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In a recent paper, Prugove6ki offered a theory o f  simultaneous measurements 
based upon an axiomatic description o f  the measurement act which excludes 
certain illustrations o f  simultaneous measurement previously discussed by the 
present writers. In this article, the fundamental conceptions o f  state preparation, 
state determination, and measurement which underlie our research are compared 
to Prugove6ki's interpretations o f  the analogous constructs in his theory o f  
measurement. 

1. P R E P A R A T I O N  A N D  M E A S U R E M E N T  

The confusion deplored in the introduction of the recent article I1) by 
Prugove6ki does not refer so much to the meaning of  s i m u l t a n e o u s  mea- 
surement as to the definition of m e a s u r e m e n t  itself. Sharing his concern for 
clarity in the rather befuddled domain of quantum measurement, we wish 
to comment  on his at tempt to set things straight, an attempt which is 
noteworthy and somewhat unusual because it takes seriously a number  of  
problems that are ignored by many other writers. 

19 
© 1973 Plenum Publishing Corporation, 227 West t7th Street, New York, N.Y. 10011. 



20 Henry Margenau and James L. Park 

No rational analysis of simultaneous measurements is possible until a 
precise meaning is agreed upon for the concept of measurement in general. 
This, it must be stressed, carries a traditional burden which cannot be 
suddenly unloaded unless there is overwhelming cause for it. Acknowledgment 
of  this degree of prudence is evident even in the writings of Bohr and his 
followers, who relegate the term measurement to what they call the "classical 
language." Although we believe that a distinction between a classical and 
a quantum language is illusory, we take this allegation to imply that the good 
old meaning of the word should not be tampered with. 

Now, in all of  science, it seems the term measurement denotes an 
operation performed on a system for the purpose of obtaining a numerical value 
which can, by virtue of the chosen experimental arrangement, be assigned to 
some definite, nameable observable. The word "numerical" must be taken in a 
fairly wide sense, for it may include the values "yes" and "no"  (1 and 0) or 
indeed, if psychological science is included, certain topological values on 
a j.n.d, scale. But in physics, classical and quantal, restriction to ordinary 
numerical values having specified units is possible and is in fact practiced. 

Quantum mechanics regularizes data within an elegant theoretical format 
in which the above concept of measurement plays a key role. Three major 
axioms link the physical ideas of system, observable, preparation, and 
measurement. 

I° 
II. 

III. 

With every physical system, there is associated a Hilbert space 3f ~. 
Each linear Hermitian operator A on o~ff corresponds to an obser- 
vable of the system; any function of A corresponds to that same 
function of  the observable represented by A. 
With every repeatable empirical method of preparation of the system, 
there is associated a statistical operator p, the quantum state; the 
arithmetic mean (A)  of  a collective of A-data gathered by mea- 
surements of A upon an ensemble of  systems each prepared 
(identically) in the manner p is given by 

(A)  = Tr(pA) (1) 

It is unfortunate that axiomatizations of quantum theory often either 
ignore the preparation concept or else refer to it only in a peripheral or tacit 
manner. 

Even worse, the idea of preparation is sometimes construed to be 
identical with, or to be a form of, measurement. Prugove6ki adopts the latter 
course by interpreting preparation as "preparatory measurement." Thus the 
quantum state p would be produced by a single act of measurement 
(preparatory type). We regard this construction of the preparation act as 
severely restrictive, unrealistic, and practically useless, and we advocate 
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instead a broader understanding of state preparation, state determination, 
and measurement. 

While the function of measurement, its role in validating theory, is the 
same in classical and in quantum physics, its outcomes are quite different. 
Because of the intrinsic latency (2) of  quantum observables, the numerical 
values of  the same observable obtained in measurements of  the same type 
performed on a system in the same state (i.e., having the same statistical 
operator) may spread, manifesting a statistical dispersion, so that a single 
measurement cannot be expected to reveal the state. Analogies to this 
situation may be found in other fields where single measurements are known 
to scatter. In practice, even in classical physics, precise measurements of  one 
observable yield multiple values which require interpretation based on 
statistical considerations. On none of  these occasions have scientists seen fit 
to alter the meaning of  measurement, or to deprive a single measurement 
result of  significance merely because it could not be repeated. We therefore 
adhere to the perfectly clear, traditional meaning of  measurement, mindful, 
to be sure, of  the fact that a simple measurement can no more determine a 
quantum state than an accounting (measurement!) of  an individual's assets 
can convey knowledge of the distribution of wealth in a society. 

