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In previous publications we have criticized the usual application o f  information 
theory to quantal situations and proposed a new version o f  inJbrmation-theoretic 
quantum statistics. This paper is the first in a two-part series in which our new 
approach is applied to the fundamental problem o f  thermodynamic equilibrium. 
Part 1 deals in particular with informational definitions o f  equilibrium and the 
identification o f  thermodynamic analogs in our modified quantum statistics 
formalism. 

1. A N E W  F O R M A T  FOR I N F O R M A T I O N - T H E O R E T I C  
Q U A N T U M  S T A T I S T I C S  

In two recent articles, we have criticized the or thodox information-theoret ic  
foundat ions  of quan tum statistics m and indicated how to develop a correct 
informat ional  approach to quanta l  situations/2/ The present paper and its 

sequel describe the application of our new version of information-theoret ic  

q u a n t u m  statistical mechanics to the fundamenta l  problem of thermal  
equil ibrium. Although we anticipate no final results at var iance with 

empirically established formulas of statistical theormodynamics ,  we do expect 
to present new derivations which are not  subject to the serious theoretical 

objections we have raised against former treatments.  

In the customary un ion  of quan tum mechanics and informat ion  theory, 
the density operator p is given an ignorance  in terpre ta t ion ,  according to which 

the eigenvalue spectrum of p is a subjective probabil i ty distr ibution defined 
over the associated eigenvectors, one of which is assumed to be the state 

1 Work supported by a grant from Research Corporation to J. L. P. 
Department of Physics, Washington State University, Pullman, Washington. 

233 

© 1977 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this 
publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permismon of 
the publisher. 



234 Park  and Band 

vector describing the true but unknown quantum state. The information- 
theoretic entropy, or missing information function, is defined by 

I =  - - k T r p l n p  (1) 

where k is an arbitrary constant. The best-guess density operator/3 is then 
taken to be the one that maximizes (1) subject to whatever constraints 
define the physical situation. In the aforementioned articles, we scrutinized 
this approach and found it to be incompatible with the foundations of 
quantum mechanics. We then suggested the following new format for the 
application of information theory to quantum mechanical situations. 

According to general quantum theory, there exist many preparations of 
state that are describable by no state vector whatever; thus the most that can 
be asserted a priori about an unknown quantum state is that it is surely 
represented by some density operator p. The domain N of density operators 
consists of all Hermitian, nonnegative-definite, trace-unity operators on 
Hilbert space g f  of the system. If 5a denotes the space of Hermitian operators 
defined on ~gf, then ~ is a convex subset of 5e. As in past work, we use the 
term quorum to denote a linearly independent set {Qj}, where each Q5 is 
an element of 5('. Thus every operator of L~ ° and a fortiori every p in 9 may 
be expressed as a linear combination of quorum elements: 

p{qj} = ~ qjQj (2) 
J 

We call the coefficients {qj} quorum parameters and usually regard them as 
coordinates in an auxiliary space 5¢'. Points {qj} corresponding to density 
operators lie in a convex domain 9 '  within ~ ' .  

Let w{qj} be a subjective probability distribution defined over 9 ' .  If 
the true quantum state p{qj} is unknown, then information theory can 
provide the distribution w{q~} that best characterizes our incomplete 
knowledge. Since 9 '  is a continuum, the missing information functional <3/ is 
defined by 

I ----- --~c f_, H dqj w{qj} ln(w{@/p{qj}) (3) 
' 7 

where • is an arbitrary positive constant and p{qj} is the prior probability 
distribution. Hobson <4t has proved from several very reasonable infor- 
mational postulates that - - I  is the unique measure of the information gain 
associated with the replacement of a prior distribution p{qj} by a posterior 
distribution w{qj}. When w{qj} is unconstrained except by normalization, 
the nonpositive functional I attains its maximum value (zero) when 
w{qj} = p{qj); thus p{qj} is the subjective probability density over ~ '  that 
describes total ignorance concerning the true state p of the system. 
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The fundamental rule that we have proposed for information-theoretic 
quantum statistics may now be expressed as follows. Maximize (3)--not (l)--  
subject to whatever constraints define the physical situation; then use the 
result zb{qj} to form the best-guess density operator by averaging over 9 ' :  

