Mechanics Thermodynamics
density operators with an ontic status
maximum entropy production dynamics

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




Thermodynamics
Joseph H. Keenan

Principles
of General
Thermod yommics|

Beumponlas

Keevan

Wiley 1965

Gyftopoulos-Beretta

The Keenan school of Thermodynamics

PRINCIPLES OF GENERAL
THERMODYNAMICS

George N, Hatyopoules
Prsident, Therma Elsctras Enginessag Corparation
Semic- Lecrurer in Micharical Engineering,
i rstituie of Techsobapy

Irafemor of Mechanicnl Esgineering
Haanastumtin lusmituce of Teshaobogy

Joha Wik & Suis, Tic,, New York - Laidun Sydues q IP 20 08

Ahmed F. Ghonlem
George N. Hatsopoulos

Gian Paola Beretta

g
ma:;ulu | egs
oy THERMODYNAMICS 7 MEETING THE
S Fourgalons | 5 ENTROPY
52 Applicaions - CHALLENGE
= g
i — =
= .
o An Infernational Thermodynamics
Macmillan 1991 5 5 e
w O E Glan Paolo Beretta
;
A

(Dover 2005) o cursme

G.P. Beretta,

SPHYSICS AP CONFERENCE PROCEEDINGS M 1033

Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org



Outline

The price to pay, due to nonlinearity of the dynamical law
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Part 1

On the operational/instrumental distinction between ontic and epistemic
probabilities. ..

In 1930's language:

On the unambiguous mathematical representation of measurement statistics

from homogeneous and heterogeneous ensembles
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Ensemble EH

Park and Band, FoundPhys,
measurement outcomes 1,133 (1970); 1, 211 (1971);

(all at time t)
1,339 (1971)

Statistics of

of identical systems all
prepared by [] at time t

¥

$
o Measurement
. » procedure A » az » Pa;

Preparation - Measurement
I » procedure B » b b, » Po;

of system

- Measurement
» procedure Z Zz » Pz

It A, B,...,Z are all the conceivable measurements,
then preparation II (and hence ensemble &) is com-
pletely characterized (at time ¢) by the set of numbers
(tomography at time t):

(H) — <8H) — {pap---apadapbla---:pbd:---apzla---:pzd}




Preparation [ |

Preparation

I,

of system

For any observable A, the mean (at time ¢) is

(A = wi (A, + w2 (A1,

Preparation

I,

of system

and, therefore, the tomography is

(II) = w1 (11} + w2 (ll2)

Homogeneous preparations

Given a preparation II, we may look for all conceivable
decompositions. A preparation is homogeneous (von Neu-
mann), denoted II°, iff there is no conceivable way to
obtain the same tomography from a notrivial statisti-
cal mixture of two different preparations (different means
with different tomography), i.e.,

iff (IT) = wy (I )+ws (Ily) with wy,wy > 0 implies (II;) = (II,) HeLLE




Homogeneous states

Von Neumann, book, engl.transl.1932

For a homogeneous preparation, I1°, no subdivision into
different subensembles is conceivable.
Therefore, its tomography (I1°) at time ¢ can be safely

Preparation

Ho

of system

]

viewed as an intrinsic individual feature of each and ev-
ery member of the ensemble: the “ontic” individual state.

Each system “is in state” O

Homogeneous preparations

Given a preparation II, we may look for all conceivable
decompositions. A preparation is homogeneous (von Neu-
mann), denoted II°, iff there is no conceivable way to
obtain the same tomography from a notrivial statisti-
cal mixture of two different preparations (different means
with different tomography), i.e.,

if (IT) = wy (II; )+ wo (Il2) with wy, ws > 0 implies (II;) = (IT,) 2eALE



Homogeneous states

Von Neumann, book, engl.transl.1932

J.L. Park, AmJPhys., 36, 211 (1968) - '""Nature of quantum states"

For a homogeneous preparation, I1°, no subdivision into
different subensembles is conceivable.
Therefore, its tomography (I1°) at time ¢ can be safely

Preparation

Ho

of system

]

viewed as an intrinsic individual feature of each and ev-
ery member of the ensemble: the “ontic” individual state.

