)

(up,vp) �→ gp(up,vp),

with gp(up,vp) > 0 for any nonzero up and vp, and is such
that the map p �→ gp defines a smooth (C∞) map on M.

The condition that defines the space TpMc(p) tangent to the
constrained submanifold Mc(p) is

TpMc(p) = {
vc

p ∈ TpM : dci
p

(
vc

p

) = 0 ∀i
}
. (21)

This situation essentially defines a sub-Riemannian struc-
ture on M. We shall come back to this point in Sec. III B.

The above assumptions allow one to define the gradient
with respect to the given metric field g of the smooth functional
sc : Mc → R defined by the restriction of the functional s :
M → R on the submanifold Mc of M where the conserved
functionals ci are constrained to fixed constant values c, i.e.,
such that

vc
p �→ dsc(vc

p

) = ds
(
vc

p

)
. (22)

We can do it either through the following implicit expression
[Eq. (11)]: gradc

g sc|p is the unique vector in TpMc(p) such that

dsc
p

(
vc

p

) = gp

(
gradc

g sc
∣∣
p
,vc

p

) ∀vc
p ∈ TpMc(p), (23)

or, explicitly,

gradc
g sc

∣∣
p

= g�
p

(
dsc

p

)
. (24)

With reference to the time evolution equation (1), the SEA
construction focuses only on the dissipative vector field Y S

because its objective is to construct a dynamics in which the
entropy functional s is an S-function in the sense defined in
Ref. [2] so the maximal entropy states (or, for a continuum,
the locally maximal entropy density states) represent the
only stable (local) equilibrium states of the system, consis-
tently with the Hatsopoulos-Keenan statement of the second
law [37,38]. Instead, the nondissipative vector field XH in
Eq. (1), which represents the reversible components of the
system dynamics or, for a continuum, the local net effects
of transport of properties between adjacent elements of the
continuum, are assumed to be given features of the level of
description and coarse graining of the modeling framework in
which the SEA construction is to be implemented.

The SEA dynamics is obtained by assuming the dissipative
vector field Y S as follows:

Y S
α(t) = 1

τ
gradc[α(t)]

g sc[α(t)]|α(t) = 1

τ
g

�

α(t)

(
ds

c[α(t)]
α(t)

)
, (25)

where τ is a positive dimensionality constant. Since by defi-
nition (23) the vector gradc sc|p is in TpMc(p) and therefore,
recalling Eq. (21), is in the kernel of every dci , Eq. (25) satisfies
automatically the following conservation constraints:

dci
α(t)

(
α̇(t) − XH

α(t)

) = dci
α(t)

(
Y S

α(t)

) = 0. (26)

As discussed in Ref. [23], Eq. (25) can also be viewed as the
solution of a maximal entropy production variational problem
that in the notation just developed can be expressed as follows:

max
YS

|p dsc(p)
p (Y S) subject to gp(Y S,Y S) = const. (27)

The rate of entropy production can be expressed in the
following equivalent forms:

dsα(t)
(
α̇(t) − XH

α(t)

) = dsα(t)
(
Y S

α(t)

)
= ds

c(α(t))
α(t)

(
Y S

α(t)

)
= gα(t)

(
gradc

g sc(α(t))|α(t),Y
S
α(t)

)
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= 1

τ
gα(t)

(
gradc

g sc(α(t))|α(t), gradc
g sc(α(t))|α(t)

)
= τ gα(t)

(
Y S

α(t),Y
S
α(t)

)
� 0, (28)

where the second equality follows from Eq. (26), the third
from Eq. (40), the fourth from Eq. (23), the inequality from
the positivity of the metric tensor, and the strict equality
holds if and only if Y S

α(t) = 0. The thermodynamic principle
of impossibility of a negative entropy production is thus
automatically satisfied.

This thermodynamic consistency feature is very often
identified with the second law. However, the second law
requires additionally that among the nondissipative states, i.e.,
the states pnd for which Y S

pnd
= 0, only those that have maximal

entropy for the given values of the conserved properties
should be stable equilibrium states with respect to a purely
dissipative dynamics, i.e., Eq. (1) in which we set XH = 0. In
other words, we must also prove that all other nondissipative
states that become equilibrium states when we set XH = 0
should be unstable. This nontrivial additional requirement
imposes an additional condition onto the properties that must
be satisfied by the entropy functional. It is often stated
that entropy provides a Lyapunov criterion for the stability
of the thermodynamic (local) equilibrium states. However,
as discussed in Ref. [2], the rigorous justification of this
statement is not trivial and requires that the entropy functional
satisfies a weaker criterion than that of being a Lyapunov
functional which in Ref. [2] is defined precisely and named
the S-functional. For the quantum framework, the proof of the
conjecture advanced in Ref. [2] that the von Neumann entropy
functional −kB Tr ρ ln ρ is indeed an S-functional was later
found in Ref. [39].

2. Original inner product formulation

The original formulations of the SEA constructions in
Refs. [12–16,18–23,32] assume that the state manifold M
is equipped with an inner product 〈·,·〉. As a consequence,

(a) variational derivatives are defined according to
Eq. (15);

(b) for shorthand, we denote the variational derivatives of
the conserved functionals ci : M → R with the symbols �i ,
i.e.,

�i
p

def= δci

δp

∣∣∣∣
p

∀p ∈ M; (29)

with the further shorthand symbols c and � to denote the
arrays c = {c1,c2, . . . } and � = {�1,�2, . . . }, and span(�)
to denote the linear span of the �i’s;

(c) again for shorthand, we denote the variational deriva-
tive of the functional s : M → R with the symbol �, i.e.,

�p
def= δs

δp

∣∣∣∣
p

∀p ∈ M. (30)

The gradient with respect to the given metric field g of
the restriction of the entropy functional sc : Mc → R on
the submanifold Mc with constant values of the conserved
functionals ci , using Eqs. (12) and (18), can be written

explicitly as

gradc
g sc

∣∣
p

= g�
p

(
dsc

p

) = Ĝ−1
p

(
�c

p

)
. (31)

Moreover, the tangent space TpM at any p on M is viewed
as the orthogonal composition TpM = TpMc(p) ⊕ span(�p)
so any tangent vector can be decomposed as

vp = vc
p + v⊥c

p , (32)

with vc
p the component tangent to the submanifold defined

by the values at p of the conservation constraints and v⊥c
p

the component orthogonal to such submanifold. Indeed, from
Eqs. (21) and (15) written for A being one of the conservation
constraints, the condition that defines the space TpMc(p)

tangent to the constrained submanifold (metric leaf) Mc(p)

becomes

TpMc(p) = {
vc

p ∈ TpM : dci
p

(
vc

p

) = 〈
�i

∣∣
p
,vc

p

〉 = 0 ∀i
}
,

(33)

which shows clearly that TpMc is the orthogonal complement
of the linear span of the �i’s.

Along with decomposition (32), also the differential dF of
a smooth functional F on M is naturally decomposed as

dF = dF c + dF⊥c, (34)

where dF c computes the directional derivative along the
component of the tangent vector that lies in TpMc(p) and
dF⊥c along the orthogonal component that lies in span(�p),
i.e.,

dF c
p(vp) = dF

(
vc

p

)
and dF⊥c

p (vp) = dFp

(
v⊥c

p

)
. (35)

In particular, when F = ci , definitions (21) and (35) imply the
identities dci,c = 0 and dci,⊥c = dci , i.e.,

dci,c
p (vp) = 0 and dci,⊥c

p (vp) = dci
p

(
v⊥c

p

) = dci
p(vp). (36)

Similarly, the decomposition (32) for the vector �p is

�p = �c
p + �⊥c

p . (37)

Since �⊥c
p belongs to span(�p), there is a set of scalars β

j
p

such that

�⊥c
p = P̂span(�p)(�p) =

∑
j

βj
p �j . (38)

Recalling Eq. (15), we readily see that

ds⊥c
p (vp) = 〈

�⊥c
p ,vp

〉 =
∑

j

βj
p 〈�j,vp〉 =

∑
j

βj
p dcj

p(vp),

(39)
and, therefore, the constrained differential of s and the
constrained variational derivatives are, respectively,

dsc
p = dsp −

∑
j

βj
p dcj

p, (40)

�c
p = �p −

∑
j

βj
p �j

p, (41)

where the scalars β
j
p are determined uniquely by the solution

of the system of equations that obtains by applying Eq. (40)
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FIG. 1. (Color online) Pictorial representation of the orthogonal
decompositions vp = vc

p + v⊥c
p of a tangent vector and �p = �c

p +
�⊥c

p of the variational derivative of a smooth functional s on M with
respect to the decomposition TpMc(p) ⊕ span(�p) of the tangent
space TpM at point p on the state manifold M, where Mc(p) is the
submanifold with constant values c(p) of a set of smooth functionals
c on M with variational derivatives �p .

to vp = �i
p for every i, and noting that dsc

p(�i
p) = 0 (because

clearly �i,c
p = 0), i.e.,

0 = dsp

(
�i

p

) −
∑

j

βj
p dcj

p

(
�i

p

)
(42)

or, equivalently, using again Eq. (15),

0 = 〈
�p,�i

p

〉 − ∑
j

βj
p

〈
�j

p,�i
p

〉
. (43)

Figure 1 represents schematically the construction of the
constrained variational derivative �c.