How, then, does one determine a state ? The answer requires a clear 
understanding of the meaning of s tate .  This, at least in physics, is unequivocal. 
I t  is the most complete characterization of  a system that is attainable and 
suitable for causal prediction. Since the laws governing different systems are 
different, states have a variety of  definitions. For  the simplest dynamical 
system, the classical mass point, a state is the set of observables (x, p), each 
a function of time t, and this choice is made because a causal law (Newton's) 
uniquely controls their evolution. In rigid-body dynamics, a state is given as 
a larger set of  observables, again in order to obtain self-sufficiency in the 
evolution of states via causal laws. In classical electrodynamics, the state of  
a field is defined as the set (E, B), or, alternatively the potentials (A, ~), for 
they are the var iables--now functions of  space and t ime--which are propa- 
gated by way of Maxwell's equations. What  we have termed the causal 
equation is sometimes called, unfortunately perhaps, the equation of motion. 

Returning now to the question of empirical state determination, we note 
first that in none of the above instances does a simple measurement yield a 
state, since it produces but the momentary value of a single observable. In 
the most elementary instance, that of  the mass point, at least two mea- 
surements are required for a state determination, more in the case of  an 
extended body, an infinite number for the electromagnetic field. This last 
observation, the need for an infinite number of  measurements to determine 
a state, already suggests that the individual measurement is not the proper 
road toward state determination, or indeed state preparation. 
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The difficulty which has just emerged becomes more serious in quantum 
mechanics. The empirical meaning of the state p is given by Eq. (1), which 
refers to (A),  a quantity determinable only from an effectively infinite 
collective of  A-data. But even if a particular (A)  is found, that information is 
far from sufficient to determine p unambiguously. Indeed a se t  of different 
(A) ' s  is needed, the mean values of  a q u o r u m  ~) of observables, the number 
depending upon the dimensionality of  ~ .  Even if it were somehow known 
in advance that the preparation was refined to the ultimate extent of  homo- 
geneity, i.e., p = I ~b)(~b I, still a doubly infinite set I~ of  measurements would 
be required to find the modulus and phase of the wave function 
representing ~b. 

The foregoing discussion is meant to show why, were we to take 
Prugove6ki's "preparatory measurement" seriously, we would have to reject 
it because of its artificiality and its inefficacy, not only for quantum mechanics 
but also for large areas of  classical physics. For  very simple systems, such as 
the classical mass point, we concede that it does make sense. The fundamental 
reason is that in such cases the act of  measurement coincides with the act of  
state preparation, to which we now turn. In general, as will be shown, the 
two are entirely distinct procedures. 

First, we make a trivial point. I f  state preparation and measurement 
were identical terms, then states would necessarily and exclusively result 
f rom measurements. But many, in fact most, states are presented to us by 
nature without our cooperation, and it could hardly be said that nature has 
performed measurements in preparing them. In fact, the primary function of 
measurement is to identify, as closely as possible, such natural states. But 
let us shift our attention to deliberate preparation of states and focus it on 
quantum mechanics. 

A common mode of state preparation for an electron consists in the act 
of  sending a stream of  electrons down an accelerator tube. By suitable 
arrangement of  apertures and deflection devices, we can, in principle, produce 
a homogeneous beam (ensemble) with p = I ~b)@ [. I f  the filtration and 
selection devices are less exacting, or perhaps even omitted, the overall 
apparatus will in any case prepare some mixed state p. At no time do we 
perform a measurement. It  is true, of  course, that we could hardly know the 
prepared state p if measurements had not been performed on similarly 
prepared beams on other occasions. But this is merely to reiterate the truism 
that all theoretical knowledge is ultimately tested against observations among 
which measurements form a special class. We wish to stress the fact that in 
this instance, measurement did not in fact intervene, and that the mysterious 
"disturbance" with which the Copenhagen school identifies the measurement 
process surely did not take place. 