73

Each system “is in state” O

However, this view is unambiguous only if (the tomogra-
phy of ) every heterogeneous preparation (ensemble) ad-

mits a unique decomposition into homogeneous com-
ponents. Otherwise:




Homogeneous
() = wy (II7) + w(T13)

Homogeneous
preparation [ °

]

Homogeneous
preparation [ [,°

(ITy = w3 (I13) + w4 (I13)

Homogeneous
preparation [ ],°

Homogeneous
preparation [],°

states

. Wil . . .,
“State is either [J or B 7 [PaselliIUE “State is cither @ or M

Schrodinger, PCPS, 32, 446 (1936)
Park&Band, FoundPhys, 6, 157 (1976)

quant-ph/0509116
ModPhysLettA, 21, 2799 (2006)

However, this view is unambiguous only if (the tomogra-

phy of ) every heterogeneous preparation (ensemble) ad-

mits a unique decomposition into homogeneous com-
ponents. Otherwise:




For a theory to be compatible with the notion of indi-
vidual state of a system, it must represent preparations,
i.e., their tomography, by elements {1} of a set such that:

e t0o every preparation Il and each instant of time
t there corresponds a unique element i (t) which
determines its tomography at time t, i.e.,

(D) = flu(t)]
with f an invertible (multivalued) functional;

if preparation II is the statistical composition
(with weights wy, ws) of two preparations II;, Il
then

flp) = wi f(pn ) + wa fp2) 5

to every homogeneous preparation I1° there
corresponds a unique indecomposable element
1 which admits no nontrivial weighted decomposi-
tion into different elements, i.e., such that f(u°) =
wf(p )+ (L —w)flpue) with 0 < w < 1 implies
pr = p2 =

G.P. Beretta,

e every element p admits a unique decomposition

PhD Thesis (1981), quant-ph/0509116

into a weighted sum of indecomposable ele-
ments, i.e., if the set is discrete

flp) = Z wip)f@s) Y wi=Lw; >0
(1)

] ]

or, if the set is continuous,

f(#)=f;}w(uua}f(ﬂi)fh #u%a}daﬂ

where a denotes a set of continuous parameters
which over the range P span all the homogeneous
preparations p%, and w(p, ) is some epistemic
probability density distribution over this set
with respect to the uniform measure.
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Spin up

E/how

Ener

Spin down
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Schrodinger, PCPS, 32, 446 (1936)
ParkBand-FoundPhys-6-157-1976
many others later
quant-ph/0509116
ModPhysLettA-21-2799-2006

1

=Wl =5I+p,
=)ol = 5T +p,

G.P. Beretta,

- 0)

p = wyPy + -w¢ P¢, Le., 1, = wyp, + wy,

X

X

~(I+r,-0) mixedifr) <1

pure, i.e., pj, =1

pure, ie., p2 =1
b,
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A representation of heterogeneous preparations via
probability density distributions over the set of
possible ontic states

Representation of a generic preparation
wip, ) with f w(p,o)do =1
. I[_i

for a qubit, a« =@, ¢ (spherical coordinates on the Bloch
sphere):

[ —— L'n}{t'n L'} = )y
Representation of a homogeneous preparation
m{;ail,:.n] = ol — n|{.;]
Notice: only for linear observables,

fr(pfyy) = Te( Ll (])
frip) = / wipe, o) fr(ps ) do
5 Ir‘

= / wipe, o) Te( Ly, W, |) da
J

=Tr (L / wip, o) |tha ) {Pa -'i"n)
Jp

=Tr(LW) with W = / w(p, o) |tha ) {tha| do
J

Is this a fundamental indication (theorem) there must

S0, we see that knowing W fixes I.+|1v |||1w15' observables, exist some measurable observables which need to be
but the linear observables are insufficient to deter-

mine the preparation wg, o). C represented by nonlinear functionals of |\|f><\|f| ?
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Part 11

comes from thermodynamics (at least in our engineering "very ontic" view!)