The system of equations (43) defining the multipliers βj

can be easily solved, for example, using Cramer’s rule. Then,
following Refs. [18–23], the βj ’s can be written explicitly as
ratios of determinants so substitution into Eq. (40) yields the
following explicit expression for the constrained differential:

dsc
p =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dsp dc̃1
p · · · dc̃n

p

dsp

(
�̃1

p

)
dc̃1

p

(
�̃1

p

) · · · dc̃1
p

(
�̃n

p

)
...

...
. . .

...

dsp

(
�̃n

p

)
dc̃n

p

(
�̃1

p

) · · · dc̃n
p

(
�̃n

p

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dc̃1
p

(
�̃1

p

) · · · dc̃1
p

(
�̃n

p

)
...

. . .
...

dc̃n
p

(
�̃1

p

) · · · dc̃n
p

(
�̃n

p

)

∣∣∣∣∣∣∣∣∣∣∣

(44)

and the constrained variational derivative

�c
p =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�p �̃1
p · · · �̃n

p〈
�p,�̃1

p

〉 〈
�̃1

p,�̃1
p

〉 · · · 〈
�̃1

p,�̃n
p

〉
...

...
. . .

...

〈
�p,�̃n

p

〉 〈
�̃n

p,�̃1
p

〉 · · · 〈
�̃n

p,�̃n
p

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈
�̃1

p,�̃1
p

〉 · · · 〈
�̃1

p,�̃n
p

〉
...

. . .
...

〈
�̃n

p,�̃1
p

〉 · · · 〈
�̃n

p,�̃n
p

〉

∣∣∣∣∣∣∣∣∣∣∣

, (45)

where we denote by c̃1, . . . ,c̃n a subset of the ci’s such that
the variational derivatives �̃1

p, . . . ,�̃n
p are linearly independent

and form a basis for span(�p). By virtue of this choice, the
determinant at the denominator is a positive definite Gram
determinant. Thus, alternatively, we can write

βj
p =

n∑
i=1

[〈�̃p,�̃p〉−1]ji

〈
�p,�̃i

p

〉
, (46)

where, of course, 〈�̃p,�̃p〉−1 denotes the inverse of matrix
〈�̃p,�̃p〉 and 〈�̃p,�̃p〉 is a shorthand to indicate the matrix
[〈�̃i

p,�̃
j
p〉].

We may also easily construct another set c1, . . . ,cn such that

the variational derivatives �
1
p, . . . ,�

n

p form an orthonormal
basis for span(�p). In such case, we can write

dsc
p = dsp −

n∑
i=1

〈
�p,�

i

p

〉
dci

p (47)

and, for the constrained variational derivative of s,

�c
p = �p −

n∑
i=1

〈
�p,�

i

p

〉
�

i

p = �p − P̂span(�p)(�p), (48)

where

P̂span(�p)(·) =
n∑

i=1

〈 · ,�
i

p

〉
�

i

p

=
n∑

i=1

n∑
j=1

[〈�̃p,�̃p〉−1]ji

〈 · ,�̃i
p

〉
�̃j

p (49)

is the operator on TpM which projects onto span(�p).
The SEA dissipative vector field Y S becomes

Y S
α(t) = 1

τ
gradc

g sc[α(t)]|α(t) = 1

τ
g

�

α(t)

(
ds

c[α(t)]
α(t)

)
= 1

τ
Ĝ−1

α(t)

(
�

c[α(t)]
α(t)

)
, (50)

where τ is a positive dimensionality constant. The conserva-
tion constraints are

dci
α(t)

(
α̇(t) − XH

α(t)

) = dci
α(t)

(
Y S

α(t)

)
= 〈

�i
α(t),Y

S
α(t)

〉 = 0. (51)
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The various equivalent expressions for dsc given above
show explicitly the SEA construction originally introduced in
Refs. [12,16,18] in the quantum thermodynamics framework,
whereby the dissipative vector field Y S

α(t) is in the direction of
the projection of �α(t) onto the subspace of Tα(t)M orthogonal
to all the �i |α(t)’s.

To the list of expressions of the rate of entropy production
we can add

dsα(t)
(
α̇(t) − XH

α(t)

) = dsα(t)
(
Y S

α(t)

)
= dsα(t)

(
Y S

α(t)

) −
∑

j
βj dc

j

α(t)

(
Y S

α(t)

)
= τ gα(t)

(
Y S

α(t),Y
S
α(t)

) = τ
〈
Ĝα(t)

(
Y S

α(t)

)
,Y S

α(t)

〉
� 0. (52)

B. GENERIC

In this section we present the simplest form of the
GENERIC construction (see Ref. [11]), the one with the
description of entropy production that best resembles the SEA
principle.

1. Abstract formulation

We denote by M the manifold of all possible states γ

(γ ∈ M) and build the following structure.
(i) There exist two potentials, a smooth Hamiltonian

functional H : M → R and a smooth entropy functional S :
M → R, representing—for the chosen level of description—
the overall energy and thermodynamic entropy of the system,
respectively.

(ii) M is a (possibly infinite-dimensional) Banach
(co-)metriplectic manifold, i.e., a manifold carrying two
compatible structures as follows.

(iii) A Poisson structure describing the nondissipative part
of the dynamics. This is known from geometric mechanics
(see, for example, Refs. [4,5]) and consists of a skew-
symmetric contravariant 2-tensor field, called the Poisson
tensor field, which—at every point p of the manifold M—
takes two covectors at p as inputs, yields

Pp : T ∗
pM × T ∗

pM → R
(53)

(ωp,ηp) �→ Pp(ωp,ηp),

and is such that the map p �→ Pp defines a smooth (C∞)
map on M. To this tensor we associate a Poisson bracket
{·,·} : C∞(M) × C∞(M) → C∞(M) by the assignment:

{A,B}p def= Pp(dAp,dBp). (54)

The Poisson bracket must satisfy the Jacobi identity

{A,{B,C}} + {B,{C,A}} + {C,{A,B}} = 0, (55)

which represents a further constraint on the Poisson tensor field
Pp. The Poisson tensor also yields the vector bundle (linear)
map P

�
p : T ∗

pM → T ∗∗
p M, called the Poisson operator, and

often assumed to satisfy the condition P
�
p(T ∗

pM) ⊆ T ∗∗
p M ⊆

TpM, which is needed [40] to guarantee that P
�
p(dHp) is a

vector field. This condition is automatically satisfied whenever
the manifold is modeled on a reflexive Banach space or, as a
particular case, on a Hilbert space, such as in the Boltzmann
equation framework that we discuss as an example in Sec. IV.

Since Pp is assumed to be possibly degenerate, P �
p is in general

noninvertible (it is not a vector-space isomorphism but only
a homomorphism). It is noteworthy that condition (55) is
imposed so as to implement time-translation invariance of the
nondissipative part of the dynamics (integrability condition).
We shall see below that GENERIC does not impose an
analogous integrability condition on the dissipative part of
the dynamics. We further discuss this point in Sec. III B.

(iv) A degenerate co-Riemannian structure (i.e., we have
a degenerate cometric instead of a nondegenerate metric)
describing the dissipative dynamics [41,42]. This consists of
a symmetric and non-negative definite contravariant 2-tensor
field, called the friction tensor field, which—at every point p

of the manifold M—takes two covectors at p as inputs, yields

Dp : T ∗
pM × T ∗

pM → R
(56)

(ωp,ηp) �→ Dp(ωp,ηp),

and is such that the map p �→ Dp defines a smooth (C∞) map
on M.
This tensor equips the set of smooth functionals on M with
the dissipative bracket [·,·] : C∞(M) × C∞(M) → C∞(M)
by the assignment:

[A,B]p
def= Dp(dAp,dBp). (57)

The friction tensor also yields the vector bundle map D
�
p :

T ∗
pM → TpM, called the friction operator, also often as-

sumed to satisfy the condition D�(T ∗M) ⊆ T ∗∗M ⊆ TM.
Also here, since Dp is assumed to be possibly degenerate, D

�
p

is in general noninvertible.
With reference to the time evolution equation (1), the

GENERIC construction addresses both the nondissipative
(Hamiltonian) vector field XH and the dissipative vector field
Y S .

