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The identification o f  a set o f  mutually exclusive and exhaustive propositions 
concerning the states o f  quantum systems is a cornerstone o f  the information- 
theoretic foundations o f  quantum statistics; but the set which is conventionally 
adopted is in fact  incomplete, and is customarily deduced from numerous 
misconceptions o f  basic quantum mechanical principles. This paper exposes 
and corrects these common misstatements. I t  then identifies a new set o f  quantum 
state propositions which is truly exhaustive and mutually exclusive, and which 
is compatible with the foundations o f  quantum theory. 

1. LOGICAL SPECTRA AND STATISTICAL PHYSICS 

In recent years the abstract principles of information theory have been super- 
posed upon the fundamental laws of mechanics in order to erect the old 
discipline of  statistical mechanics on a basis more plausible, rational, and 
systematic than has historically been the case. These efforts must be regarded 
as very successful, if for no other reason than that they have clarified better 
than ever before just what really are the essential foundations of  statistical 
mechanics. Nevertheless, the present state of those foundations remains 
shaky in the realm of quantum statistics because quantum mechanics itself 
is beset by numerous controversial misunderstandings. As we shall see in 
detail below, many of these common misinterpretations of  quantum physics 
have been absorbed uncritically into the fabric of information-theoretic 
statistical mechanics, with the result that quantum statistics is not yet truly 
as well grounded as a cursory survey might suggest. 

To apply information theory to any situation, the first step consists 
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in identifying a list of relevant propositions concerning that situation. The 
list must be mutually exclusive (no two propositions can simultaneously 
be true) and exhaustive (one of the propositions is certainly true). Such a 
set of mutually exclusive and exhaustive propositions has sometimes been 
called a logical spectrum, and we shall, for brevity, adopt that terminology. I1) 

Suppose now that we confront in a physical laboratory a complex system 
that has been prepared for study in some specified manner. (A classic 
example would be one mole of helium occupying a one-liter enclosure in 
thermal equilibrium at a specified temperature.) There are two kinds of logical 
spectra that might conceivably arise in the quantal analysis of the system. 
One is related to the quantum states or preparations of the system; the other 
concerns the possible data that would emerge from subsequent measurements 
of observables of interest. 

The logical spectrum associated with measurement of an observable A 
is obviously just the list of propositions of this form: "Measurement of A 
yields the datum a." In fact this logical spectrum of propositions concerning 
the results of A-measurements is indexed by the eigenvalue spectrum {as} 
of the observable A. It is customary to regard the projection operator onto 
the subspace belonging to as as the mathematical representative in quantum 
theory of that proposition of the above form which is indexed by an • None 
of this is problematical. 

The logical spectrum associated with the possible quantum states, on 
the other hand, is not so immediately identifiable. It is, however, the one 
which is of greatest interest in statistical physics, where the central problem 
is to make the best possible state assignment compatible with whatever 
meager physical information can be extracted from a description of the 
means employed in the laboratory to prepare the system of interest. We 
shall find that the problem of selecting such a logical spectrum of quantal 
state preparations leads almost at once into that thicket of quantal misunder- 
standings mentioned earlier. 

There is of course an orthodox choice for the logical spectrum of 
quantum states. It has been entrenched for decades in all treatises on quantum 
statistics, and has been, as we shall see, willingly adopted also by the pro- 
tagonists of the information-theoretic school. To construct that logical 
spectrum, let {~b~} denote a specific complete orthonormal set of state vectors. 
The standard logical spectrum for states in quantum statistics consists of 
all propositions of this form: "The system is in the state ~b~ ." Thus it is 
asserted that such a set of pure states is a mutually exclusive and exhaustive 
list of possibilities. 

We maintain that this traditional choice of a logical spectrum for 
quantum statistics is a fundamental error, reflecting the imbuement of a 
host of common misconstruals of the foundations of quantum mechanics 
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itself. The fact that this orthodox spectrum leads nevertheless to empirically 
correct results in equilibrium statistical mechanics is no defense from the 
standpoint of foundations research. Indeed we shall demonstrate in future 
publications that the same established formulas of statistics can also be 
derived from the more rational choice of a logical spectruna of quantum 
states to be developed here. 