Adiabatic availability of nonequilibrium states

Entropy
Spontaneous relaxation towards equilibrium
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unite Mechanics and Thermodynamics

The density matrix p, even if non-pure, represents a
real ontological object, the actual state of the world
(system, single particle, even if unentangled).

p 1s not understood as needed to represent an
epistemic 1ignorance of which particular pure state
the world 1s ‘really’ in. The ‘real’ state 1s p.

The ontic status attributed to the density matrix also
legitimates treating the entropy —kg Tr p Inp as an
ontic physical quantity, like energy or mass.

GN Hatsopoulos and
EP Gyftopoulos,
Found.Phys., Vol. 6,

15,127, 439, 561 (1976) —kg Tr p Inp 1s not understood as measuring how
broad is an epistemic probability distribution.
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Isoentropic surfaces

0,5

Entropy, § l+7. 1+7r 1=r. 1-r
kM At M bl
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Isoentropic surfaces Max S for given E

0,5

Entropy, § l+7. 1+7r 1=r. 1-r
kM At M bl

2 2
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— = 4

J(r) hxrxh

05 It = whxr-
Entropy, S T ;
Int.J. Theor.Phys., 24, 119 (1985)
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0,5
Entropy, S

Int.J. Theor.Phys., 24, 119 (1985)
G.P. Beretta,
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S=0
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Isolated and uncorrelated N-level particle

Energy levels e, j=12,.,N (eigenvaluesof H)

E = Zj p,e, energy (assuming pH =Hp)

can be physically thought as measuring the degree of

involvement of level e; in sharing the energy load

S =—k, Z,- p,;Inp, entropy measures the

The eigenvalues p; of the density operator p
usually interpreted as " probabilities"

global degree of sharing the energy load among levels

Example, N=7, different
distributions with same £ and S
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p, eigenvaluesof p (for simplicity, assume pH = Hp)

E= Zj pe; energy

S=-k, Z,— p,;Inp, entropy:global degree of sharing

In Quantum Mechanics,
an isolated and
uncorrelated particle is
always thought as being
in a pure state. I[f pH=Hp,
this means that only one
energy level carries the
energy

H

Energy, E/hy

2.5

=
[

o
o
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p, eigenvaluesof p (for simplicity, assume pH = Hp)

E = _p.e. energy In equilibrium Quantum
Z’ 7 Thermodynamics, the
S=-k, Z,— p,;Inp, entropy:global degree of sharing only stable distribution

for the given £, is that
which maximizes S

In Quantum Mechanics,
an isolated and
uncorrelated particle is
always thought as being
in a pure state. I[f pH=Hp,
this means that only one
energy level carries the
energy

H

Energy, E/hy

max S (0123456)
max S (012...inf)

N
o

=
[

o
o

Entropy,

canonical distribution
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p, eigenvaluesof p (for simplicity, assume pH = Hp)

E = p.e. energy In equilibrium Quantum

Z’ 7 Thermodynamics, the
S=—k, Z,— p;Inp, entropy :global degree of sharing only stable distribution
for the given E, is that
which maximizes S

In Quantum Mechanics,
an isolated and
uncorrelated particle is
always thought as being
in a pure state. I[f pH=Hp,
this means that only one
energy level carries the
energy

H

max S (0123456)
max S (012...inf)

Energy, E/hy
[ N
o o

o
o

J
5 |p = ——""7"=
Entropy, ’ Z CXp(— ei /kBT)
i
All Other distributions Wlth the given E, Canonlcal dlstrlbutlon
cannot be stable equilibrium
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How to construct an equation of motion for p
which has the canonical equilibrium
distribution as the only stable equilibrium
one for each given value of £ ?