The Hamiltonian vector field XH
α(t) is assumed to obtain

from applying the Poisson operator P � to the differential of
the smooth Hamiltonian functional H : M → R,

XH
α(t) = P

�

α(t)(dHα(t)), (58)

while the dissipative vector field Y S
α(t) is assumed to obtain

from applying the friction operator D� to the differential of
the smooth entropy functional S : M → R,

Y S
α(t) = D

�

α(t)(dSα(t)), (59)

subject to the following supplementary conditions:
(a) The entropy functional S must be chosen among the

distinguished functionals (Casimir functionals) of the Poisson
structure, i.e., the operator P � must be such that

{S,A} = P (dS,dA) = dA[P �(dS)] = 0 ∀A ∈ C∞(M),

or, equivalently, P
�

α(t)(dSα(t)) = 0. (60)

(b) The Hamiltonian functional H must be chosen among
the distinguished functionals of the dissipative structure, i.e.,
the operator D� must be such that

[H,A] = D(dH,dA) = dA[D�(dH )] = 0 ∀A ∈ C∞(M),

or, equivalently, D
�

α(t)(dHα(t)) = 0. (61)
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(c) In addition, the other conserved properties of the system
are kept constants by the dynamics and, therefore, must be
distinguished functionals of both brackets.

As a result of these assumptions, if α(t) satisfies Eq. (1) and
A is a smooth functional on M, we calculate the directional
derivative of A along the velocity vector α̇(t) in the following
way:

d

dt
(Aα(t)) = dAα(t)(α̇(t))

= dAα(t)
(
XH

α(t)

) + dAα(t)
(
Y S

α(t)

)
= dAα(t)[P

�

α(t)(dHα(t))] + dAα(t)[D
�

α(t)(dSα(t))]

= Pα(t)(dHα(t),dAα(t)) + Dα(t)(dSα(t),dAα(t))

= {H,A}α(t) + [S,A]α(t) (62)

or, in more synthetic symbolic notation,

Ȧ = {H,A} + [S,A], (63)

where, however, we emphasize that Ȧ denotes neither the
total nor the partial derivative of A with respect to time (A is
not directly a function of time) but only and precisely what is
written above.

From the degeneracy conditions, one easily sees that, for
A = H ,

Ḣ = 0, (64)

which reflects the conservation of energy for an isolated
system, and, for A = S,

Ṡ = [S,S] � 0, (65)

which reflects the principle of entropy nondecrease.
We note in passing that the expression

D�
p(dSp) (66)

is similar in form to Eq. (24). The difference stems from
the degeneracy of the tensor field Dp, which prevents us
from identifying the expression D

�
p(dSp) as the gradient

vector; this is because the degeneracy prevents a one-to-one
correspondence between covectors and vectors. Therefore, we
shall refer to D

�
p(dSp) as the entropy “gradient,” in quotation

marks. Later, we discuss a supplementary condition [see
Eq. (77)] that allows us to associate to it the meaning of a
proper (horizontal) gradient.

2. Inner product formulation

If the manifold is a vector space equipped with an inner
product, as in the SEA case, we define variational derivatives
according to Eq. (15) and introduce the notation

L̆
def= P �R−1, (67)

M̆
def= D�R−1. (68)

We then have, using Eq. (17),

XH
α(t) = P

�

α(t)R
−1R(dHα(t)) = L̆|α(t)

(
δH

δp

∣∣∣∣
α(t)

)
(69)

and

Y S
α(t) = D

�

α(t)R
−1R(dSα(t)) = M̆|α(t)

(
δS

δp

∣∣∣∣
α(t)

)
, (70)

and we recover the usual form of the GENERIC,

α̇(t) = L̆|α(t)

(
δH

δp

∣∣∣∣
α(t)

)
+ M̆|α(t)

(
δS

δp

∣∣∣∣
α(t)

)
. (71)

III. DISCUSSION

The reformulation of the SEA model in the language of
differential geometry makes it more easily comparable to the
GENERIC model.

First, since in the SEA model the nondissipative or transport
part of the dynamics is not rationalized as in GENERIC,
but only described case by case, we see that the Poisson
structure may be fully imported from GENERIC to SEA
without changes. Hence, we shall focus on the dissipative
part, analyzing similarities and differences between the two
models and highlighting the aspects not completely clear and
deserving further analyses.

The following subsections are not meant to be sequential.
They can also be read in another order.

A. Original purposes of the two models

In their original article [11], the authors declared the two
main purposes of GENERIC:

(1) to reproduce known equations of motion of known
physical theories by casting them in a single abstract form
and

(2) to suggest new equations for new thermodynamic
theories dealing with complex systems.

The goal of the SEA method [23] applied to meso- and
macroscopic systems was similar:

(1) to show that a broad selection of known theoretical
frameworks for the description of nonequilibrium thermody-
namics at various levels of description can all be unified when
viewed as implementations of the SEA principle;

(2) to provide rigorous mathematical formalization of the
so-called maximum entropy production (MEP) principle, as
an attempt to clarifying its meaning, scope, and domain of
validity; and

(3) to propose a formalization of known theories which
reduces to the linear theories in the proximity of equilibrium,
entailing Onsager reciprocity. Hence, showing that such
theories are indeed SEA with respect to any metric that at
equilibrium reduces to a generalized Onsager conductivity
matrix.

However, the original SEA formulation was developed for
a very speculative and controversial quantum thermodynamics
framework, motivated by the additional fundamental goal to
provide a technically consistent connection between a wealth
of heuristic discussions about the second law and the arrow
of time in the 1970s and 1980s. The attempt consisted in
constructing a dynamical theory compatible with the Lyapunov
stability requirement suggested by the Hatsopoulos-Keenan
statement of the second law of thermodynamics [37,38]
whereby the maximum entropy states must be the only
equilibrium states of the dynamics that are conditionally stable
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in the technical sense defined in Ref. [2], as already discussed
above.

B. Differences in the geometric structures

In the GENERIC model, the degeneracy condition (61)
imposed on the geometrical structure of the manifold implies
that every distinguished functional of the dissipative bracket
cannot vary along the dissipative vector field. The entropy
“gradient” D�(dS) is automatically parallel to the level sets
of all the distinguished functionals (thus, for example, to the
level sets of energy), i.e.,

dA(Y S) = dA[D�(dS)] = D(dS,dA) = [S,A] = 0, (72)

for every distinguished functional A of the dissipative bracket.
In other words, the information of constancy of the conserved
functionals is contained already in the cometric tensor D.

The SEA model adopts a sub-Riemannian structure [43].
The conserved properties are constant on the submanifolds
where purely dissipative time evolution takes place, and the
condition (21) defines a distribution D [44] through

Dp = ker
(
dc1

p

) ∩ ker
(
dc2

p

) ∩ . . . ∩ ker
(
dck

p

)
. (73)

Since the dci’s need not necessarily be linearly independent
everywhere, the distribution may be singular. On this distri-
bution one introduces a metric

gp : Dp × Dp → R
(74)

(up,vp) �→ gp(up,vp)

with gp(up,vp) > 0 for any nonzero up and vp.
Hereafter, we shall consider finite-dimensional manifolds,

because the theorems we will mention are valid for this case.
The distribution (73) is integrable, i.e., we can find—for
each point p—an integral submanifold Mc containing p and
such that TpMc = Dp (see, e.g., Ref. [45]): They are the
intersections of the level sets of the conserved functionals.
That is why, in Sec. II A 1, we decided to give the “more
naive” viewpoint, focusing on the integral submanifolds of the
distribution rather than the distribution itself.

The geometric structure of the dissipative dynamics of
metriplectic manifolds is also similar to a sub-Riemannian
structure, but the distribution D�(T ∗M) is not necessarily
integrable.

If, however, we impose the condition

ker(D�) = span({dci}), (75)

we return to the previous situation. This condition means that
all the degeneracies in the GENERIC model are related to
conservation laws. In this case, as we will see in Sec. V, the
SEA and GENERIC formalisms are perfectly equivalent.

The GENERIC model is more similar in spirit to classical
mechanics, where the integrals of motion are generally
unknown, and finding them is often a great challenge. In the
SEA framework, conversely, knowing them is essential for the
geometrical construction itself.

A pictorial visualization of the difference between the two
constructions can be obtained by introducing in GENERIC the
concepts of symplectic leaves and metric leaves. Symplectic
leaves are the submanifolds on which purely Hamiltonian

FIG. 2. (Color online) Metric leaves in a manifold: GENERIC
dynamics takes place on a single metric leaf.

evolution would take place (i.e., assuming the dissipative
vector Y S set identically to zero) [46]. Metric leaves are instead
the submanifolds where purely dissipative dynamics would
take place (i.e., assuming the nondissipative vector XH set
identically to zero). In the context of GENERIC dynamics, the
degeneracy condition (60) implies that symplectic leaves are
at constant entropy (and the other distinguished functionals
of the Poisson bracket) while the degeneracy condition (61)
implies that metric leaves are at constant energy (and the
other distinguished functionals of the dissipative bracket).
Moreover, for an overall closed and isolated thermodynamic
system, the time-independent Hamiltonian functional is a
constant of motion and, therefore, both the nondissipative
vector XH and the dissipative vector Y S lie in a metric leaf.
Hence, the GENERIC dynamics cannot leave a particular
metric leaf: Each trajectory is effectively constrained on a
single metric leaf, as shown in Fig. 2.