2. SEVEN QUANTAL MISUNDERSTANDINGS 

Before embarking on a detailed investigation of the better arguments 
in behalf of the standard logical spectrum, we digress to record for future 
reference seven popular statements of quantum dogma the influence of 
which has, as we shall see below, retarded progress in the foundations of 
statistical mechanics. All of the statements have been discredited or disproved 
in previous papers ~-1~ by us and by other writers. Yet they are all still 
taken literally by many uncritical theorists, and comprise, along with a few 
other quantum shibboleths, the conventional parlance of quantum physics. 

In this section we present the statements with a minimum of commentary, 
saving until later certain intricate criticisms particularly germane to the 
problem of choosing a logical spectrum. 

(A) Every quantum system at any time "is in" or "has"  a pure quantum 
state [ ~ ) .  

(B) hnmediately after a measurement of some nondegenerate 
observable A, the measured system is in the state I ,~),  where 
A ] ~,)  = an [ an), an being the datum that emerged in the act 
of measurement. 

Statement (B) is of course the infamous projection postulate, often 
invoked in theoretical discussions of filtration Gedankenexperiments in 
order to establish the individual pure state assignments mandated in (A). 
We shall not dwell upon (B) in this paper. Let it be noted, however, that (B) 
has been assiduously scrutinized on both physical and philosophical grounds, 
with the conclusion that it is, at best, a statement that is rarely correct in 
any sense whatever. Logically it is therefore false; moreover, when (A) is 
repudiated and replaced (cf. Section 4) by a correct statement concerning 
quantal state preparation, (B) then becomes, if taken literally, an irrational 
attribution of an ensemble property to an individual element of the ensemble. 

(C) If  a measurement of A is performed upon a system in the state 
] ~ ) ,  the probability that the system will be found in state i c~n> 
immediately after the measurement is [<c~ n [ W)I 2. 

825/6/2-3 
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It is apparent at once that (C) is compatible with (A) and (B) and that it 
will be left dangling inconsistently among the quantum axioms when (A) 
and (B) are renounced. Fortunately, the essential physical content of (C) 
can be preserved by a modification we shall discuss later. 

(D) Consider these two state propositions about a given system J :  

(1) .Y is in the state ¢1. 

(2) ~ is in the state ¢2. 

These propositions are mutually exclusive if and only if 
<¢1, ¢2> = 0. 

We shall discover below that this statement is commonly used in argu- 
ments leading to the standard logical spectrum in quantum statistics. 
Supposedly it follows, or at least acquires a measure of reasonableness, 
from the (erroneous) statement (C). 

(E) The spectral expansion of a density operator, 

has this physical interpretation: The true state I~>  is unknown, 
but is believed to be one among the mutually exclusive possibilities 
in the orthogonal eigenvector set {I ¢~>}. The eigenvalues {w,,} 
are (subjective) probabilities reflecting degrees of rational belief 
in the respective alternatives {[ Cn>}. 

There is a limited sense in which this statement, carefully interpreted, 
could be true; but as a general principle, (E) is unacceptable because it 
incorporates (erroneous) statements (A) and (D). Moreover, it denies to 
the density matrix its fundamental status in quantum theory by regarding 
its eigenvalues only as probabilities of the subjective type used in information 
theory and statistical physics. Thus the density matrix becomes a construct 
which displays a blend of the "subjective" probabilities {w~} and of the 
"objective" probabilities which inhere in the pure quantum states {¢~}. This 
makes the density matrix appear to be a fixture of quantum statistical 
mechanics but not of quantum mechanics itself, a view to which we shall 
take exception below. 

(F) If A is measured upon a system in state L T> but the result is not 
yet known, then this postmeasurement state of ignorance may be 
expressed by the density operator 

f~ 
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This is just a theorem which follows immediately from the (erroneous) 
statements (B), (C), and (E). 

