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This paper explores the possibility that linear dynamical maps might be used 
to describe the energy-conserving, entropy-increasing motions which occur in 
closed thermodynamic systems as they approach canonical therntal equilibrium. 
For N-level quantum systems with N > 2, we prove that no such maps exist 
which are independent o f  the initial state. 

1. INTRODUCTION 

In the canonical version of  quantum statistical thermodynamics, thermal 
equilibrium states are represented by density operators having the familiar 
form 

exp(--flH) (1) 
= Tr  exp(--flH) 

where H is the Hamiltonian. For any quantum state p, the statistical analog 
for internal energy U is given by 

U = Tr(pH) (2) 

and the entropy is expressed as 

S(p)  = - - k  Tr(p In p) (3) 

When S is maximized subject to constraint (2), the unique result is the 
canonical state (1), with inverse temperature/3 uniquely determined by (2). 
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According to the usual understanding e f  the first and second laws of 
thermodynamics, a system left to itself will eventually evolve, or "relax," 
without change in its internal energy, to a unique state of stable thermal 
equilibrium characterized as having the maximum entropy compatible with 
the constraint of fixed energy. Unfortunately such a process is inconceivable 
within the conventional framework of quantum dynamics, since (3) is a 
constant of the motion. The reason for this invariance is that the value of 
S(p) depends only on the eigenvalues of p, which are invariant under unitary 
transformation. 

Some authors have circumvented this problem by reinterpreting p in the 
entropy functional by coarse graining. 3 Others have applied the von Neumann 
projection postulate in varying degrees to obtain an increase in entropy. 4 
Still others, t3~ using methods of quantum field theory, obtain an increase in the 
in the entropy after taking the thermodynamic limit N, V--~ oe, N /V  = 
const, where N is the particle number and V the volume. 

We will not criticize these methods. The literature abounds with argu- 
ments for and against each of them. Particularly significant, however, is an 
exhaustive study of the foundations o f  thermodynamics and its relationship 
to quantum mechanics by Hatsopoulos and Gyftopoulos, ~4-7) who demon- 
strated quite conclusively that some as yet unknown, nonunitary principle 
of quantal motion must be devised in order to achieve a satisfactory unifica- 
tion of those two fundamental theories into one uncontradictory science of 
quantum thermodynamics. A general essay on quantum thermodynamics 
by the present authors appears in the Yourgrau memorial volume. 18~ 

Motivated either by the foregoing dilemma or by the desire to obtain 
phenomenological descriptions of the evolution of subsystems, various 
authors have considered generalizations of quantmn dynamics in which the 
laws of motion do not conserve S. These efforts have generally been based 
upon dynamical maps which, though nonunitary, are nevertheless linear, 
thus assuring the applicability of a substantial body of standard mathematical 
structures. This approach has yielded several interesting contributions (9-141 
to the quantum dynamics of subsystems; in these cases entropy may rise or 
fall, but energy need not be conserved. Moreover, Band and Park (15-171 
found that for two-level quantum systems there exist linear maps--indepen- 
dent of the initial density operator--which describe energy-conserving, 
entropy-increasing processes. The latter would be an essential feature of a 
unified theory of quantum thermodynamics. 

The present paper outlines the mathematical framework of proposed 
linear generalizations of quantum dynamics, investigates the possibility that 

The idea of coarse graining originated with Gibbs and is discussed in many textbooks 
on statistical mechanics, e.g., Ref. 1. 

4 The projection postulate is used in this manner by many authors, e.g., Land6. ~ 



The Essential Nonlinearity of N-Level Quantum Thermodynamics 299 

linear dynamical maps might be used in quantum thermodynamics, and proves 
that, for N-level systems with N > 2, there are no linear maps describing 
energy-conserving, entropy-increasing motion. 

2. LINEAR GENERALIZATIONS OF QUANTUM DYNAMICS 

Only one modification of the underlying axiomatic structure of quantum 
theory is contemplated in the search for a new dynamics. The nondynamical 
postulates are retained in the standard form and may be expressed as 
followsa8): 

With every quantum system there is associated a complex, separable, 
complete inner product space, a Hilbert space ~4f. If o~A, ~ are Hilbert 
spaces associated with distinguishable systems A, B, then the direct product 
space ~ @ ~ is associated with the composite system of A and B together. 