= f~, ~ dq, ~{q,} p{q,} (4), 

Our present objective is to apply this rule to the problem of thermal 
equilibrium. For a thorough analysis of the philosophical foundations of 
this new approach, the reader is again referred to our earlier articles. (1,2~ 

In this paper (Part I) we discuss informational definitions of equilibrium 
and show how to identify the standard parameters of equilibrium thermo- 
dynamics within our modified quantum statistics formalism. The sequel(Part II) 
will consider the problem of selecting the prior distribution p{%} and then 
complete the derivation of the best-guess ~ for thermodynamic equilibrium. 

2. T H E  CASE OF W E A K  E Q U I L I B R I U M  

Consider a system whose Hamiltonian H depends on a single known 
external parameter V. Let the system be prepared in the manner that would 
be characterized in equilibrium thermodynamics by the extensive para- 
meters (U, V), where U denotes internal energy. Such thermodynamic 
knowledge is translated into information-theoretic quantum statistics by 
imposing upon the subjective probability distribution w{q~} the following 
constraint: 

(H) = (~, [I dqj w{qj} H{qj} = U (5) 
J 

where 
N{qj) _= Tr[p{qj} H(V)] (6) 

We call the problem of maximizing the 1 of Eq. (3) subject to constraint 
(5) the weak equilibrium case to distinguish it from a situation to be treated 
in the next section, where more than just (5) is considered known in advance. 
In orthodox quantum statistics based upon the ignorance misinterpretation 
of p and the quantally incorrect missing information function (1), the counter- 
part to constraint (6) is simply 

Tr(pH) = U (7) 

Maximization of (1) subject to (7) leads in a familiar derivation (5) to the 
canonical density operator 

exp [-- H( V)/k T(U, V)] 
= Tr exp[--H(V)/kT(U, V)] (8} 
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as the best information-theoretic description of a system whose thermo- 
dynamic state is (U, V). The temperature function T(U, V)is uniquely 
determined by (7). 

The practical utility of the canonical density operator (8) can hardly 
be challenged. Experience amply demonstrates its empirical potency. 
Although we have repudiated the orthodox bases of quantum statistics, 
we cannot dismiss the scientific achievements of that discipline, which follow 
from myriad well-known applications of (8). Providing a new derivation of 
the canonical density operator must therefore be a major goal of the present 
study. 

The maximization of (3) subject to the constraint (5) and to the normali- 
zation constraint on w{qj} is an elementary problem in the calculus of 
variations which bears strong mathematical resemblance to standard mani- 
pulations in ordinary statistical physics. The result is 

z~{qj} = P{qJ} exp{--fi(V, 1/) Tr[p{qj} H(V)]} 
R(v, v) (9) 

where R and/? are uniquely determined by the constraints. Expressed as a 
function of/?(U, V) and V, R has the form 

R(U, V) = f~, ~ dq, p{qj} exp(/3H{q~-}) (10) 

where H{q~}, a function of V, was defined in (6). 
The best-guess density operator in the weak equilibrium situation is 

therefore 

f>" [IJ dq~ p{q~}[exp(--flH{q~})] p{qj} 
fi = f>' [Ij dq~ p{q~} exp(--/3H{qj}) (11) 

To identify in the present theory statistical analogs to basic thermo- 
dynamic parameters, we employ the usual approach introduced by Gibbs (6) 
but applicable as well to other forms (7~ of statistical mechanics. Along a 
quasistatic path defined by a continuous sequence of (U, V) points, the 
differential of the quantity R(U, V) is given by 

dR = [f~, 1-[ dq, p{qj}(--H{q,})exp(--~H{qj})] dl3(U, V) 
J 

-- [~, H dq, p{qj}(--/3 ~ ) e x p ( - - f i H { q , } ) ]  dV 

= - -R  <R) dE(U, v) + 5R . - -  d v  (12) 
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The expectation value (H)  of the quantal mean H of H has already 
been identified with U. The expectation value (--~3H/O V)  may be written out 
a s  

P ~- (--~H/O V) = ~Tr[fi(--OH(V)/~ V]) (13) 

which indicates that ( - -~H/e V)  is the thermodynamic analog of the intensive 
parameter P associated with the external extensive parameter V. If  V were 
volume, - -~H(V) /~V would be the quantal pressure operator, and thermo- 
dynamic pressure P would thus be identified statistically as the expectation 
value of the quantal mean of --~H(V)/OV. 