(G) The quantal counterparts to various key mathematical constructs 
of  classical statistical mechanics are given by these associations: 

Construct Classical representative Quantal counterpart 

I. System Phase space 

II. State of system Phase point (q, p) 

III. Observable Function of phase 

IV. Ignorance of true state Gibbsian coefficient of 
probability of phase p(q, p) 

Hilbert space 

Ray l 7 j> 

Hermitian operator with 
complete orthonormal 
eigenvector set 

Density operator 

These correspondences have long been used to motivate the traditional 
formulation of quantum statistical mechanics as a theory analogous to the 
original Gibbsian statistics. Such an analogical approach based on Gibbs a4) 
is an excellent idea, but only if the analogies are the correct ones. That  this 
is not the case in the conventional tabulation given above may be seen by 
observing that analogy II  reiterates statement (A) and analogy IV embodies 
the contents of statements (D) and (E). In Section 4 we present a corrected 
set of analogs. 

This completes our somewhat iconoclastic summary of the common 
misstatements of quantal principles which have become embedded in the 
foundations of  quantum statistics. We turn next to the literature of infor- 
mation-theoretic statistical mechanics in order to show just how these mis- 
understandings have contributed to the traditional choice of  a logical 
spectrum in quantum statistics. 

3. DERIVATIONS OF THE STANDARD LOGICAL SPECTRUM 

The standard logical spectrum of propositions which assert that the 
system is in a state ] ¢~>, the {I ¢~>} constituting a complete orthonormal 
set, is derived in the literature from considerations based upon various 
combinations of the statements (A) (G). To expose clearly the extent to 
which these statements have been implanted in the foundations of  statistics, 
we review in this section the lines of reasoning of four contemporary writers 
who have attempted to develop those foundations with admirable rigor. All 
of these authors base statistical mechanics on information theory, and with 
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that general point of view we have no quarrel. Indeed we believe with them 
that the information-theoretic approach is the best foundation for statistical 
physics, both rationally and didactically, in that it captures the essence of 
that discipline without resorting to inconclusive, even irrelevant arguments 
about ergodicity and time averages. 

Jaynes, (15-~7) the founder of information-theoretic statistical physics, 
selected the standard logical spectrum only after a very thorough analysis 
of the density matrix. In his original paper on quantum statistics, that analysis 
began with the explicit assertion that, a6) "it is possible to maintain the view 
that the system is at all times in some definite but unknown pure state...." 
This is of course just the statement we called (A). Jaynes then considered 
expansions of the density operator which are not necessarily spectral and 
which he termed "arrays." (Years before, Schr6dinger (~9) had also studied 
such expansions in an investigation of tremendous, if not widely recognized, 
significance for the foundations of quantum mechanics.) 

An array can be represented by a density operator in the form 

p = }2 wi i ¢i)~¢~ L O) 
i 

where {[ ¢i}} is not necessarily an orthogonal set but all wi >~ O and 
~2~ wi = 1. Jaynes interpreted such an expansion as an elegant means for 
describing a set of alternative pure states {I ~i}}, one of which was tacitly 
regarded as the true unknown state, the corresponding {wi} being the infor- 
mation-theoretic probabilities for the various alternatives. This is essentially 
statement (E) generalized to nonspectral expansions. 

Finally, Jaynes discarded all but the spectral expansions, in effect 
adopting statement (E) as given above. The reasons given for doing this 
revolved around his search for a suitable expression for information-theoretic 
entropy I in quantum mechanics. In general, once a logical spectrum is 
chosen, I is defined in terms of the associated set of probabilities wi by the 
formula 

I ~  - - ~ w i l n w i  (2) 
i 

But, according to Jaynes, (~s) this procedure "would not be satisfactory 
because the wi are not in general the probabilities of mutually exclusive 
events. According to quantum mechanics, if the state is known to be ¢ i ,  
then the probability of finding it upon measurement to be Cj, is [(¢5 [ ¢~}12. 
Thus, the probabilities w~ refer to independent, mutually exclusive events 
only when the states ¢~ of the array are orthogonal to each other, and only 
in this case is the expression (2) for entropy satisfactory." 