>
o

>
<
w
< 35
>
[
=4
w

N
o

— max S (1234567)

Entropia, S/k

In Quantum Thermodynamics, irreversible
time evolution, for pH=Hp, can be
interpreted as the internal redistribution of
energy among all the eigenmodes of energy
storage that are acecssible to the particle

Entropia, S/k
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/

/

yd

— max S (0123456)

availability

= max S (012...inf)
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(II) = wy (I7) + wo(IL3)

Homogeneous
preparation [ °

[]
p1(t)

The density operator

w1p1(t) + waps(t)

does not represent the heterogeneous preparation
Homogeneous

preparation [ [,°

B
pa(t)

(I = wi (7)) + wa2(115),
The description must be such that

d(IT), d(T17).

] .. = wj + Wy —
“State at time ¢ 1s either [J or B ” dt dit

Linearity 1s instead required by the (von Neumann) epistemic view...
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Part 111

» "Design of the equation" using square-root density operator
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why square-root probabilities

In probability space, the Fisher-Rao metric provides
a unique natural distance between probability distrib-
utions. For a one-parameter family of discrete distribu-
tions, p(t) = {p;(t)}, where t is a parameter, the distance
between distributions p(t + dt) and p(t) is

dIn p, 2 d,/p; 2
dl = ; dt = 2 dt
Z@, p( dt ) 2 ( dr

1

Therefore, square-root probabilities v, = /p; are more
natural variables:

e the space becomes the unit sphere, v -«

(2, pi = 1);
e the Fisher-Rao metric simplifies to df = 2\/4 - v dt;

Wootters,
Phys.Rev.D, 23, 357 (1981)

e the distance between any two distributions is the
angle d(7,.7,) = cos™ (71 *72)

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
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square root of density operator

In the space of linear operators on H, let

X V=TXY+VYX)/2

be the real scalar product. Then,

y=Uyp U'=U"  p=7ly
I="Trp=7v-v

Ph.D.thesis, MIT (1981)

(now at quant-ph/0509116)
N e e s ek For a one-parameter family y(¢) (H time independent),
Nuovo Cimento B, 87, 77 (1985)
NatoAsi LecNotes, 278, 441 (1986) db = 2\/7y -y dt 1/7 = dt/dt T=1 / 27

quant-ph-0112046

Gheorghiu-Svirschevski,
Phys.Rev.A, 022105 (2001)
quant-ph-0907.1977
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square root of density operator

In the space of linear operators on H, let
X Y =TXY+Y'X)/2
be the real scalar product. Then,

y=Uyp U'=U"  p=4ly
l=Trp=7-v
H)=TipH =~ -H'/2  where H = 2vH
( pH =1~ ot

Ph.D.thesis, MIT (1981) (S) — _kBrITphlp = - S}'/z where Sl‘ — _4kﬂf}/ ]_[l’}/
(now at quant-ph/0509116)

N e beng  For a one-parameter family y(¢) (H time independent),
Nuovo Cimento B, 87, 77 (1985)
NatoAsi LecNotes, 278, 441 (1986) Al =2\/y-Fdt  1/r=dl/dt T=1 / 2/% -
quant-ph-0112046 p ="ty 415
Gheorghiu-Svirschevski, Tr P / 2 — ,}, Ly = 0 preserve normalization

Phys-Rev.A, 022105 (2001) d{H)/dt =+ -H =0 conserve energy (isolated particle)
quant-ph-0907.1977 d(S)/df — ,}/ . g

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
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Schroedinger-von Neumann eq.

g = iyAH/h = pg = —i[H.p|/h

= —dkpylny

quant-ph/0509116
quant-ph/0511091
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977
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Schroedinger-von Neumann eq.