To every reproducible preparation of state for a quantum system there 
corresponds a density operator p, which is a positive-semidefinite, self- 
adjoint, unit-trace linear operator on 2/P. All the density operators are ele- 
ments of 3-(J~f), the real normed linear space of all linear self-adjoint trace 
class operators on ~%f. Within the space Y(~f) is a set called the positive cone 
~f~+(~gf), which contains the positive-semidefinite operators on ~J¢~, and within 
the set ~f~+(J¢~) is a convex subset ~+(~4 ~) containing the elements of ~F+(jf) 
with unit trace. ~+(~%f) is therefore the set of density operators, the mathe- 
matical representatives of quantum states. 

Some elements {A, B,..., H,...} of the real Banach space ~(~f) of all 
continuous, linear, self-adjoint operators on ~%f correspond to observables 
of the system. The arithmetic mean value (A) of the results of measurements 
of observable A collected on an ensemble of systems prepared in the state 
associated with density operator p is given by the continuous linear functional 
(A) = Tr(pA). 

Any proposed dynamical law must involve only mappings of the convex 
set ~/f~+(~f) into itself, and the formulation of such laws is complicated by 
the fact neither ~f~+(~) nor ~ + ( R )  is a subspace of ~ ( ~ ) .  The dynamical 
postulate of conventional quantum theory describes the motions of a system 
by a one-parameter (time) unitary group {At} of linear transformations of 
Y(~(~) into 3-(J~), the unitarity guaranteeing that no density operator will 
be transformed out of ~ + ( ~ ) .  

A natural generalization of the dynamical postulate is obtained by 
letting {At} be a one-parameter semigroup of linear transformations of 
3-(5~f) into Y(sf )  which need not be unitary. In this way irreversible motions 
are included among the dynamical possibilities since there may now be 
maps A~ which have no inverse and under which S is not invariant. Since At 
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is a linear transformation, the Hille-Yoshida theorem (19) can be used to 
obtain an equation of motion for p(t)  in terms of the infinitesimal generator 
L of  the semigroup: 

@(t) d 
dt - -  dt A~p(O) = LAtp(O) = Lp( t )  (4) 

[Equation (4) is commonly referred to as the "Liouville equation" due to its 
similarity with the Liouville equation of  classical mechanics. Since p(t)  is an 
operator on ~{', and L is a linear operator on J - ( J f ) ,  L is sometimes called a 
"superoperator." When applied to relaxation processes the Liouville equation 
is often called a "master equation."] 

Although there is some agreement that unitary evolution must be aban- 
doned, not all authors view this as a requirement for a new postulate of  
dynamics, but prefer simply to reinterpret unitary evolution. For example, 
Gorini et al, 19) and Lindblad a°) are concerned with the evolution of quantum 
subsystems (open systems). Consider two systems A and B with Hilbert 
spaces YfA and ~ .  t f  there is an interaction between the two systems, then 
the density operator for the composite system is an operator defined on the 
tensor product space -NFA @ 3/fB and in general 

PAB 4: pA ® 08 (5) 

where p~ ~ ~/PI+(~) and pB ~ ~ + ( ~ ) -  
I f  for some reason we restrict our interest to system A only but also 

assume an interaction between A and B, then A is called an open system. The 
semigroup time evolution is then applied to the open system A. The equation 
of motion for the state of  A is then taken to be the Liouville equation, 

d;~(t)/dt = z4,~(t)  (6) 

When two systems are interacting there is one state for the composite 
system and there is no state PA for system A alone unless by pA we mean the 
partial trace over ~ of  pA~, the so-called reduced density operator, 

pA = Tr~(pA~) (7) 