Thus Jaynes arrived at the standard logical spectrum of orthogonal 
pure states by an argument based on statement (D) as derived from state- 
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ment (C). It should perhaps also be mentioned for completeness that Jaynes 
appended to this chain of reasoning the interesting aesthetic observation 
that (2) attains its minimum value when (1) is a spectral expansion, so that an 
orthogonal set {~bi} "provides, in the sense of information content, the most 
economical description of the freedom of choice implied by a density 
matrix."~s) 

Katz, in his fine monograph on statistical mechanics, strongly exploits 
the set of analogies described in statement (G). The choice of the standard 
logical spectrum of orthogonal states is quickly disposed of in one terse 
paragraph] 2°) which invokes in sequence the quantal misstatements we have 
labeled (A), (C), and (D). Immediately thereafter the density operator is 
introduced, with an interpretation of the kind described in statement (E). 

Another noteworthy book devoted to the information-theoretic foun- 
dations of statistical mechanics is by Hobson, who also makes much of the 
analogies in statement (G). His thorough analysis C~1~ of quantum mechanics, 
which culminates in the standard logical spectrum, is based upon every one 
of the conventional but erroneous tenets (A)-(F), including in particular the 
projection postulate (B). Hobson recognizes two quantal situations to which 
information theory might be applied. In case 1, IT> is unknown, the 
observable A is measured, and the measurement yields some data D. There 
is a semantic difficulty here, for if in fact A were measured, the result would 
be some datum an • However, presumably there has been an A-measurement 
complete with the projection process (B), but for some reason an is not known 
though some evidence D has become available to aid in guessing at the 
measurement result. Statement (B) thus serves to provide the standard 
logical spectrum of orthogonal states, in this instance the orthogonal eigen- 
vectors of the measured (?) observable A. In case 2, ] T> is known, A is 
measured, and the measurement yields nothing. Here the density operator 
chosen to represent such a state of ignorance is the one given in statement (F), 
the post-measurement, precognizance density operator of traditional measure- 
ment theory. Again the logical spectrum turns out to be the standard one, 
again provided by the projection postulate (B). 

We conclude this review of arguments leading to the standard logical 
spectrum with a look at the excellent textbook by Baierlein. To our knowledge 
this is the only book on information-theoretic quantum statistics that has 
been written for students new to statistical physics. Thus the argument (22) 
by which Baierlein introduces the standard logical spectrum is necessarily 
simplified. He simply announces that thermal equilibrium is of special 
interest and posits that the eigenstates of energy, being stationary, constitute 
the natural list of mutually exclusive and exhaustive alternatives. However, 
since degeneracy in the Hamiltonian would lead to an infinity of nonortho- 
gonal eigenstates, Baierlein is forced to augment this line of reasoning by the 
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statement (D) in order to obtain the standard logical spectrum. As always, 
the statement (A) is lurking in the background. 

4. T H E  S E V E N  M I S S T A T E M E N T S  C O R R E C T E D  

Having established that the seven misstated "principles" of quantum 
mechanics are taken quite literally in even the best modern discussions of 
quantum statistics, we next consider the quantally correct versions of these 
statements. It will then become possible to make a very natural and rational 
decision as to what set of quantum state propositions should be the logical 
spectrum in quantum statistical mechanics. In the following analysis, the 
correction or nearest related replacement for each of the original misstate- 
ments will be denoted by the corresponding primed letter. 

We have reported elsewhere (G) the details of one investigation of the 
theoretical consistency of statement (A). The conclusion that (A) cannot be 
upheld has also been reached independently by others (8-m for various 
reasons. A significant clue to the irrationality inherent in (A) is the fact 
that physically L 7I) is a catalogue which lists an arithmetic mean value for 
each of the quantal observables associated with the system of interest. That 
makes the true empirical referent of [ ~ )  not an individual system but a 
statistical ensemble of identically prepared systems. This essential quantal 
ensemble is not an imaginary Gibbsian ensemble of replicas, but an actual 
collection of repetitions of an experiment that can be reproducibly prepared. 
Thus in the final analysis I ~ )  is not associated directly with a single system; 
instead it describes a reproducible mode of preparation for systems. But 
this point, which some may take to be merely semantic, is only the beginning 
of the trouble with (A); for there exist reproducible preparation schemes 
which can generate ensembles whose quantal mean values cannot be sum- 
marized by any single k ~ )  whatever. For example, consider the use of an 
oven with a small aperture as a molecular beam source. The collection of 
molecules emerging from the orifice constitutes a quantal ensemble which 
must be described as a Maxwell-Boltzmann mixture nonequivalent to any 
one state vector. Similarly, the ensemble of electrons generated by a hot 
filament cannot be characterized by any single [ ~ ) .  Hence there are both 
theoretical and empirical reasons for replacing (A) with a statement (A') 
that admits preparations characterized by a 17t) only as an interesting, 
probably seldom realized, special case: 