I t  seems hardly appropriate to belabor the perfectly clear distinction 
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between state preparation and measurement, or to present a profusion of 
obvious examples that exhibit it. However, because the issue--or perhaps 
only the language--is so beclouded, we offer three more. To place a molecule 
in a mixture state p oc e-H/kr,  we heat a gas to temperature T but measure no 
molecular observable. To prepare the ground state of a hydrogen atom, we 
merely wait, and know without any physical operation the eventual state 
vector ¢ for the electron. To produce a state we call "a photon of given 
frequency going in a given direction," we pass a discharge through a sodium 
gas, focus the light on a slit, and send it through a prism, all of  which is 
preparation; measurement will reveal the D lines. 

It should be clear that the preceding considerations prevent us from 
accepting Prugove6ki's identification of "preparation of  state" and 
"preparatory measurement." All measurements are "determinative." 

The arguments presented here within a limited context might appear to be 
purely semantic. Even if this were true, we would regard them as important, 
for the theory of measurement suffers from linguistic confusion. However, 
the issue transcends semantics; the distinction we are making becomes 
extremely significant for an understanding of the quantal measurement 
process and, in a different way, in the problem of simultaneous measurements, 
which PrugoveSki's article analyzes consistently within the limits of his 
terminology. 

Finally, we should note that state preparation and measurement do 
occasionally coincide. This is true in many classical situations, where 
observables are of the possessed variety and their measurements do not 
scatter appreciably. Thus, by measuring position and velocity of a falling 
object, one knows, and therefore has prepared, its state. Note, however, that 
one can also prepare the very same state without measurement by dropping 
the object from a certain height. 

2. QUANTAL TREATMENT OF LEAST COUNT 

In PrugoveSki's conception of  measurement, the result of each individual 
measurement act is not necessarily an eigenvalue from the spectrum of the 
measured observable. Instead, he asserts that a single measurement yields a 
"measured range," an interval which will encompass more than one spectrum 
point whenever there is a "reading error" for the individual measurement. 
The familiar operation of measuring position with a meter stick seems to be 
the paradigm which motivates this unusual view. Thus, if a ruler is scribed in 
centimeter intervals, the report of  a single measurement tells in which of 
these intervals the measured object was found; similarly, if the least count 
of  the instrument is a millimeter, the position datum for each measurement 
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becomes more precise in the sense that it locates the object in a smaller 
interval. 

Now, of course, we do not deny that the scale on any measurement 
apparatus has a least count. However, we must disagree with Prugove6ki as 
to the significance of  that fact for the axiomatics of quantum measurement. 
Rather than heralding the need for an augmentation of the normal postulates 
of quantum theory, the concept of least count is already implicitly recognized 
in the established quantal framework. 

Consider the physical observable, "X-component of position." The 
operator X corresponding to this observable is commonly expressed by 
Dirac's spectral expansion: 

oo 

X =  f x l x > d x < x  (2) 
- - o o  

The choice of  an operator to represent position is not the result of any 
inductive study of  rulers; it is a logical consequence of certain philosophical 
postulates concerning the nature of space. As is evident from (2), the 
spectrum of the abstract X is continuous, but practical rulers, by virtue of 
their nonzero least counts, can yield for "position" data only the elements of 
a discrete set of indices which label the intervals. Thus it might reasonably be 
argued that only "measured ranges" can emerge from the application of a 
meter stick to measure position. Indeed, this intuitive observation seems to be 
the basis of Prugove6ki's measurement theory. 