With these identifications, (12) takes the form 

dR/R = -- U d E 4- tiP dV (14) 

Consider next a quantity D defined by 

D=-- l n R - t -  U~ (15) 

Differentiating (15) and substituting (14), we obtain 

dD/~ = P dV + dU (16) 

Comparison of (16) with the T dS equation of thermodynamics then gives 

dD/~ = T d S  (17) 

from which we make these correspondences between fi and D and thermo- 
dynamic temperature T and entropy S: 

lift = cT  (18) 

cO = S - - S o  (19) 

The proportionality constant c determines the units of measurement for T 
and S, and So is a constant of integration. 

It is now easy to establish a connection between thermodynamic entropy 
S and the constrained maximum value [ of information-theoretic entropy. 
Substituting (9) into (3), we obtain 

[ =  KD (20) 

where D is defined by (15)o It then follows from (19) that 

[ =  (x /c ) (S- -So)  (21) 
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Thus ] and S could be made numerically equal up to an additive constant by 
adopting as a convention in quantum statistics the following harmless 
redefinition ~f missing information to replace (3): 

I ~ --c f_, I-I dqj w{q,} ln(w{q,}/p{q,}) (22) 
j ;  

A thermodyrmmic argument to determine Sa can be based on the third 
law in the form 

lira S = 0 (23) 
T-~0 

An expression for S as a function of T and V is obtained by combining 
(15), (18), and (19): 

S = e In R + (U/T) q- So (24) 

where 

and 

R(T, V) =: f~, ~ dq, p{q,} exp(--R{qj}/cT) 

exp(- {q )JcT) 
v r, v) = f 13 dq,.p{q;,' R(7, V) aN 5- 

(25) 

(26) 

However, we are unable to apply (23) to (24) and thus find So, because 

Therefore, if Eq. (27) could be proved, our analysis would he complete, 
except for some minor generalizations to several external parameters, 
several constraints, etc. Unfortunately, there are at least two barriers to 

fN" •j dqj p{qj}{exp[--Tr(p{qj} H)JcT]} p{qj} exp(--H/kT) 
)'N" 1-I5 dq~ p{qj} exp[--Tr(o{qj} H)JcT] ~ Tr exp(--itjkT) (27) 

the integrals (25) and (26) involve the unknown prior distribution p{q~} 
in an essential way. 

Ideally, we should now be near the conclusion of our program of erecting 
quantum statistics upon a philosophically sound foundation. We have 
avoided the quantally untenable hypotheses which tarnish the standard 
approach, and have for the first time correctly applied information theory to 
a quantum system whose mechanical state is unknown but whose thermo- 
dynamic state is known to be (/.7, V). If  the resulting information-theoretic 
quantum statistics is valid, then o~r weak equilibrium best-guess (l 1) must 
lead to the same physical predictions as the empirically successful canonical 
density operator (8). A necessary and sufficient condition that these two 
density operators make the same expectation value estimates of the quanta/ 
mean values of every observable is that they be equal; i.e., 
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proving the desired theorem. One is essentially philosophical: The prior 
distribution p{qj}, needed in this continuum problem because of the 
inadequacy of the Laplacian rule of indifference, remains unknown. The 
other obstacle is mathematical: Even if p{qj} were known, we could not 
perform the required integrals because we have no useful analytical 
description of the domain ~ '  and its boundary. It is to be hoped that a 
solution of the mathematical problem will be discovered in future research. 

In Part II of the present investigation we reconsider the prior probability 
question, but in the context of a stronger informational definition of equi- 
librium, to which we now turn. 