(A') With every repeatable empirical method of preparation of a system, 
there is associated a density operator p, the quantum state. 

With regard to the projection postulate (B), there is really no correct 
universal statement that can replace it; and none is needed for complete 
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and consistent treatments of either basic quantum mechanics or quantmn 
statistics. However, the following statement could be regarded as an 
innocuous, but at least correct, substitute for (B): 

(B') It is conceivable that measurement.of a nondcgenerate observable 
A might be performable in such a way as to leave the postmeasure- 
ment ensemble of measured systems prepared in the manner 
characterized by the density operator 

n 

where P0 is the density operator of the premeasurement pre- 
paration. 

Statement (C) occurs, with the phraseology exactly as given in Section 2, 
in so many places that the reader may find our declaration that (C) is wrong 
to be radically eccentric. After all, is not statement (C) the most widely used 
of all quantum principles, the indispensable link between formalism and 
data that makes the theory physically meaningful ? Is it not the basis, for 
example, of all calculations concerning scattering cross sections and spectral 
intensities ? 

To these rhetorical objections, we would reply first that the phrase 
"will be found in the state ] c%} immediately after measurement" has become 
theoretically inconsistent with the replacement of (A) by (A'), since state 
vectors are not attributable to individual systems. Furthermore, the phrase 
is easily seen on reflection to be physically meaningless anyhow because 
experimenters do not apprehend Hilbert vectors; they gather numerical data. 
Thus statement (C), taken literally as it was in arguments leading to the 
standard logical spectrum, cannot possibly be the link between theory and 
experiment, or the basis for cross-section computations. The statement that 
actually plays this role in quantum physics is the following: 

(C') If  a measurement of A is performed upon a system prepared in 
the manner characterized by quantum state p, the probability 
that the measurement will yield numerical datum a~ is { ~  r P i cx~}. 

The famous formula given in (C) is of course also a corollary of (C'): 
if p = ]~}<7  JI, <c%lp lc~)  = 1@%1~}]2. [Like (C), (C') is easily 
generalized to include degenerate eigenvalues.] Statement (C') is related in 
an obvious way to the general trace formula for quantal mean values: 

-- Tr(pA). 
The reason that the difference between (C) and (C') is rarely emphasized 

seems to be that in ordinary applications of quantum mechanics either state- 
anent induces the practical physicist to perform the same calculations anyway. 
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Nevertheless our insistence upon the distinction between (C) and (C') is not 
meticulous pedantry; for that distinction will be seen to have a profound 
impact upon the foundations of quantum statistics. 

Statement (D), grounded as it is in the discredited literal interpretation 
of (C), is now insupportable. A corrected version would read as follows: 

(D') Consider these two state propositions about a given system 5~: 

(1) 50 is prepared in the manner characterized by pl • 

(2) 5 P is prepared in the manner characterized by p2 • 

These propositions are mutually exclusive if and only if p~ ~ P2 • 

This revision of (D) is a drastic one which requires further analysis. We 
shall return to this point in Section 5 when we formulate a new logical 
spectrum for quantum statistics. 

Statement (E) embraces what might be called the ignorance interpretation 
of the density operator. According to this view, the density operator lacks 
the fundamental status in quantum theory that is granted in statement (A') 
but is instead merely an artifice useful in coping with situations where the 
true ] T )  is unknown. A full critique of this ignorance interpretation of p 
would involve in effect all of the same arguments given in investigations 
referred to above in connection with the overthrow of (A) by (A'). Here we 
shall consider only one illustration, drawn from statistical physics, of the 
difficulties encountered when (E) is taken to be a general principle. 