We would resolve the foregoing discrepancy between the characteristics 
of  the theoretic X and the empirical ruler simply by noting that it is a 
fundamental theorem in quantum mechanics that a measurement of obser- 
vable A must yield an eigenvalue of A. Hence, if a given measurement scheme 
lacks the capacity to generate readings which correspond to points in the 
spectrum of A, that scheme does not constitute an operational definition of A. 
Muta t i s  mutandis  a ruler with nonzero least count is not, strictly speaking, 
a measurement apparatus for X. 

The quantal observable for which a ruler is the correct measuring 
instrument can be obtained by constructing a function of X which has a 
discrete spectrum whose elements are numerical labels for the least count 
intervals of the ruler. In other words, we can readily find, by standard 
quantum theoretical means, the operator representing the question, "In which 
least count interval is the object located ?" That operator will be the function 
of  X induced by the function of x defined as follows: 

f,~(x) = a .  , x e (x.~ , x~+O (3) 

where xn denotes the position epistemically defined by the nth scale mark on 
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the ruler, an is the numerical label adopted for the least count interval 
( x , ,  x,+O, and A ~- (xn+~ - -  x,,) is the least count (which is independent of  n). 
Thus the quantal observable measured by a ruler with least count A has 
spectral expansion 

f~(X) = an Ix  > dx < x[ (4) 
n=--co X~ 

We conclude that quantum mechanics has no need of the concept 
"measured range"; for each measurement o f f , ( X )  yields, in accordance with 
quantal principles, a number a,  from the spectrum o f f , (X) .  To say that a 
ruler measures X and yields a "range" a ,  with "er ror"  A is a semantic 
mistake. The ruler with least count A cannot be used to measure X, but with 
it, one can measure f~(X) and obtain eigenvalues a~. The parameter  A is an 
a priori property of  the ruler and of the operator f~(X); it is not a "reading 
error" associated with an individual measurement. 

The construct of  position represented by X is an idealization which may 
be understood in empirical terms by regarding its appropriate measuring 
instrument to be the limit (unattained in practice) of  a sequence of rulers 
generated by letting A --~ 0. 

3. T H E  P O S T M E A S U R E M E N T  STATE 

Much of the controversy surrounding the quantum theory of mea- 
surement revolves around the problem of assigning a state to a physical 
system subsequent to its measurement. We would prefer in the present 
context to avoid altogether any detailed analysis of  the subtleties of  that 
problem, our views on the matter having been fully set forth elsewhere. (4,~) 
However, because Prugove6ki invokes a postmeasurement state axiom called 
the "R-principle" in arguing against the validity of  our conception of  
simultaneous measurement (cf. Section 4), we are compelled to discuss the 
question at least to the extent of  translating the R-principle into the physical 
language of preparation and measurement. 

The axiom under scrutiny is initially stated by Prugove6ki as follows(I): 

Reproducibility Principle. If a preparatory measurement M/1 of an observable 
prepares a range A1 of values, then any determinative measurement Mr' 2 of 

which follows immediately produces the result that the values of c~ are within a 
range A2 with A1 c~ A2 ~ ~. Moreover, for any specific prepared (determined) 
range A1 (A2) , there is an experimental procedure which determines (prepares) 
a range A s (A~) contained in A1 (As). 

When expressed without reference to the "measured range" idea disposed 
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of  above, this R-principle becomes the old projection postulate, which we 
reject for  several reasons, 1 including its logical falsity (there are measurement  
schemes for  which the statement is untrue) and its pragmat ic  inutility 
(no application o f  quan tum mechanics requires such a postulate). 

The "modified R-principle," which Prugove6ki says is the quantal  
version, is given in these wordsm:  

Modified R-Principle. If a preparatory measurement prepares a range A1 of 
values of an observable c~, then an immediately following determinative mea- 
surement of c~ will yield a result in A1 with a probability p which depends on 
the experimental setup and procedure used in the preparatory measurement. 
For any given interval A~ in N' containing points of the spectrum of ~ and any 
positive number E, there is an experimental preparatory procedure for c~ 
such that p > 1 -- E. 