3. THE CASE OF STRONG EQUILIBRIUM 

In the preceding section, the term weak equilibrium was used to denote 
an information-theoretic situation in which all that is known are the values 
of thermodynamic parameters (U, V). To call such a state of knowledge 
"equilibrium" is standard practice in statistical mechanics; yet from a 
mechanical viewpoint it seems strange that a description of human ignorance 
could claim to capture the essence of the physical concept of thermodynamic 
equilibrium. After all, to say that a system is in thermal equilibrium is to 
say, with Planck, that the energy of the system cannot be transferred to lift 
a weight without also affecting external systems in some permanent way. It is 
difficult to believe that such a proposition could be equivalent to an infor- 
mation-theoretic assertion that only (U, V) happen to be known. Indeed it 
seems easy enough to imagine systems not in thermal equilibrium for which 
(U, V) are nonetheless the only known parameters. In such cases we may 
reasonably be skeptical about the unproved proposition (27) that would make 
canonical equilibrium the "best guess." 

It would be a mistake, however, to construe criticism of this type as 
an attack upon the information-theoretic approach. Information theory 
only claims to make the best guess t3 compatiblewith whatever is known.Thus 
it is entirely possible that given merely (U, V), the theory may guess a 
that will turn out to have additional properties characteristic of the physical 
meaning of equilibrium. In fact this is precisely what does happen in the 
orthodox version of quantum statistics. When the missing information 
functional (1) is maximized in the weak equilibrium situation, the resulting 
canonical ~ in (8) is observed a posteriori to be itself a time-independent 
form, which implies that all quantal mean values computed from it are 
likewise time independent. Consequently, it can be affirmed that given 
(U, V) only, the best guess would indeed be that the system is in a state of 
very complete mechanical equilibrium. 
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Now, in the present development of information-theoretic foundations 
for quantum statistics, we face a somewhat different logical situation. 
Having disavowed (1), replaced it by (3), and obtained best guess (11) for/3, 
we find that  ~ is indeterminate because p{qj} is unspecified. Thus our "weak 
equilibrium" result does not exhibit a n y  properties that justify even a 
posteriori the usage of the term "equilibrium" to describe a state of knowledge 
in which only (U, V) happen to be known. 

We are inclined therefore to refine somewhat our initial information- 
theoretic characterization of thermal equilibrium. To pursue this, let us 
acknowledge first that a thermal equilibrium situation is indeed at least a 
weak equilibrium situation; i.e., the values (U, V) are, as before, assumed 
to be known. However, a thermal equilibrium situation is more than this; 
it is a dynamical condition in which quantal mean values have ceased 
evolving, and reflect a state of "relaxation" or "disorder" or "stagnation." 
Accordingly, we shall adopt as a part of the statistical definition of thermal 
equilibrium the assertion that the density operator p commutes with the 
Hamiltonian H: 

[p, H] = 0 (28) 

]t is well known that (28) implies constancy in time for the quantal mean 
values of all (except intrinsically time-dependent) observables. Conversely, 
if all quantal mean values are constants of the motion, then the unknown 
quantum state p must satisfy (28). It may well be argued that the total 
quantum mechanical equilibrium contemplated here is too strong a statistical 
analog for thermodynamic equilibrium, since practical observations that 
would serve as tests for thermodynamic equilibrium could involve only a 
small subset of quantal observables. Nevertheless, we adopt the condition 
(28) for its elegance and tractability, and note its conceptual similarity to 
Gibbs' universally accepted definition of an equiblibrium density-in-phase 
as one that is intrinsically time independent. 

We shall henceforth designate as a strong equilibrium case a quantum 
statistical analysis in which both the values (U, V) and the validity of (28) 
are assumed known. If a system is characterized thermodynamically as 
being in thermal equilibrium state (U, V), it seems to us, for the reasons noted 
above, that the proper quantum statistical treatment of that system should 
be based upon the case of strong rather than weak equilibrium. Thus the 
objective of information-theoretic statistical thermodynamics should be 
to derive the canonical density operator (8) as the best guess, given 
not just (U, V), but also the fact that the system is in thermodynamic 
equilibrium. 