Suppose we know, concerning a certain laboratory preparation scheme 
for a system of interest, that a measurement of energy H following such a 
preparation invariably yields the eigenvalue h. Let h be co-fold degenerate; 
its associated eigenspace will then be co-dimensional and spanned therefore 
by any set of co orthogonal eigenvectors belonging to the eigenspace. Let 
{¢~} be such a set. It is an established principle in statistical mechanics 
that the density operator 

/~ = 1 ~ I ¢ , ) ( ¢ , 1  (4) 
co ' n = l  

is the "best" quantum state assignment to make under these circumstances. 
This we do not challenge. Consider, however, the usual reasoning given to 
justify (4). The argument is based on (A), (D), and (E): The system has some 
state I 7J); since the same energy is always measured, that state must be in 
the corresponding eigenspace; only co elements of that eigenspace can be 
mutually exclusive; in the absence of additional knowledge, information 
theory assigns equal probability to each mutually exclusive alternative; and 
this state of ignorance is represented by (4). 

Even if we neglect momentarily to replace (A) by (A'), the abandonment 
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only of (D) demolishes this traditional derivation of (4). To see this, let {X~} 
denote another orthogonal set spanning the eigenspace of h; we then have 
two expansions of t~: 

=_1 ~ I¢,,><¢~1=--1 ~ I x&<x~l (5) 
09 n = l  60 n = l  

If we now apply the ignorance interpretation (E), we must already 
wonder if it is entirely consistent to say that each Cn has subjective probability 
l/a) of being the true state while at the same time it can be said, with the 
same justification, that each X~ has also subjective probability 1/~o of being 
the true state. As long as (D) is believed, it is more or less plausible to argue 
that these two contradictory ignorance interpretations of/~ cannot properly 
be considered simultaneously. However, we have seen above that (D), 
having been based upon a literal reading of (C) rather than on the actual 
quantum mechanical principle (C'), is itself indefensible. Therefore the 
Pandora's box of nonspectral expansions of fi may now be opened, with the 
consequence that (E) quickly becomes unpalatable. 

For example, let W1, W2 be unequal fractions whose sum is unity. We 
may then write 

/~ : W1 i ] ¢~>(¢., I +  W2 ~ ]X,~)<X,~ [ (6) 
CO r~=l (~ ~=I 

The ignorance interpretation must now be that ¢~ has subjective probability 
WI/~ and Xn has a different subjective probability W2/~; but this is the same 
> that was supposed to represent I/~ probability for each ¢~, or for each X .... 

These waters of (E) sans (D) may be muddied still further by applying 
an almost forgotten theorem due to Schr6dinger. <19) If a spectral expansion 
of p is given by 

P = ~ P ~  I ¢,~><¢,~ I (7) 

then the same density operator may also be resolved into (not generally 
orthogonal) constituents as follows: 

p = ~ w. I ¢.><':}~ [ (8) 

where 

w,~ = ZPk  T g.~ I ~ and ¢,~ = ~ g,~7~ "~/~ k , (ZzP~ I g,~z 12) ~/z ~b~ (9) 

The quantity g ~  is the nth component of a vector g~ ; the set {g~} contains 
one element for each nonzero p,~ and it is orthonormal. For every such set 
{gk} there is an expansion of the form (8), wherein the associated coefficients 
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(wn} are positive fractions summing to unity and hence representing, in an 
ignorance interpretation, the subjective probabilities for corresponding 
states {¢n}. The { gk} may be of any dimensionality sufficiently high to permit 
formation of an orthonormal set with the requisite number of elements. 