Taking the partial trace destroys all correlations between A and B. 
Under these conditions one can find an L satisfying the conditions imposed 
by self-adjointness, positivity, and preservation of trace which leads to the 
final state pA(~V), which may be a canonical state. It is therefore claimed 
that the evolution successfully leads to the relaxation to equilibrium of 
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system A. Since the dynamics of system B is completely ignored, it is impos- 
sible to prove that energy is conserved. To avoid this problem, it is assumed 
that whatever energy is lost or gained by A is gained or lost by B but in such 
a way that these changes in B do not affect the time evolution of A. Then B 
becomes a thermodynamic heat bath, i.e., a large system which is at all times 
in a canonical state at a fixed temperature and capable of absorbing or 
emitting any amount of energy to system A without the temperature of B 
changing. The importance of the concept of a heat bath in thermodynamics 
is well known and appreciated, but it is also well known that systems not in 
contact with a heat bath do reach equilibrium. To allow for this and still 
describe the evolution of a system as an open system, Ingarden and Kossa- 
kowski (m claim that no system is ever completely isolated, i.e., that no closed 
systems exist in nature. Every system, no matter how well it is isolated, is 
affected by its environment, i.e., the rest of the universe. The effect of the 
infinite environment on the "closed" system of interest is that it introduces a 
randomizing mechanism in the dynamics of the system. The increase in 
entropy of a "closed" system is, therefore, a result of the random effect of the 
environment. This idea was also published by Blatt (2°) as an explanation for 
the increase in entropy of a system subject to incessant, completely random 
impacts of the molecules of the atmosphere on the boundaries of the system 
of interest. Although the interpretation of the semigroup evolution appears 
now to be different from the idea of the evolution being the subdynamics of 
an open subsystem in contact with a heat bath, the predictions are the same. 
Indeed, after declaring the infinite environment to be a randomizing mecha- 
nism, Ingarden and Kossakowski (Ref. 11, p. 478) find that it is capable 
of either increasing or decreasing the entropy of the system of interest. These 
authors admit at the end of an example that the infinite environment does not 
simply provide a randomizing mechanism, but the environment is actually a 
heat bath. Their interpretation of the semigroup evolution is, therefore, 
still that the evolution is the subdynamics of an open subsystem in contact 
with a heat bath. 

With the same philosophical position, that the semigroup evolution 
applies only to open subsystems, a number of authors (9,1°) have postulated 
that the semigroup mapping should be completely positive, a stronger restric- 
tion than positivity. Undoubtedly At must be a positive map in order to 
guarantee that p(t) is a positive operator for all times. Complete positivity 
requires that the map At @ I~ be positive for all n ~ {0, 1, 2,...}. In this 
mapping, I~ denotes the identity map In: M(n) --~ M(n) in the C* algebra of 
complex n × n matrices. Gorini et al. (9) argue that if the evolution of the 
isolated system A plus B is given by a unitary group, then the subdynamics 
of system A must be described by a completely positive semigroup. Here no 
new fundamental dynamical postulate is being proposed; rather, the effort is 
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directed toward describing the dynamics of a subsystem within the framework 
of global unitary evolution of the entire isolated system. The total entropy 
of  the isolated system is of course constant under the assumed unitary evolu- 
tion. A more detailed analysis of the efficacy of the complete positivity assump- 
tion has been given elsewhere. (~1) 

3. INADEQUACY OF LINEAR {A,} FOR N-LEVEL QUANTUM 
THERMODYNAMICS 

The fundamental problem of quantum thermodynamics is not to describe 
only the evolution of a subsystem or the evolution of a system in contact with 
a heat bath, but to account for the increase in entropy of  a closed system. If  
the dynamics of a closed system is unitary, there is no hope of predicting a 
change in the entropy. Therefore it is necessary to abandon the unitary 
evolution in favor of a generalized evolution. 

The evolution as given by a one-parameter semigroup of linear trans- 
formations on :T(Yf), as we have seen, has been applied mainly to subsystems. 
Is this particular generalization suitable for the description of a closed 
system ? The work of Band and Park (15-m on two-level systems suggests an 
affirmative answer; but we shall now prove that for systems with Hilbert 
spaces of dimension N > 2 the answer is no. There does not exist a linear 
transformation A: ~+(Yf)  ---> SF~+(~) that is capable of mapping all initial 
states po with Tr(p°H) = U into the canonical state fi with Tr(f3H) = U. 

To prove this, we first introduce an equivalence relation in ¢F~+(ogf) 
with the equivalence class denoted by [pU]: p0, p0 e [pU] if and only if 
Tr(pl°H) = Tr(p2°H)= U. The equivalence class can be parametrized by 
the real number c~, p0(~) e [p U]. 