To consider in detail the case of strong equilibrium, the new constraint 
(28) must first be converted to a useful form. By an elementary theorem it 
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follows from (28)that  p and H share a common complete orthonormal set 
of eigenvectors. Thus p has a spectral expansion of the form 

p = ~, w,~ ! ¢ ~ ) ( ~  ] (29) 

where the {[ ¢~)} satisfy 

HI ¢~) = £~1 ¢~) (30) 

If  H has an w-fold degenerate eigenvalue, there will be co values of the index 
n for which En is the same number, and the associated {1 ¢~)} will not be 
uniquely determined by (30). The constraint (28) therefore restricts the 
list of possible density operators to a set 9 u  defined as follows: 

9 , ,  = {p({w.}, {I Cn)})l p = Y, w .  ] ¢ ~ ) ( ¢ ~  I ; wn > 0, y ,  w .  = 1; 

{[ ¢~)} a complete orthonormal set of 

H-eigenvectors} 
(31) 

Since all the complete orthonormal sets of H-eigenvectors are con- 
tinuously related by unitary transformations in Hilbert space, and the possible 
{wn} obviously comprise a continuous set, we conclude that 9H is a con- 
tinuous subset of 9 .  In the auxiliary space of quorum parameters {qj}, there 
corresponds to 9H a subregion 9H' of 9 ' .  

TO obtain a quorum parametrization well suited to the strong equi- 
librimn case, we recall that the significance of the points {q~} lies in the fact 
that they correspond uniquely to density operators, so that knowing {qj} 
is tantamount to knowing p. Another set of mathematical objects that will 
uniquely determine p is indicated in the spectral expansion-- the eigenvalues 
{wn} and the orthogonal projectors {I ¢n)(¢~ [}. It follows that there must 
be a one-to-one mapping between the ordinary quorum parameters {qj} 
and the double set {wn}, {I ¢ , ) ( ¢ ~  [}. For  an N-dimensional Hilbert space, 
there are N 2 elements in {qj} and N elements in {w~}. Thus if we adopt the 
{w~} themselves as coordinates for the space 2" ,  we shall need an additional 
N ~ -  N new coordinates {y~} in order to have a complete coordinate 
transformation: 

q, -- qj({w,~}, {y~}); wn -- w~({qj}), y~ = y~({qj}) (32) 

To each point in £0' with coordinates ({w.}, {y~}) there corresponds a 
unique Hermitian operator with eigenvalues {w~} and. eigenvectors determined 
by a mapping from the {y~,.} to a set of orthogonal projections: {y, .}-~ 
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{i ~b,,}(~b~ [}. Among the conceivable values of the coordinates {w.}, there is 
a set ~ defined as follows: 

~3/"~ {w.}lw~>~0, ~ Wn= 1 (33) 
n = l  

In terms of the coordinates ({Wn}, {Ym}), the region ~ '  is defined by 

(34) 

Among the possible values of the coordinates {y.,~}, there is a set ~ n  
containing all sets {y.~} that correspond to H-eigenvectors: 

~ - {{y.~) I{y~} ~ {r 4~.>(~. I), H I  4,.> = E .  I ~ . )}  (35) 

The subregion ~H' of interest in the strong equilibrium case may now be 
defined by 

~H' = {({W~}, {y.,,)) ] {W.} e X ,  {y,,,) eYgU} (36) 

In general, the set ~ will be of lesser dimensionality than the set of all 
points {Ym}. If  H is totally nondegenerate, the set ~¢n contains only the one 
element that corresponds to the unique set of projectors {1 ~b.}(~b~ 1}. At 
the opposite extreme, if H were totally degenerate, it would commute with 
the identity, and Y/h, would contain every point {Ym}, since any set {I ~bn}(~b~ I} 
could serve as projectors in the spectral expansion of H. In intermediate cases, 
where H has distinct but degenerate eigenvalues, ~'/~ has a dimensionality 
between these extremes. It will be convenient to regard Y¢/~ as a surface 
in the { iv.,.} space described by parametric equations 

y,~ ----- y,,({z~}) (37) 

where the number of elements in {zk} is the dimensionality of Y/H • 
Mathematically, the maximization of I under the constraints of strong 

equilibrium differs only slightly from the weak equilibrium problem. To 
accommodate the new constraint (28), subjective probability zero must now 
be assigned to each p not contained in ~ .  We seek accordingly a subjective 
probability distribution defined only over ~ '  In terms of the coordinates 
just defined, we immediately obtain as the distribution over NH' that 
maximizes i 