On first reading, it seems to us that  this modified R-principle says the 
following, if we omit  reference to the "measured range":  I f  a measurement  
o f  A yields a l ,  then an immediately following measurement  o f  A will yield 
al  with a probabil i ty p which depends upon  the nature of  the first mea- 
surement; for given al and e > 0, there is a first measurement  procedure 
such t h a t p  > 1 - - e .  

However,  the statement still resists physical interpretation due to the 
presence of  the immediate remeasurement idea. (Indeed, at one point,  
Prugove~ki himself expressed some reservations about  that  notion.) 

Since any measurement  operat ion requires a nonzero interval o f  time, it 
is difficult to pin down the precise meaning of  immediate remeasurement.  I f  
we assume this means that  the second measurement  process is activated at the 
instant o f  complet ion o f  the interactions required for the first measurement,  
then the "modif ied R-principle" really says only this: It  is possible to 
measure A in such a manner  that  a subsequent measurement  will confirm the 
result o f  the first measurement;  or, more  precisely, it is possible to measure A, 
and  to subsequently prepare the system so that  the next measurement  o f  A 
will repeat the first measurement  result. 

We do not  doubt  that  a dedicated experimenter might  contrive an 
apparatus  capable o f  performing such a succession of  measurements and 
preparations. But that  remote possibility is surely unwor thy  of  enshrinement 
as a "principle." Thus neither the original nor  the modified version o f  the 
R-principle is expressive o f  a fundamental  or universal feature o f  mea- 
surement in quan tum physics. 

a It was the strangeness of the projection postulate which originally motivated philo- 
sophical development of the preparation concept, tn) See also Refs. 4, 5, and 7. 
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4. SIMULTANEOUS MEASUREMENTS 

Prugove6ki rejects an illustration of simultaneous (x, p) measurement 
given by the present authors (~ on the grounds that the proposed method is 
incompatible with the R-principle. Inasmuch as we have pointed out above 
that the R-principle fails to describe exhaustively all conceivable types of  
measurement acts, naturally we are unconcerned that our (x, p) scheme is 
omitted from the narrow coverage of that "principle." Nevertheless, in the 
hope of clarifying the philosophical differences between Prugove6ki's 
approach to measurement theory and ours, we shall briefly reply to several 
specific points in Prugove6ki's critique. 

(a) Our scheme for (x, p) measurement at time t is applicable only to 
systems prepared initially (t = 0) such that the position probability distri- 
bution vanishes outside a finite interval ( - -x0,  x0). Contrary to Prugove@i's 
description of  this initial condition, the interval ( - -x0,  x0) is not the result of  
a "preparatory measurement" but is an unmeasured characteristic of the 
preparation. Knowledge of ( - -x0,  x0) is acquired by earlier study of the 
preparation device involving analysis of  X-measurements. No initial X- 
measurement of any kind is made during a run of the (x, p) measurement 
process. 

(b) The "determinative measurement" of X at time t yields a number x, 
not a "range" (x l ,  x2). The arbitrary interval (x l ,  x2) was introduced in 
discussing the x distribution at time t for the usual mathematical reason that 
we cannot define the probability for a single x in a continuous spectrum. 

(c) In establishing that our method violates his R-principle, Prugove6ki 
notes that interpolation of an X-measurement prior to t would change 
the (x, p) result at t. This is true; the proposed (x, p)-measurement scheme 
requires free evolution of the particle until the terminal X-measurement. 
But the fact that tampering with an apparatus may foul the measurement does 
not vitiate the reliability of a measurement procedure when it is properly 
executed. 

(d) Why the (x, p) result at time t should, as Prugove~ki asserts, be 
more naturally regarded as preparatory than determinative escapes us. 
However, we must emphasize that we have never claimed that the procedure 
prepares the system in (classical) state (x, p)! 

(e) Finally, to our surprise, Prugove6ki even invokes his R-principle to 
attack the standard time-of-flight procedure for measuring the momentum 
observable P at t = 0. Yet that method is perhaps the most common 
operational definition of P. The fact that it violates the R-principle constitutes 
additional evidence that the R-principle imposes untenable strictures on the 
measurement concept. 
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