g = iyAH/h = pg = —i[H.p|/h

Note: since YAH -yAH = Trp(AH)? = (AHAH) and

YA = (AHAH) /1

T —4k B In Y

quant-ph/0509116
quant-ph/0511091

the Fischer-Rao metric is

Y - Y dt = dt/TH

quant-ph/0612215 which defines the intrinsic Hamiltonian time 7z such that
Phys.Rev.E, 73, 026113 (2006) 5 N

Entropy, 10, 160 (2008) (AHAH) 7 =N~ /4

Rep.Math.Phys. (2009)

quant-ph/I907.1977 Exact time-energy uncertainty relation

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
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non-Hamiltonian contribution

g = iyAH/h = pg = —i[H.p|/h

Instead, let us assume

Y =4m +D

quant-ph/0509116 with 4p in the direction of steepest entropy ascent com-
quant-ph/0511091 patible with the constraints

quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977

Ap -y =10 (conservation of Trp = 1)

(conservation of (H))

As a result 4p will also be orthogonal to ~.

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
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finding the “direction”

Let L(~, H") be the real linear span of "vectors” + and
H'. Denote by S} the orthogonal projection of the ”en-
tropy gradient vector” S’ onto L, and by 5’| ; its orthog-
onal complement, so that

= —4kpyIny

o o i/
1.5 — a&JL —I‘ ISJ_L

If v and H' are linearly independent, we may write

ali

[

d(S)/dt = d(—kgTrplnp)/dt =74 - 5"

quant-ph/0509116
quant-ph/0511091 *SJJ_L(q,.-:Hf} =
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977
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d(S)/dt = d(—kyTrpln p)/dt =4 - S’

quant-ph/0509116
quant-ph/0511091
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977

G.P. Beretta,

finding the “direction”

Let L(~, H") be the real linear span of "vectors” + and
H'. Denote by S} the orthogonal projection of the ”en-
tropy gradient vector” S’ onto L, and by 5’| ; its orthog-
onal complement, so that

§' =S+ 5,
If v and H' are linearly independent, we may write

S’ 0% H’

References available at: www.quantumthermodynamics.org



dynamical law (single isolated particle)
The equation of motion for v is therefore
Trajectories will be
geodesics in the 1= YAH +
constant energy
surface 1in square-
root density
operator space

.t 1

S" )
4ksT L Ly H')

quant-ph/0509116
quant-ph/0511091
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977

G.P. Beretta, t.2, 2009
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dynamical law (single isolated particle)
The equation of motion for v is therefore
Trajectories will be -i .
geodesics in the g = E’}'ﬂff iryne S'\ Ly )
constant energy
surface 1in square-
root density
operator space

or, equivalently, for the density operator

1

AM
2kBT{ P}

i
i
p=—7lH pl+

quant-ph/0509116
quant-ph/0511091
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977
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Trajectories will be
geodesics in the
constant energy

surface 1in square-
root density
operator space

quant-ph/0509116
quant-ph/0511091
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977

G.P. Beretta,

dynamical law (single isolated particle)

The equation of motion for v is therefore

] 1
= —’}/AH-I— ESU_L{%Ht)

T
or, equivalently, for the density operator

1

AM
2kﬂ{ P}

i
= ——[H
p=—Hpl+

where M (“non-equilibrium Massieu operator”) is

B H _ (AHAH)
M=5 g 9_(A&Mﬂ

where S = —ky In(p + Pxer,) and
(AFAG) = Tr(p{AF,AG})/2

The nonlinear functional # may be interpreted as a kind
of nonequilibrium temperature.

Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




7 = “intrinsic time”
characteristic of the
relaxation and
spontaneous
internal
redistribution
(functional of p)

quant-ph/0509116
quant-ph/0511091
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977
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dynamical law (single isolated particle)

The equation of motion for v is therefore

] 1
= —’}/AH-I— ESU_L{%Ht)

T
or, equivalently, for the density operator

1

AM
2kﬂ{ P}

i
= ——[H
p=—Hpl+

where M (“non-equilibrium Massieu operator”) is

B H _ (AHAH)
M=5 g 9_(A&Mﬂ

where S = —ky In(p + Pxer,) and
(AFAG) = Tr(p{AF,AG})/2

The nonlinear functional # may be interpreted as a kind
of nonequilibrium temperature.
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Part 111

* Main features of this largely irreversible nonlinear quantum dynamics
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rate of entropy increase

H (AHAH)

=S—F Sz—kglﬂ(p+ﬁ(erp) 9= (ﬁSﬂH)

The rate of entropy generation is (nonnnegative)

quant-ph/0509116 d(S) d(— k‘B rIi’p lIl p)

quant-ph/0511091 o =7 - —
quant-ph/0612215 dt dt kET

Phys.Rev.E, 73, 026113 . 1 ((AS&S) (AH&H))

—~ (AMAM)

Entropy, 10, 160 (2008 kET 62

Rep.Math.Phys. (2009)

quant-ph/0907.1977 4 k SJ_L SJ_L = 4kpT YD - YD
b ET

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
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simple form when [H,p/=0

Ph.D.thesis, MIT (1981), quant-ph/0509116
Nuovo Cimento B, 82, 169 (1984); 87, 77 (1985)

Smooth, constant energy,
NATO-ASI Lecture Notes, 278, 441 (1986) spontanueous internal redistribution
Phys.Rev.E, 73, 026113 (2006) of the eigenvalues p; of p, which can be
interpreted as degree of
“energy sharing involvement"
of the active levels e, (active means p; > 0).

pilnp;  pi ep

i 1n p; | iDi
2 pilnp Leip Y pi(lnp)? Y pilnp; Yepilnp;

2 Pi In Pi 1 > €ipi

dp; 1|Zepilnp; Yep Xeip

1 > eipi

ds k| 2epilnp  XYepi Yepi
T

Yepi Yepi S eip;

2
2epi 2epi
G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
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Theorems about “good behavior” as a dynamical equa-
tion:

e The nonlinear term pln p is not Cauchy-Lipschitz,
but it satisfies the first Osgood condition

1
ly1 — yo

lyiIny, —y2Inys| < K |y1 — y2|In

and so, despite the logarithmic singularity of yIny
at y = 0, the solution is unique.

e Any initially zero eigenvalue of p remains zero at
all times.

e Hence, because of uniqueness, no initially positive
eigenvalue of p can ever become zero (or negative):
the nonnegativity of p is preserved.

e The above holds both forward and backwards in
time!

Nuovo Cimento B, 82, 169 (1984); 87, 77 (1985)
G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009

References available at: www.quantumthermodynamics.org




A dynamical system on a metric space (G, d) is a map-
ping v : R™ x G — G such that, for all £, s in ®" and
all v in G:
o u(-,v): BT — @G is continuous;
e u(t,-): ¢ — G is continuous;
o u(0,7) =
* U (t + 8,7 } =u (t'l u [:.‘:F._, i .} }-
Dynamical group, not
}.’ g. Ps The dynamical system is determined by a one-
]llSt a semigroup ! parameter semigroup A(t) : G — § such that, for all
tin BT and all v in G:

The inverse map exists 5 o
o Alt)y = ult,v);

Mathematical o therefore, A(t)A(s) = A(t + s).
reversibility

If the inverse map A(t)™! exists, the dynamical map
can be extended to a group by

o A(—t)=A(t)"L

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




Entropy increase, metric, and uncertainty

quant-ph/0509116
quant-ph/0511091
quant-ph/0612215
Phys.Rev.E, 73, 026113 (2006)
Entropy, 10, 160 (2008)
Rep.Math.Phys. (2009)
quant-ph/0907.1977

G.P. Beretta,

Going back to the Fisher-Rao metric, when [H, p| = 0,

dl = 2"\/;}’,0 . ;}/D dt = dt/TD

_ 1 d(S) gt
ket dt

1 d(S)
- kpT dl

dt

VIAMAM)

— dt

knT

_ ! \/ (ASAS) - <M‘;QAH> dt

kT

which defines also the intrinsic dissipative time 7p such
that

(ASAS) 73 > (AMAM) 75 = (kgT)?