~({w~}, {z~}) = p({wn}, {zl~}) exp[--fiIT({wn}, {zk})] (38) 
R 
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where, as before, (R,/3) are uniquely determined as functions of (U, V). 
[Compare with Eqs. (9) and (6).] The best-guess density operator in the strong 
equilibrium case is therefore 

= i(~, l-[ dw,, l~ clzT~p({w~}, {zk~){exp[--fiH({wn}, {zk})]} p({w~}, {zk}) i 
k~u~" H n k 

× l-[ dw~ I~ dzk P({Wn}, {zk}) exp[--fiH({w~}, {z~})] 
• n k 

(39) 

All of the analysis leading to identification of statistical analogs for 
thermodynamic parameters may be taken over directly from the weak 
equilibrium case. It is not yet clear, however, that replacement of weak by 
strong equilibrium has been a fruitful exercise; superficially, (39) looks as 
intractable as the weak equilibrium result (11). In particular, the prior distri- 
bution remains unspecified. 

Nevertheless there is a major simplification inherent in the fact the 
integrals in (39) are only over ~¢z'. Consider the quantity 

H({w~}, {zk}) = Tr[p({w~), {zk}) H] (40) 

The density operator p({w~}, {zT~}) has eigenvalues {w.~} and associated projec- 
tors {[ Cn>(¢n l} determined by the {zk}, which locate points in °#H. It is 
convenient to adopt a systematic convention, already implicit above, for 
the index n. Let the eigenvalues of H be arranged in an increasing monotone 
sequence {En} which repeats each numerical E value as many times as its 
degree of degeneracy. Then, whenever a point {y,~} lies in ~H and thus deter- 
mines a set of projectors {i ~b~><¢~ [} onto H-eigenvectors, the index n 
of ! ~b,> is assigned so as to be the same as that of the corresponding eigen- 
value E~. Note that the multiple entries in the sequence {E~} assure a distinct 
index for each ¢~ in a degenerate eigenspace. The eigenvalues {w~} are 
similarly indexed with reference to the master list {En}. 

With these indicial conventions, it is easy to see that (40) is actually 
independent of {zk}. Consider the equation 

Tr[p({wn}, {zk}) H] = ~ w~<¢~, H¢~> (41) 

For each value of n, different points {zl~} of ~/~ do yield different vectors to 
called ¢~, but all of  them belong to the eigenspaee of  the same energy E.~. 
Thus we have 

wn(~b,,, Hen} = ~ wnE,, (42) 
n % 
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and hence 

H({w~}, {zk}) = ~ w~E,~ = H{w~} (43) 

an expression independent of {z~}. 
Now let us suppose for the sake of argument that the unknown prior 

distribution could be factored as follows: 

p({w~}, {z~}) = p~{w~} p~{z~} (44) 

In probability theory, Eq. (44) asserts of course that the eigenvalue spectrum 
of  p is uncorrelated with its eigenvector set. We defer to the next part of 
this work any attempt to justify this proposed stochastic independence. 

If (44) were accepted, the best-guess formula (39) would then reduce 
to a simpler form. Let (I ~b~)<~b~ [; {zk}) denote the nth projector [ ~b~)(¢~ [ 
of the set of projectors corresponding to the ,~0"H point {zk}, SO that 

?({w,,}, {zk)) = ~ w~(' ¢~><¢~ ; {zk}) (45) 
Z 

Combining (31), (39), and (43)-(45), we obtain finally the following 
expression for the strong equilibrium best guess: 

× f j~. w~p~{w~} I~I~ exp(. -~fiw~E~) dw~ (46) 

In Part 11 we show how these integrals can be converted to discrete sums and 
evaluated by the saddle point method. 
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