Figure 3 illustrates the relationship between metric leaves,
where GENERIC dynamics (of an overall closed and isolated
thermodynamic system) takes place, and symplectic leaves,
where purely Hamiltonian dynamics takes place. Metric leaves
are surfaces with constant energy, while the symplectic leaves
are surfaces with constant entropy (because Hamiltonian
dynamics is reversible). As a consequence, the intersection
of symplectic leaves on a metric leaf produces isentropic
contours and the GENERIC nondissipative vector XH (for an
overall closed and isolated thermodynamic system) is always
contained in such an intersection.

In the SEA picture the situation differs for two reasons.
The first is that the SEA model is not meant to be restricted
to the modeling of overall closed and isolated systems.
Therefore, the condition imposed within GENERIC that the
vector field XH must be preserving the overall entropy is not
necessarily imposed. Of course, for an isolated system the
SEA construction can be made GENERIC by imposing the
corresponding degeneracy onto the metric tensor. But the SEA
model is meant to apply also for the description of a continuum
subjected to general boundary conditions. By assuming a local
state description instead of a global one, in terms of the local
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FIG. 3. (Color online) The GENERIC nondissipative vector XH

lies in the intersection of the metric leaf of the time evolution of an
isolated system with the symplectic leaf (isentropic surface) being
crossed at time t1 by the time evolution.

entropy density functional s(γ ) and the local (Lagrangian)
entropy flux JS(γ ), it allows one to write the local entropy
balance equation in the usual form,

∂s

∂t
+ ∇ · JS = �S, (76)

where ∇ · JS represents the net rate of entropy outflow due
to entropy-exchanging interactions between the local element
of continuum and its neighbors, and of course it cannot be
assumed equal to zero, due to the presence in general of
convective and diffusive fluxes of entropy, whereby also its
volume integral is in general nonzero. The local entropy
production density �S (often denoted by σ in nonequilibrium
thermodynamics) is controlled by the dissipative vector field
Y S while the transport term ∇ · JS is controlled by the
nondissipative vector field XH (which of course controls also
the local fluxes of other properties such as mass, momentum,
angular momentum, and energy). In order for GENERIC to be
extended to include this class of descriptions, the degeneracy
condition (60) must be relaxed to properly account for mass,
momentum, angular momentum, energy, and entropy fluxes
across the boundaries of the system. Some progress in this
direction has been already made in Refs. [47,48].

This version of the GENERIC [without imposing Eq. (75)]
could be made more similar to the SEA spirit of entropy
production maximization by imposing an additional restriction
on the GENERIC structure, as we point out below.

As is known from Poisson geometry, where Poisson mani-
folds foliate into symplectic leaves, a generalized distribution
is integrable if and only if it is generated by a family of smooth
vector fields and is invariant with respect to their flows. This is
the statement of the Stefan-Sussmann theorem [49,50], which
is a generalization for singular distributions of the famous
Frobenius theorem. In classical mechanics, the condition that
assures this integrability is the Jacobi identity, since it forces
Hamiltonian flows to be canonical transformations (Poisson
maps), that is, to preserve the Poisson structure.

In the GENERIC model, the time evolution of the state does
not necessarily preserve the cometric tensor, since dissipative
flows themselves are not assumed to preserve the cometric
structure. For this reason, the distribution D�(T ∗M) is not
integrable.

Instead, we note here that if we additionally endowed the
dissipative structure with the Leibniz identity

[[A,B],C] = [A,[B,C]] + [[A,C],B], (77)

which is a generalization of Jacobi identity for non-skew-
symmetric brackets [51], we would obtain that dissipative
flows preserve the cometric tensor, thus guaranteeing the
integrability of the generalized distribution D�(T ∗M) to
metric leaves. Then, on metric leaves, we would gain a
(nondegenerate) metric, we could calculate distances with it,
and we could define gradients by Eq. (11). In this case, we
could also interpret GENERIC dynamics as a SEA dynamics
on metric leaves.

We may also express this result in general terms as
follows. Suppose, for a moment, that there is only dissipative
dynamics, so time evolution is confined on a metric leaf
in which the degenerate contravariant tensor D is restricted
into the nondegenerate one DL. In this way, we can build
the corresponding covariant metric tensor gL, which acts on
vectors as

gL(u,v) = DL

(
D

�

L(u),D�

L(v)
)
. (78)

In finite dimension, it has matrix [gL,ij ] = [Dij

L ]−1 (for a
more rigorous treatment of this procedure for the case of
symplectic leaves, see Ref. [40]). Moreover, in the spirit of
the variational formulation of the SEA construction, let us
consider all unit vectors v at state p [gL(vp,vp) = 1] and search
for the one that gives the maximal directional derivative of the
entropy functional. By definition (11) of gradient of a smooth
functional (given the nondegenerate bilinear form gL) and the
Cauchy-Schwarz inequality, we have

|dSp(v)|2 = |gL(gradL S|p,vp)|2
� gL(gradL S|p, gradL S|p) gL(vp,vp)

= ‖ gradL S|p‖2
L, (79)

that is, the absolute value of the directional derivative is always
smaller than the norm of the gradient vector and reaches its
maximum value when

vp = gradL S|p
‖ gradL S|p‖L

. (80)

The restriction of the total entropy “gradient” D
�
p(dSp) to the

metric leaf is indeed gradL S|p, which is sometimes called
horizontal gradient. Therefore, any nonequilibrium dynamics
that can be written in GENERIC form and which satisfies the
Leibniz identity (77) is automatically SEA on metric leaves.

However, while the Jacobi identity is a well-known feature
of reversible dynamics with deep physical roots in classical
mechanics, imposing an analogous condition on the dissipative
structure is less founded on physical grounds. For example,
we leave it for further investigations to determine whether
Eq. (77) is satisfied and whether the time evolution preserves
the whole geometric structure in some of the mesoscopic
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thermodynamic formulations of dynamics in which the state
description is in terms of a maximum entropy family. Such
frameworks essentially adopt a kinematics compatible with
some version of the maximum entropy formalism (see, e.g.,
Refs. [52–54]) whereby the nonequilibrium thermodynamic
states are assumed to belong to the maximum entropy manifold
defined by the local instantaneous values of a given set of
mesoscopic properties chosen as the “internal variables” of
the system. Typically, this is the set of the constants of the
motion augmented by a sufficient number of slowly varying
additional properties characterizing some “constraints” (in the
sense of Ref. [54]) or some “relevant information that must be
included in the analysis” (in the information theory sense; see,
e.g., Refs. [55–57]). For example, the recent Ref. [25] assumes
a maximum entropy kinematics of this kind and constructs on
it a contact-structure-preserving dynamics which effectively
combines Hamiltonian and SEA dynamics. Again, Ref. [22]
provides another example of maximal-entropy-generation
model dynamics for a maximum-entropy discrete-probability-
distribution landscape with time-dependent constraints.

C. Relaxation time in SEA

Once the state space has been chosen, namely the manifold
where a thermodynamic process occurs, the SEA construction
determines in a unique way the local direction of evolution
at every point on the manifold and hence the trajectories of
time evolution, but in order to do so it requires a choice for
the notion of distance between states, i.e., more generally, the
choice of a metric field on the tangent space to the submanifold
with constant values of the conserved functionals. This choice
represents the “modeling knob” that allows the description
of different physical behaviors of the system. In other words,
systems with identical kinematics and hence identical state
spaces may exhibit different nonequilibrium dynamics: When
in the same state they evolve differently. It is the metric
field g which characterizes the nonequilibrium behavior of
the system. As argued in Ref. [23], near equilibrium the
metric is directly related to the Onsager matrix of generalized
resistances.

It is clear that the rate of evolution along the SEA
trajectories is also regulated by the metric, since the velocity
of a curve parametrized by time t is the scalar

‖α̇(t)‖ =
√

g(α̇(t),α̇(t)), (81)

which can be scaled by a constant in the metric tensor.
In the original quantum thermodynamic formulation of the

SEA model, a metric (the Fisher-Rao metric) was chosen
ab initio: This was inspired by the fact that the state is,
essentially, a probability measure and the interest was focused
on identifying the simplest irreversible dynamics capable of
incorporating the second law of thermodynamics. The velocity
along the SEA trajectory was scaled by the scalar τ which
is allowed to be a functional of the state, i.e., to assume
different values along the trajectory in state space. In that
simplest context τ represents also the single relaxation time
of the physical system being modeled. As shown in Ref. [23,
Eq. (87)], τ can be interpreted as an “entropic time” because
when time t is measured in units of τ the “speed” along the
SEA trajectory is equal to the local rate of entropy increase

along the trajectory. Moreover, τ is the Lagrange multiplier of
the geometrical constraint in the Lagrangian of the variational
formulation of the SEA principle [23, Eq. (72)]. From the
modeling point of view, τ is the only knob to scale and control
the strength of the attraction in the SEA direction along the
trajectories of the dynamics.