Let us apply this theorem now to the density operator given in (4). 
Consider the simple case w -- 2, so that p,~ = l/co = l/2. As a typical 
example, we choose the following components for gt and g2 : 

gl: , g2: ~ _ (10) 

Obviously these are orthonormal vectors, as required. Substituting into (8), 
(9), we obtain immediately an alternative expansion for fi: 

t3 = (1/6) 1 ~ ) ( ¢ ~  i ~- (5/12) ~2)(¢2 I + (5/12) 1 ¢5)(¢8 I (11) 

where 

= ¢ 1 ,  ¢2 = + ¢ 2 ,  ¢3 = - \ ¢2 

For comparison, the spectral expansion of fi has in this special case 
the form 

fi = ½r ¢1)(¢~ I + ,}[ ¢2)(¢2 [ (12) 

The state vectors {¢~} are not orthogonal, but without (D) they must be 
regarded as three distinct alternatives. According to the ignorance inter- 
pretation of f3, (11) would mean that the subjective probability for ¢~ ( =  ¢~) 
to be the true state is 1/6 while (12) leads instead to the assignment of sub- 
jective probability 1/2 to the very same state ¢~ (=Ca). Moreover, it should 
be noted that this single f3 seems to represent, in the ignorance interpretation, 
equal probabilities for one set of alternatives and unequal probabilities for 
another set of alternatives. Yet this /3 has the form (4) whose traditional 
"derivation" sketched above purported to assign equal probability to every 
mutually exclusive alternative. 

The escape from this quagmire of contradictions is remarkably straight- 
forward. All that is needed is the abandonment of the ignorance interpretation 
of the density operator. In this way the density operator attains its proper 
place in the hierarchy of quantal constructs as expressed in statement (A'). 
In the short the density operator is the fundamental state construct in basic 
quantum mechanics, not a fixture of statistical physics to be used to describe 
a lack of knowledge. This leaves the question as to what correct quantal 
statement should replace (E). Here is the closest possibility: 
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(E') The mathematical resolution of a density operator p, 

p = ~ w~pn 
n 

where each On is a density 
fractions summing to unity, 
ensemble characterized by 

(13) 

operator and the {w~} are positive 
has this physical interpretation: An 
p may be prepared by combining 

subensembles characterized by the {p~} with respective weights 
{w~}. Conversely, it is at least formally possible to regard a given p 
ensemble as being divisible into subensembles {p~} with respective 
weights {w~}. 

It is apparent from our considerations based on SchrSdinger's theorem 
that the ensemble decompositions contemplated in (E') are not unique. We 
must also underscore the qualifier "formally" in the converse portion of (E'). 
The mere mathematical existence of a decomposition (13) does not imply 
that there are actual selection procedures by which an ensemble generated 
by repeatable preparation of the type p could in fact be partitioned into those 
theoretical subensembles individually generated by repeatable preparations 
{p~}. Whether such a partitioning scheme actually exists in any given situation 
is a profound question that has seldom been recognized; to our knowledge, 
it is being carefully studied by only a few scholars./23) 

In any case, (E') has little to do with statistical mechanics, since the 
quantities {w~} are no longer interpreted as subjective probabilities for a 
logical spectrum of alternative states. This does not mean, however, that 
density operator expansions are useless to statistical physics. In fact, even 
in the absence of (E) as a quantal principle, there are distinctly statistical 
applications for the density operator formalism. We shall explore this point 
in a subsequent paper devoted to new information-theoretic foundations for 
quantum statistics. 

We come next to the erroneous theorem (F), which was based on (B), 
(C), and (E). The correct substitute for (F) is the same as that for (B) since 
(A') relates the quantum state to the ensemble rather than to the individual 
system: 

(F') Same as (B'). 

In light of (E'), it would now be possible to augment (B') so that it 
refers to mathematically conceivable decompositions of the postmeasurement 
ensemble into pure ] ~ } ( ~  I subensembles. In this way, (B') could be made 
to resemble its incorrect antecedent (B) a bit more closely; but this would 
be an uninteresting accomplishment in the present context. 

Finally there remains the analogical statement (G). To obtain (G'), the 
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quantal counterparts column must be modified to reflect the true structure 
of modern quantum mechanics, as expressed in particular by statement (A'). 