It is assumed that the Hilbert space ~Y'~ associated with the system is 
N-dimensional and, for notational convenience, that the spectrum of the 
Hamiltonian H is nondegenerate. The real Banach space ~--(~v) can be 
identified with the C* algebra of the complex N × N matrices. Any element 

e o~-(~)  can be represented as an N2-component column vector. We will 
work exclusively with the energy basis, the representation in which H is 
diagonal. To simplify the notation, the elements of the column vector 
representing e e Y(NfN) will be labeled by an index j, 

N 2 l},~,z=x (8) 

with the understanding that the j~{1 ,  2,..., N} are identified with m, m 
{ k ,  ~ • l}k,z=x, i.e., the first N elements of the column vector are the diagonal 
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elements of the matrix, in the energy representation, associated with 

The linear transformations A: ~f~+(~'u) -~ ~ + ( ~ u )  can now be repre- 
sented by N 2 × N z matrices, the elements of which are constants. The mapping 
A must be positive and trace-preserving, but these restrictions are not 
necessary for the proof. 

A general linear transformation A from p~(o 0 c [pU] to p1~ [pU] is 
written in vector notation as 

p/  = ~ A~jpg°(o~) (9) 
9=1 

The canonical density operator is a function of H and therefore must be 
diagonal in the energy- representation. Consequently, we can restrict our 
attention to the diagonal elements of pf only, i.e., i s {1, 2,..., 3[} in the above 
equation. Among the density operators pO e [pU] is a set which is diagonal 
in the energy representation. Since A must map all po~ [oU] into fi, it is 
sufficient to show that no A exists which maps the subset of diagonal density 
operators p°(c 0 E [pU] into the canonical state /3. We therefore focus our 
attemion on the diagonal density operators p°(o 0 which are mapped by A 
into diagonal density operators pL Accordingly, we have 

N 

p / =  ~ Aijpj°(cO, i = {1, 2,..., N} (10) 
9=1 

There are N 2 constants, the elements of A~ 9 , which could be chosen to 
make p I the canonical state/5. To determine whether a density operator p I 
given in terms of the components p / i s  canonical, we use the following test: 

Lemma. The density operator ps is the canonical state 19 if and only if 
pl is a diagonal matrix in the basis in which H is diagonal and the diagonal 
elements p / sa t i s fy  the ½N(N -- 1) conditions 

1 In p /  (11) 

where i , j  = {1, 2 ..... N}, i @j, ]~ = const, and Ei is the ith eigenvalue of H. 

Proof (Necessity). The canonical state is a function of the Hamiltonian 
and is therefore diagonal in the energy basis. Furthermore, the canonical 
state ~ satisfies Eq. ( t l )  identically. 

(Sufficiency). Using N -  1 of the equations given by (11), N -  1 
diagonal elements of f can be expressed in terms of any one diagonal element 
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of y ,  say p j .  The normalization condition Tr pl : 1 can then be used to 
determine p j  as having the form 

• exp(--fiE~) (12) 
P/  : Z N exp(--fiEi) i = l  

which is obviously thej ,  j element of the canonical density operator/3. QED 

It is now easy to demonstrate the inadequacy of linear dynamical maps 
for quantum thermodynamics. Combining (10) and (11), we obtain 

1 In ~]~=1 A,~Pk°(~) (13) 
3 -- E3 -- Ei Z~=IN Aj~p~°(~) 

For each value of ~ there are K = ½N(N -- 1) conditions to be satisfied by 
choosing N 2 constants. 

Consider m values of ~ such that 

m K >  N 2 ~ m > 2 N / ( N - -  1) (14) 

The number of equations m K  now exceeds the number of  adjustable param- 
eters, so we must restrict the values of pi°(~) to satisfy all conditions. In general 
the parameter ~ is continuous. Therefore we have an unlimited number of 
conditions to be satisfied, and there is no choice of  the N 2 numbers Aij 
which will satisfy the conditions for all po ~ [pU]. 

We conclude that there exists no linear transformation A capable of 
mapping all p0 ~ [p U] into the canonical state/3. Hence a generalized equation 
of  motion for p in the form dp/dt = Lp with L linear and independent of  p 
cannot describe the approach to thermodynamic equilibrium of  a closed N-level 
system. 

The only exception occurs when N : 2, in which case the set of diagonal 
density operators is a singleton set. There is then only one diagonal density 
operator in [pU] because the matrix representation of p0 has only two dia- 
gonal elements and these are uniquely determined by the conditions Tr(p °) = 
1 and Tr(p°H) : U. In this case a linear transformation does exist which 
conserves energy and leads to the canonical state. In fact, the transformation 
must have A l l :  A2~ : 1 and A12 = A21 : 0. A linear transformation of  
this type was found by Park and Band, <~7) which led them to conjecture that 
generalized evolution might be given by a set of linear transformations. 
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