Here, however, we consider more general physical mod-
eling contexts that include the various frameworks explicitly
considered in Ref. [23], such as in complex chemical kinetics
or when multiple dissipative kinetic mechanisms give rise
even far from equilibrium to Onsager-like couplings (like
in thermodiffusion, thermoelectricity, etc.), when isotropy is
broken by the presence of phase interfaces or boundaries, or
when preferential directions are imposed by externally applied
fields. Then the SEA model must account for the multiple
relaxation times in effect and this is obtained by assuming a
nonisotropic (non Fisher-Rao) local metric tensor field, i.e., the

operator L̂
def= Ĝ−1/τ introduced in Ref. [23], whose different

eigenvalues represent the different local relaxation times up to
a common scale factor.

In these more general contexts, the state dependence of
the local metric tensor incorporates the information about the
different kinetic mechanisms in act and their interplay and
fixes the ratios between all pairs of different relaxation times.
The entropic time τ could be set to unity and thus absorbed in
the metric tensor, but in the present work we prefer to show it
explicitly for two reasons. The first is that we wish to maintain
a closer formal analogy between the structure of the SEA
dissipative vector resulting from Eq. (44) and its equivalent in
the original quantum thermodynamics framework. The second
reason is to emphasize a somewhat philosophical difference
between the GENERIC and SEA approaches.

In fact, the choice considered more “natural” in GENERIC
is to embed all the information about the dissipative part of
the dynamics inside a single mathematical object, the friction
operator. Instead, the “natural” choice in the SEA construction
is to single out the three distinct geometrical aspects of the
formalism by embedding them in three separate concepts: (1)
the foliation of the state space induced by the constants of
the motion; (2) the metric field that defines the constrained
entropy gradient needed to identify the SEA direction on
the corresponding tangent space and, physically, incorporates
the information about couplings and relaxation times of the
different dissipative mechanisms in play; and (3) the entropic
time τ which regulates the speed with which the state evolves
along the SEA path in state space.

IV. BOLTZMANN EQUATION

In this section, we illustrate how the two models are
implemented in kinetic theory, within the framework of
validity of the Boltzmann equation,

∂f (r, p; t)

∂t
=

[
∂φ(r)

∂ r
· ∂

∂ p
− p

m
· ∂

∂ r

]
f (r, p; t)

+
∫

d3p2

∫
d3q1

∫
d3q2 w(q1,q2| p, p2)

×[f (r,q1; t)f (r,q2; t) − f (r, p; t)f (r, p2; t)],

(82)
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where f (r, p) is the one-particle distribution function, φ(r) is
the potential of external forces, w(q1,q2| p1, p2) the transition
probability given by

w(q1,q2| p1, p2)

= δ(3)(q1 + q2 − p1 − p2)

×δ(3)
(
q2

1 + q2
2 − p2

1 − p2
2

) 8

m
σ (q1,q2| p1, p2), (83)

and σ the differential cross section calculated in the center-of-
mass frame. This is the formulation given by Grmela [58]
and Öttinger in Ref. [59]. The state space is the infinite-
dimensional vector space V of the distribution functions
f (r, p) that are well defined, i.e., non-negative and with finite
mean values of the meaningful moments.

At variance with Ref. [59], we choose as suggested in
Ref. [23] to reformulate the state description not in terms of
the distribution function f but of its square root γ (r, p) so

f (r, p) = γ (r, p)2. (84)

This is done in order to accomplish three different scopes:
(i) preserving the non-negativity of the distribution func-

tion;
(ii) making the gradients of the relevant physical properties

belong to a Hilbert space H;
(iii) avoiding the divergence of the entropy gradient outside

of the support of f (r, p) at the expense of an apparent
singularity in the equation of motion.

The Boltzmann equation is recovered if the evolution
equation for γ (r, p; t) is assumed to be of the form

∂γ (r, p; t)

∂t

=
[
∂φ(r)

∂ r
· ∂

∂ p
− p

m
· ∂

∂ r

]
γ (r, p; t)

+ 1

2γ (r, p,t)

∫
d3q1

∫
d3q2

∫
d3p2 w(q1,q2| p, p2)

×[γ (r,q1; t)2γ (r,q2; t)2 − γ (r, p; t)2γ (r, p2; t)2]. (85)

Equation (85) does present a divergence problem outside of
the support of γ (r, p), but this is less problematic because the
rates of change of all physical quantities depend on gradients
which smooth out the divergence. In other words, they depend
on dγ 2/dt , which is free of this divergence issue.

Each solution of the Boltzmann equation and of its thermo-
dynamically consistent models is a one-parameter family of
distribution functions α : I → H, where

α(t) = γ (r, p; t). (86)

Thus, the Boltzmann equation and its GENERIC or SEA
models take the abstract form of the following differential
equation:

α̇(t) = XH
α(t) + Y S

α(t), (87)

where the explicit expressions of XH
α(t) and Y S

α(t) differ in the
GENERIC and the SEA approach as we have seen in the
previous sections in abstract terms and we will see below in
specific details for the present framework.

A. GENERIC

For the GENERIC construction, we consider the Hilbert
space HGENERIC = L2(R3 × R3) with inner product

〈x,y〉 =
∫

d3r

∫
d3p x(r, p) y(r, p). (88)

The overall mean values of the physical properties are
represented by functionals A[γ (r, p)] with associated local
field ã(r, p,γ (r, p)) such that γ (r, p) ã(r, p,γ (r, p)) belongs
to HGENERIC. As a result, the overall mean value functionals
are

A[γ (r, p)] =
∫

d3r

∫
d3p γ (r, p)2ã(r, p,γ (r, p))

= 〈γ,γ a〉 = A with |A| < ∞. (89)

The normalization condition may be written as I [γ (r, p)] =
〈γ,γ 〉 = 1.

Since HGENERIC is a vector space, every tangent space may
be identified with the vector space itself, i.e., TpHGENERIC

∼=
HGENERIC ∀p. The functional derivative has the usual defini-
tion, analogous to Eq. (15),〈

δA

δγ

∣∣∣∣
γ0

,y

〉
= dAγ0 (y), where (90)

γ0 ∈ HGENERIC, y ∈ Tγ0HGENERIC (∼= HGENERIC). (91)

The fundamental properties which generate the dynamical
equation in the GENERIC formulation are the overall entropy
functional,

S[γ (r, p)] = −kB

∫
d3r

∫
d3p γ (r, p)2 ln

γ (r, p)2

b
= S,

(92)
where b is a suitable constant with the same dimensions
as γ 2, and the overall mean value of the energy, which we
write here below the other four collision invariant functionals
representing the number of particles and the components of
momentum,

C0[γ (r, p)] =
∫

d3r

∫
d3p γ (r, p)2 = N,

C1[γ (r, p)] =
∫

d3r

∫
d3p px γ (r, p)2 = Px,

C2[γ (r, p)] =
∫

d3r

∫
d3p py γ (r, p)2 = Py, (93)

C3[γ (r, p)] =
∫

d3r

∫
d3p pz γ (r, p)2 = Pz,

C4[γ (r, p)] =
∫

d3r

∫
d3p

[
p · p
2m

+ φ(r)

]
γ (r, p)2 = H.

These can be rewritten in compact notation as

Cj [γ (r, p)] =
∫

d3r

∫
d3p ψj (r, p)γ (r, p)2 = Cj , (94)

where of course ψ0 = 1, ψ1 = px , ψ2 = py , ψ3 = pz, and
ψ4 = p · p/2m + φ(r).
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The expressions for the functional derivatives are

δS

δγ

∣∣∣∣
γ (r, p)

= −2kBγ (r, p)

[
ln

γ (r, p)2

b
+ 1

]
, (95)

δCj

δγ

∣∣∣∣
γ (r, p)

= 2γ (r, p) ψj (r, p). (96)

If the state were chosen to be the distribution function f (r, p),
expression (95) would present a divergence for values of r and
p outside the support of the distribution function.

The functionals

CiCj [γ (r, p)] = 1

4

〈
δCi

δγ

∣∣∣∣
γ (r, p)

,
δCj

δγ

∣∣∣∣
γ (r, p)

〉
= CiCj

(97)
represent the overall mean values of the collision invariants
for i = 0 or j = 0 and their overall moments otherwise.

The results in the rest of this subsection are borrowed from
Ref. [59], simply recast in terms of γ (r, p) instead of f (r, p)
and written down in full detail.