(G') The quantal counterparts to various key mathematical constructs 
of  classical statistical mechanics are given by these associations: 

Construct Classical representative Quantal counterpart 

I. System Phase space Hilbert space 

II. State, or preparation, Phase point (q, p) Density operator p 
of system 

III. Observable Function of phase Hermitian operator with 
complete orthonormal 
eigenvector set 

Subjective probability 
distribution defined over 
the density operators 

IV. Ignorance of true state Gibbsian coefficient of 
probability of phase 

5. T H E  M O S T  GENERAL LOGICAL S P EC TRUM OF QUANTAL 
STATE P R O P O S I T I O N S  

Having corrected each of the quantal misunderstandings from which 
the standard logical spectrum has traditionally been derived, we may at 
last inquire as to whether that standard set of state propositions is in fact 
exhaustive and mutually exclusive. 

That it is not exhaustive may be seen immediately from (A') or (G'). 
The complete quantal list of possible state preparations includes cases for 
which p is not a projection operator and hence no I ~ )  exists; in other words, 
the list embraces not only all the pure states--one for each ray in Hilbert 
space- -but  also all the mixed states, and none of the latter can be adequately 
described by any single I ~ ) .  Thus a set of state propositions of the form, 
" J  is prepared in the manner characterized by p = [ ~b~)(~b,~ [," may have 
every element false even if the set {1 ~b~)} contains every ray in Hilbert space. 
I f  every element of  a set of propositions may be false, that set is of course 
not exhaustive. 

It  is true that the propositions of the standard logical spectrum are 
mutually exclusive, but not for the reason usually given, viz., that (C) implies 
(D). The important  idea is rather that the quantum state p is a construct 
whose empirical meaning is invested entirely by the statement (A') together 
with the quantal trace formula for mean values: A = Tr(pA). Thus two 
preparations Pl ,  P8 are distinguishable if and only if 

Tr(plA) ~ Tr(p2A) for some observable A (14) 
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I f  they are distinguishable in this sense, they are certainly mutually exclusive. 
It cannot be simultaneously true that a preparation is characterized by Pl 
and also by p2 ; for if that preparation were repeated, generating an ensemble 
from which to extract by measurements a collective of A-data, the resultant 
mean value could not be both Tr(plA ) and Tr(p2A ). The condition which 
asserts that two quantum states pl , P2 are not mutually exclusive is therefore 

Tr(plA) = Tr(p2A) for every observable A (15) 

In the absence of superselection rules, (15) implies that Pl and p2 are the same 
operator. We conclude accordingly that two quantum states p~, pz are 
mutually exclusive if and only if they are unequal, which is just the statement 
(D') given earlier. [When there are superselection rules, (15) may hold even 
if Pl and p2 are unequal; but in that case (A') should be modified so that it 
associates with each preparation an equivalence class of density operators. 
Two state preparations would then be mutually exclusive if and only if 
they were characterized by two different equivalence classes of density 
operators.] 

In view of (D'), it is naturally true that two orthogonal state vectors 
represent mutually exclusive quantum states, not because they are orthogonal 
but because they are not "parallel." The spurious argument that orthogonality 
is related to mutual exclusivity has already been identified as a by-product 
of misstatement (C). 

We conclude that the standard logical spectrum is inconsistent with 
correct quantal principles in two ways: (1) It is not exhaustive, and hence is 
not even a valid logical spectrum; and (2) its elements are not only mutually 
exclusive of each other but also, contrary to what is commonly claimed, 
mutually exclusive of many other states as well. The most general logical 
spectrum of quantal state propositions is readily determined by (A') and 
(D') without reference to the other statements which are concerned with 
measurement theory and ensemble decomposition. It is simply the set of 
all propositions of this form: System .90 has been prepared in a manner 
characterized by p. For this set of propositions to be exhaustive, there must 
be one such proposition for each different density operator p. Since unequal 
density operators make distinguishable predictions, the set is also mutually 
exclusive, and hence it constitutes the true logical spectrum of quantal state 
propositions. 

As long as the contemporary basic quantum theory with its irreducibly 
probabilistic interpretation continues to be accepted as the fundamental 
mechanics of nature, then this new logical spectrum should replace the 
standard one in serious developments of statistical quantum mechanics. 
A new mathematical framework for quantum statistics based on the correct 
logical spectrum will be constructed in a forthcoming series of papers. 
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