In the abstract formulation of the GENERIC framework,
the evolution equation takes the form

α̇(t) = X
H,GENERIC
α(t) + Y

S,GENERIC
α(t) , (98)

where

X
H,GENERIC
α(t) = P �

γ

∣∣
α(t)(dHα(t)) = L̆γ |α(t)

(
δH

δγ

∣∣∣∣
α(t)

)
, (99)

Y
S,GENERIC
α(t) = D�

γ

∣∣
α(t)(dSα(t)) = M̆γ |α(t)

(
δS

δγ

∣∣∣∣
α(t)

)
. (100)

More explicitly, the evolution equation for γ (r, p; t) is

∂γ (r, p; t)

∂t
= L̆γ

∣∣
γ (r, p;t)

(
δH

δγ

∣∣∣∣
γ (r, p;t)

)
+ M̆γ

∣∣
γ (r, p;t)

(
δS

δγ

∣∣∣∣
γ (r, p;t)

)
. (101)

We use the additional subscript γ in P �
γ |α(t), D�

γ |α(t), L̆γ |α(t), and M̆γ |α(t) to distinguish these operators from the more standard

ones that we give below in terms of f = γ 2 that we will denote by P
�

f |f (r, p;t), D
�

f |f (r, p;t), L̆f |α(t), and M̆f |α(t).
The Poisson operator at point γ (r, p) is given by

L̆γ

∣∣
γ (r, p)

(
δA

δγ

∣∣∣∣
γ (r, p)

)
= 1

2γ (r, p)

[
∂

∂ p
γ (r, p)2 · ∂

∂ r
− ∂

∂ r
γ (r, p)2 · ∂

∂ p

][
1

2γ (r, p)

δA

δγ

∣∣∣∣
γ (r, p)

]
, (102)

and the associated Poisson bracket at point γ (r, p)

{A,B}γ (r, p) = Pγ |γ (r, p)(dAγ (r, p),dBγ (r, p)) = dBγ (r, p)[P
�
γ |γ (r, p)(dAγ (r, p))] =

〈
δB

δγ

∣∣∣∣
γ (r, p)

, L̆γ

∣∣
γ (r, p)

(
δA

δγ

∣∣∣∣
γ (r, p)

)〉

= 1

4

∫
d3r

∫
d3p

[
1

γ (r, p)

δB

δγ

∣∣∣∣
γ (r, p)

] [
∂

∂ p
γ (r, p)2 · ∂

∂ r
− ∂

∂ r
γ (r, p)2 · ∂

∂ p

][
1

γ (r, p)

δA

δγ

∣∣∣∣
γ (r, p)

]

= 1

4

∫
d3r

∫
d3p γ (r, p)2

{
∂

∂ r

[
1

γ (r, p)

δA

δγ

∣∣∣∣
γ (r, p)

]
· ∂

∂ p

[
1

γ (r, p)

δB

δγ

∣∣∣∣
γ (r, p)

]

− ∂

∂ p

[
1

γ (r, p)

δA

δγ

∣∣∣∣
γ (r, p)

]
· ∂

∂ r

[
1

γ (r, p)

δB

δγ

∣∣∣∣
γ (r, p)

]}

=
∫

d3r

∫
d3p γ (r, p)2

{
∂

∂ r

[
δA

δf

∣∣∣∣
f =γ (r, p)2

]
· ∂

∂ p

[
δB

δf

∣∣∣∣
f =γ (r, p)2

]
− ∂

∂ p

[
δA

δf

∣∣∣∣
f =γ (r, p)2

]
· ∂

∂ r

[
δB

δf

∣∣∣∣
f =γ (r, p)2

]}

= {A,B}f (r, p)=γ (r, p)2 . (103)

The friction operator at point γ (r, p) can be written as follows:

M̆γ

∣∣
γ (r, p;t)

(
δA

δγ

∣∣∣∣
γ (r, p;t)

)
=

∫
d3p1 M̂γ [γ (r, p)](r, p, p1)

δA

δγ

∣∣∣∣
γ (r, p1)

, (104)

where

M̂γ [γ (r, p)](r, p, p1) = 1

4kBγ (r, p)γ (r, p1)

∫
d3q1

∫
d3q2

∫
d3p2 w(q1,q2| p, p2)[δ(3)( p − p1) + δ(3)( p2 − p1)

− δ(3)(q1 − p1) − δ(3)(q2 − p1)]
γ (r,q1)2γ (r,q2)2 − γ (r, p)2γ (r, p2)2

ln[γ (r,q1)2γ (r,q2)2] − ln[γ (r, p)2γ (r, p2)2]
, (105)
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and the associated dissipative bracket at point γ (r, p) reads

[A,B]γ (r, p) = Dγ |γ (r, p)
(
dAγ (r, p),dBγ (r, p)

) = dBγ (r, p)[D
�
γ |γ (r, p)(dAγ (r, p))] =

〈
δB

δγ

∣∣∣∣
γ (r, p)

, M̆γ

∣∣
γ (r, p)

(
δA

δγ

∣∣∣∣
γ (r, p)

)〉

=
∫

d3r

∫
d3p

δB

δγ

∣∣∣∣
γ (r, p)

M̆γ

∣∣
γ (r, p)

(
δA

δγ

∣∣∣∣
γ (r, p)

)
=

∫
d3r

∫
d3p

∫
d3p1

δB

δγ

∣∣∣∣
γ (r, p)

M̂γ [γ (r, p)](r, p, p1)
δA

δγ

∣∣∣∣
γ (r, p1)

=
∫

d3r

∫
d3p

∫
d3p1

δB

δf

∣∣∣∣
f (r, p)

M̂f [f (r, p)](r, p, p1)
δA

δf

∣∣∣∣
f (r, p1)

=
〈

δB

δf

∣∣∣∣
f (r, p)

, M̆f

∣∣
f (r, p)

(
δA

δf

∣∣∣∣
f (r, p)

)〉

= [A,B]f (r, p), (106)

where we identify M̂f as the dissipative “matrix” given in Eq. (12) of Ref. [59],

M̂f [f (r, p)](r, p, p1) = 1

kB

∫
d3q1

∫
d3q2

∫
d3p2 w(q1,q2| p, p2)[δ(3)( p − p1) + δ(3)( p2 − p1)

− δ(3)(q1 − p1) − δ(3)(q2 − p1)]
f (r,q1)f (r,q2) − f (r, p)f (r, p2)

ln[f (r,q1)f (r,q2)] − ln[f (r, p)f (r, p2)]
, (107)

and the corresponding friction operator is

M̆f

∣∣
f (r, p;t)

(
δA

δf

∣∣∣∣
f (r, p;t)

)

=
∫

d3p2 M̂f [f (r, p)](r, p, p2)
δA

δf

∣∣∣∣
f (r, p2)

.

It is easy but important to verify that the degeneracy
requirements

M̆γ

∣∣
γ (r, p;t)

(
δCj

δγ

∣∣∣∣
γ (r, p;t)

)
= 0 ∀ j (108)

are a consequence of the symmetry property (invariance
upon exchange of q1,q2 with p1, p2) of both the transition
probabilities w(q1,q2| p1, p2) and the positive semidefinite
resistance “matrix,”

�(q1,q2| p1, p2)

= ln[f (r,q1)f (r,q2)] − ln[f (r, p1)f (r, p2)]

f (r,q1)f (r,q2) − f (r, p)f (r, p1)
, (109)

whose form was suggested by the related work in Ref. [60] on
chemical kinetics and in the present kinetic theory framework
can be interpreted as a resistance matrix due to the collisions
from q1,q2 to p1,p2 and vice versa. Indeed, the entropy
production rate can be written as

� = kB

∫
d3q1

∫
d3q2

∫
d3p1

∫
d3p2 w(q1,q2| p1, p2)

×�(q1,q2| p1, p2)[f (r,q1)f (r,q2)−f (r, p1)f (r, p2)]2.

In the case of GENERIC, the effort has been to put
the Boltzmann equation in GENERIC form, so the Poisson
operator and the friction operator M̂ have arisen from this
procedure. The friction operators M̂γ and M̂f given above lead
exactly to the collision integral of the Boltzmann equation.
In spite of the complexity of such operators, it is hoped
that knowing their explicit forms may help identify kinetic
models of the Boltzmann collision integral in the same spirit

of the BGK model but capable of capturing more features of
the collision dynamics and of providing better approximation
schemes in the far-non-equilibrium domain. Early attempts
along these lines are discussed in Ref. [61].

B. SEA

For the SEA construction, the Hilbert space is HSEA =
L2(R3) with (local) inner product is

(x|y) (r) =
∫

d3p x(r, p) y(r, p), (110)

the local densities of the physical properties are r-
dependent functionals a(r)[γ (r, p)] with associated under-
lying field ã(r, p,γ (r, p)) such that, for each fixed r ,
γ (r, p) ã(r, p,γ (r, p)) belongs to HSEA. As a result, the local
density functionals are

a(r)[γ (r, p)] =
∫

d3p γ (r, p)2 ã(r, p,γ (r, p))

= (γ |γ a) = a(r) with |â(r)| < ∞. (111)

The functional derivative has again the usual definition
analogous to Eq. (11), but on HSEA,

(
δa

δγ

∣∣∣∣
γ0

∣∣∣∣ y
)

= daγ0 (y) with

{
γ0 ∈ HSEA

y ∈ Tγ0HSEA (∼= HSEA) .

(112)
Clearly,

〈A,B〉 =
∫

d3r (a|b) (r). (113)

For the SEA formulation the local properties that generate
the dynamical equation are the local density and flux fields,
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defined as follows:

s(r)[γ (r, p)] = −kB

∫
d3p γ (r, p)2 ln

γ (r, p)2

b
= s(r),

cj (r)[γ (r, p)] =
∫

d3p ψj (r, p) γ (r, p)2 = cj (r),

JCj (r)[γ (r, p)] =
∫

d3p ψj (r, p)
p
m

γ (r, p)2 = JCj (r).

(114)

The expressions for the functional derivatives are

δs

δγ

∣∣∣∣
γ (r, p)

= −2kBγ (r, p)

[
ln

γ (r, p)2

b
+ 1

]
, (115)

δcj

δγ

∣∣∣∣
γ (r, p)

= 2γ (r, p) ψj (r, p) . (116)

We note that the right-hand side of Eqs. (95) and (115) are
identical, and this is the same for Eqs. (96) and (116).

Here the functionals

cicj [γ (r, p)] = 1

4

(
δci

δγ

∣∣∣∣
γ (r, p)

∣∣∣∣∣ δcj

δγ

∣∣∣∣
γ (r, p)

)
= cicj (r) (117)

represent the local mean values of the collision invariants for
i = 0 or j = 0 and the local moments otherwise.

In the abstract formulation of the SEA model, the evolution
equation takes the form

α̇(t) = X
H,SEA
α(t) + Y

S,SEA
α(t) (118)

where we recall that α(t) = γ (r, p; t). The transport vector
field

X
H,SEA
α(t) = − p

m
· ∂γ (r, p; t)

∂ r
+ ∂φ(r)

∂ r
· ∂γ (r, p; t)

∂ p
(119)

is prescribed and not “derived” as in GENERIC, whereas the
dissipative vector field is derived from the gradients of the
entropy density and the conserved densities,

Y
S,SEA
α(t) = 1

τ
g

�

α(t)

(
ds

c[α(t)]
α(t)

) = 1

τ
Ĝ−1

(
δs

δγ

∣∣∣∣
c[α(t)]

α(t)

)
. (120)

The values of the (Lagrange multipliers) βj ’s are found
by solving the following system of five algebraic equations
[Eq. (43)], i ∈ [0,4],

4∑
j=0

〈
δcj

δγ

∣∣∣∣
α(t)

,
δci

δγ

∣∣∣∣
α(t)

〉
β

j

α(t) =
〈

δs

δγ

∣∣∣∣
α(t)

,
δci

δγ

∣∣∣∣
α(t)

〉
. (121)

The metric tensor g or the equivalent operator Ĝ that
makes the SEA formulation coincide with the full Boltzmann
equation can be, in principle, obtained by starting from
the expression of the GENERIC friction operator M̆GENERIC

defined by Eqs. (104) and (105), which corresponds to the
full Boltzmann collision integral. In fact, in the next section
we prove that, given a GENERIC friction operator M̆ , the
metric tensor g identified by Eq. (141) yields the equivalent
SEA formulation. In particular, such g is proportional through
a scaling dimensionality constant τ to the inverse of the
restriction of M̆ to ker(M̆)⊥. The challenge of deriving the

explicit expression of such metric tensor g is left for future
work.

The subsequent effort in the SEA philosophy is to find an
appropriate metric tensor capable of modeling correctly and
efficiently the collision integral of the Boltzmann equation
in the same spirit of the traditional kinetic models, such as
BGK, ES-BGK, etc., that constitute good approximations near
equilibrium, in order to extend their validity to the far-non-
equilibrium domain. The problem of identifying criteria for
this kind of modeling is still open. Recent numerical results
[61] show that the choice of a uniform (Fisher-Rao) metric
yields poor models in this framework; more precisely, although
near equilibrium it is fully equivalent to the BGK model, in
the far-nonequilibrium regime it selects trajectories in state
space that diverge from the direction of evolution actually
chosen by the full Boltzmann collision integral. It is hoped
that the present analysis and perhaps information geometry
could provide hints to find a suitable metric for this purpose.

V. EQUIVALENCE OF SEA AND GENERIC
(IN MOST FRAMEWORKS)

In this section we show that every SEA model admits
a GENERIC form, of course, after making the choice of
a kinematics, which is the common starting point. In other
words, we prove that we can construct the GENERIC form of
any given SEA model. We also prove the converse to be true.

This result holds in the kinetic theory framework of validity
of the Boltzmann equation that we considered in the previous
section for illustrative purposes. But they are also of much
broader validity in that they hold at least for all the frameworks
for which the SEA constructions have been made explicit in
Ref. [23]. To show such broader validity, below we state the
result with explicit reference to the kinetic theory framework
but use a more compact notation which points directly to
the notation introduced in Ref. [23] in order to unify several
different nonequilibrium frameworks and levels of description.
In particular, we introduce the following notation, giving a
uniform treatment to the symbols used in the section regarding
the SEA and GENERIC interpretations of the Boltzmann
equation.

Like in the previous sections, we use the same symbol
γ (r, p) to denote the states in GENERIC and SEA, even
though in SEA the position r is a fixed parameter also for
the local functionals. What is important, though, is that the
proper functional derivatives in the two frameworks end up
being identical functions of r and p. Therefore, we denote
them by the same symbol. We write the functional derivative
of entropy as

|�) = δs

δγ

∣∣∣∣
γ (r, p)

= δS

δγ

∣∣∣∣
γ (r, p)

, (122)

collect a complete set of conserved quantities in the vectors

c = {cj }, C = {Cj }, (123)

write their functional derivatives as

|�) = δc
δγ

∣∣∣∣
γ (r, p)

= δC
δγ

∣∣∣∣
γ (r, p)

, (124)
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and, for simplicity, without loss of generality, assume they are
linearly independent [otherwise we drop from sets c and C the
conserved quantities that do not have independent functional
derivatives, as discussed in Sec. II A 2 after Eq. (43)].

We use the GENERIC friction operator M̆ (dropping the
apex “GENERIC”), which acts on a vector b on TγH according
to Eq. (104)

M̆|b) = D�
γ (b∗), (125)

where b∗ is the corresponding covector (the two may be
identified thanks to the presence of the inner product). For
the SEA operators, we have, for bc on TγH,

Ĝ|bc) = g�
γ (bc), (126)

L̂|bc) = 1

τ
Ĝ−1|bc) = 1

τ
g�

γ (b∗), (127)

(ac|Ĝ|bc) = (
ac,g�

γ (bc)
) = gγ (ac,bc). (128)

Finally, the dissipative part of the local dynamics, i.e.,
the part responsible for local entropy generation, like the
Boltzmann collision integral in the Boltzmann equation, and
the Lagrange multipliers are

|�γ ) = Y S
α(t), (129)

β = {
β

j

α(t)

}
, (130)

|β · �) =
∑

j

β
j

α(t)

δcj

δγ

∣∣∣∣
γ (r, p)

. (131)

Within the GENERIC framework, |�γ ) takes the form

|�γ ) = M̆|�), (132)

where M̆ is subject to the conditions

M̆|�) = 0, M̆ � 0, and M̆ symmetric, (133)

whereas within the SEA framework it takes the form

|�γ ) = L̂|�c) = L̂|� − β · �), (134)

where L̂ is subject to the conditions

L̂ > 0 symmetric and defined on span(�)⊥, (135)

and β is given by [Eq. (46)]

β = (�|�)−1 · (�|�), (136)

where (�|�)−1 denotes the inverse of matrix (�|�) with
elements [〈�i,�j 〉].

A. GENERIC form of a SEA model

Now, to prove that every SEA model admits a GENERIC
form, we note that we can rewrite Eq. (134) as

|�γ ) = L̂P̂span(�)⊥|�). (137)

Before we conclude that the operator

M̆L̂,� = L̂P̂span(�)⊥ (138)

provides the GENERIC form (132) of the SEA dynamical
equation (134), we must show that M̆L̂,� satisfies the re-
quirements stated in Eq. (133). In fact, the first condition is a
consequence of P̂span(�)⊥|�) = 0, from which it also follows
that ker(M̆L̂,� ) = span(�) and when restricted to span(�)⊥

operator P̂span(�)⊥ is the identity and M̆L̂,� reduces to L̂.
The second and third conditions are direct consequences
of the symmetry and positive definiteness of L̂. To prove
even more explicitly that M̆L̂,� is positive semidefinite,
consider any vector |b) in TγH and its decomposition |b) =
|bc) + |b⊥c), where |bc) = P̂span(�)⊥|b) and |b⊥c) = |b) −
|bc). Then we have (b|M̆L̂,� |b) = (bc + b⊥c|L̂P̂span(�)⊥|bc +
b⊥c) = (bc + b⊥c|L̂|bc) = (bc|L̂|bc) � 0 with the equal sign
holding only when |bc) = 0, i.e., when |b) lies in the kernel of
M̆L̂,� .

Equation (138) supports explicitly our assertion in
Sec. III C that the GENERIC friction operator incorporates
both the information about the constants of the motion (it
projects onto the local metric leaf orthogonal to their gradients)
and the information about the local metric on such leaf: when
applied to the entropy gradient it essentially identifies the SEA
direction compatible with the local conservation constraints.

This concludes the proof that any SEA formulation can al-
ways be put in GENERIC form. Therefore, all the frameworks
discussed in Ref. [23], once put into SEA form by choosing the
suitable cometric L̂, can also be put into GENERIC form (at
least as regards the dissipative part) by using the M̆ given by
Eq. (138) with L̂ = Ĝ−1/τ . In other words, for any operator
L̂, the operator M̆ given in Eq. (138) makes the right-hand
side of Eq. (132) become identical to the right-hand side of
Eq. (134).

B. SEA form of a GENERIC model

Next we show that also the converse is true, i.e., that any
GENERIC formulation can always be put into SEA form
provided Eq. (75) holds. To do that, given a GENERIC friction
operator M̆ , we first identify its kernel ker(M̆) and then select
as constants of the motion for the SEA formulation a set of
state functionals such that their functional derivatives |�) form
a basis for ker(M̆). This way the dissipative vector fields in
both models will conserve the same state functionals. As a
result of this choice,

ker(M̆) = span(�), (139)

where span(�) denotes the linear span of the set of vectors
|�). Clearly, also the following condition holds:

P̂ker(M̆) = P̂span(�). (140)

In the framework of the Boltzmann equation, it is well
known [62,63] that the kernel of the collision integral coincides
with the linear span of the five collision invariants ψ0 = 1,
ψ1 = px , ψ2 = py , ψ3 = pz, and ψ4 = p · p/2m + φ(r), i.e.,
there exist no other linearly independent collision invariants.
Since the friction operator given by Eq. (104) and Eq. (105)
has been proven to be exactly equivalent to the full Boltzmann
collision integral, by applying it to the functional derivatives in
Eq. (96), it is easy to verify that the well-known result implies
that Eq. (140) holds for M̆γ .
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To proceed with the proof, let us consider the operator L̂M̆

defined by the restriction of M̆ on ker(M̆)⊥, i.e.,

L̂M̆ |bc) = M̆|bc) ∀|bc) ∈ ker(M̆)⊥. (141)

In view of the degeneracy requirements M̆|�) = 0, operator
L̂M̆ is readily shown to convert the SEA equation (134) into
the GENERIC equation (132). Indeed,

L̂M̆ |�c) = M̆|�c) = M̆|� − β · �) = M̆|�). (142)

This concludes the proof that we can construct the SEA form
of any given GENERIC model.

In order to identify the metric Ĝ = L̂−1/τ which makes the
Boltzmann equation fit exactly into the SEA form, we would
need to identify ker(M̆GENERIC

γ ) for the dissipative operator

M̆GENERIC
γ given by Eq. (105). We leave the task of finding the

explicit expression of P̂ker(M̆) for future work.

VI. CONCLUSIONS

The main objective of the present paper is the comparison
between the SEA dynamical model, initially proposed by
Beretta in a quantum thermodynamics framework and recently
adapted to meso- and macroscopic systems, and the GENERIC
formalism, developed by Grmela and Öttinger. To this end,
we reformulated the SEA formalism using the notation of
differential geometry similar to that already available for the
GENERIC formalism.

Our detailed analysis shows that the two nonequilibrium
dynamical models show similar patterns in that both may be
considered as belonging to the maximal-entropy-producing
or the entropy-gradient type. In both models the dissipative
component of the time evolution of the state of a ther-
modynamic system is determined by the differential of the
entropy functional. In the SEA model it is in the direction
of the projection dSc of dS onto the submanifold where the
conserved properties are constant. In the GENERIC model
it is in the direction of the entropy “gradient” in the metric
leaf corresponding to the constant values of the conserved
properties (the reason we put gradient between quotation
marks is explained at the end of Sec. IIB).

Both structures have been motivated by the search for
nonequilibrium thermodynamics formulations that are fully
compatible with the second law of thermodynamics. However,
specific differences must be pointed out:

(a) The SEA construction focuses only on the dissipative
component of the dynamics and describes it by assuming the
existence of a sub-Riemannian metric tensor field.

(b) The GENERIC construction tackles with equal empha-
sis both the nondissipative and the dissipative components of
the dynamics and assumes a Poisson structure to describe the
nondissipative component and a degenerate co-Riemannian
structure to describe the dissipative component.

(c) A SEA model requires the separate specification of
(1) a set of time-invariant state functionals c(p) representing
constants of the motion or constraints, whose variational
derivatives � determine at every state p the tangent space
TpMc(p) = span(�p)⊥ to the submanifoldMc(p) that contains
the dissipative component Y S

α(t ;p) of the equation of motion,

and (2) a metric field Ĝp which for every state p in the state
manifold M defines the geometric notion of distance on the
constrained submanifold Mc(p). Physically, the metric tensor
Ĝp extends the notion of generalized Onsager resistivity to the
far-from-equilibrium domain.

(d) The dissipative part of a GENERIC model requires
the specification of a degenerate operator M̆ on the space
TpM tangent to the state manifold M. We have shown that
when M̆ is constructed so its kernel ker(M̆) coincides with the
linear span of the functional derivatives � of the time-invariant
state functionals and its restriction to ker(M̆)⊥ is non-negative
definite and symmetric, then the model is essentially SEA.

(e) The GENERIC friction operator M̆ incorporates both
the information about the constants of the motion (it projects
onto the local metric leaf orthogonal to their variational
derivatives) and the information about the local metric on such
leaf. When applied to the entropy variational derivative, it
essentially identifies the SEA direction compatible with the
conservation constraints. In other words, in the GENERIC
formalism the conservation laws are embedded in the degen-
eracy of the two assumed geometrical structures, while the
SEA formalism assumes that the conservation constraints are
given explicitly so as to determine the submanifolds where
the purely dissipative time evolutions would lie and unfold
along the direction of SEA with respect to a metric. The
metric represents the couplings and characteristic times of
the different dissipative mechanisms in act.

(f) In SEA dynamics, the choice of a nondegenerate
metric allows one to univocally define gradients, while in the
GENERIC formalism, the choice of a degenerate metric makes
it impossible to define a metric and, thus, a gradient, unless a
further condition on the dissipative bracket is imposed.

(g) For the description of a continuum, SEA dynamics
emerges as a local theory that starts from the local balance
equations and implements the assumption of maximal local
entropy production density compatible with the local conser-
vation constraints, while the GENERIC formalism emerges as
a global theory that implements an entropy gradient dynamics
compatible with the global conservation constraints.

Nevertheless, in this paper we show that the descriptions of
the dissipative components of the dynamics in the two theories
are very closely related, and in some important instances
entirely equivalent.

This is the case, for example, of the Boltzmann equation
that we work out explicitly in both frameworks not only for
illustrative purposes but also to prove the new result that the
already-known GENERIC form of the collision integral can
also be given a SEA form. The two models have emerged
in kinetic theory with different motivations. On one hand,
SEA dynamics—which was originally developed [15] as an
attempt to understand the fundamental consequences of an
attempt to construct a theory of quantum thermodynamics by
embedding the second law directly into quantum theory—
has been adapted to the framework of kinetic theory with
the aim of finding a simplified metric to model the collision
integral [61] in order to create efficient kinetic models capable
of extending to the highly nonequilibrium regime traditional
near-equilibrium models such as BGK and ES-BGK. On the
other hand, GENERIC, according to one of the two purposes
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for which the model was developed by its authors, aims at
proving that the Boltzmann equation is a realization of their
general abstract dynamics.

Some of the topics considered in the present paper are in
need of further ideas or deserve a deeper analysis:

(i) the nondissipative-part formalism that GENERIC bor-
rows from geometric mechanics may be “transferred” to
SEA in order to have a more complete model that explicitly
considers Hamiltonian dynamics;

(ii) the idea of imposing that the dissipative bracket in
GENERIC satisfies the Leibniz identity in order to have a
nondegenerate metric on the metric leaves could be tested in
practical instances by a symbolic algorithm as done for the
Jacobi identity in Ref. [64]; and

(iii) as far as open systems are concerned, a parallel could
be undertaken between the approach used in Ref. [23] and the
mathematical framework of Dirac structures, which the authors
of GENERIC claim to play a role in this kind of modeling [26].
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