(a general time-entropy uncertainty relation).

Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




Found.Phys., 17, 365 (1987)
quant-ph-0112046
Rep.Math.Phys. (2009)

Onsager reciprocity everywhere

Any nonequilibrium p can be written as

_ Bexp(= 2, ;:X)B
TrBexp(—>_, fiX;)

P

where the set {1, X;} spans the real space of hermitian
operators on (H), and B = B?. Hence,

(Xj) = Tr(pX;)
(S) =kefo+ ke D, f; (Xj)
d(S)
O(X)

where hpf; =
(Xiz;)

may be interpreted as a “generalized affinity” or force,
and

(Xj)p="p-X,  with X} = 27X

is the “dissipative part” of rate of change of (X).
find

(Xi)p = fi Lij(p)



Onsager reciprocity everywhere

For all states, however far from stable equilibrium,

(Xi)p = Z fiLij(p)

Linear interrelations
between rates and

where the coefficients (nonlinear in p) form a symmetric, affinities.
non-negative definite Gram matrix [{L;;(p)}],

But the Lij’s are
nonlinear
— Li(p) functionals of p

(AX;AX,) (AHAX,)

1 | (AX;AH) (AHAH)
7(p) (AHAH)

Lz'j (p) =

Entropy generation a quadratic form of the affinities

% = ks Z Z fifiLij(p)

B It [{L:;(p)}] is positive definite,
Found.Phys., 17, 365 (1987) .
quant-ph-0112046 fi = Z;Li:-‘ (P)(Xip
Rep.Math.Phys. (2009)
quant-ph/0907.1977

Entropy generation a quadratic form of the affimities
quadratic form of the dissipative rates

G.P. Beretta, d_

d




Part 111

Reduces to the Schroedinger equation for pure density operators

The theory 1s a generalization of Quantum Mechanics which does not
contradict it in any way

The second law as a theorem about the stability of the equilibrium states

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




equilibrium states, limit cycles..

The rate of entropy generation is zero (and the evolu-
tion is Schrodinger-von Neumann) iff vp = 0, i.e., when

S" lies in L(~, H"). Then,

 DBexp(-H/k:T)B 9
p= (B exp(—H /Il T) B for some B =B

where T = 0 = /(AHAH)/(ASAS).

These nondissipative states are

..and e cquilibrium states if [B, H] = 0;

the Second Law e mixed limit cycles if [B, H] # 0 and TrB > 1, then

as a theorem! B(t) =U(t)BO)U™(2):

e pure limit cycles if [B,H]| # 0 and TrB = 1 (the
usual Schrodinger dynamics of standard QM), then
quant-ph-0112046 p(t) = U(t)p(0)UL(¢).
quant-ph-0612215

The only equilibrium states dynamically stable (ac-
quant-ph-0511091

cording to Lyapunov) are those with B = I. All the other
Phys.Rev.E, 73, 026113 (2006) are unstable. This is the Hatsopoulos-KKeenan statement
of the Second Law: for each given value of the mean

G.P. Beretta energy (E) there is one and only one stable equilibrium
’ state.




Phys.Rev.E, 73, 026113 (2006) _ ojexp(—p(E, 0)¢)
S, 6 exp(—pr(E, 8) &)

lowest entropy and unstable equilibrium states

_ exp(—e;/kT(E))
351 exp(-ei/kT(E))
(canonical distribution)

stable equilirtum states

G.P. Beretta, r Institute, Sept.27-Oct.2, 2009

References available at: www.quantumthermodynamics.org




Part 111

* Dynamical group, not a semi-group

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




N=4
[H.p/=0

Phys.Rev.E, 73, 026113 (2006)
G.P. Beretta,

te (highest entropy)

entropy
generation

Stable equilibrium sta

time t/t
Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




te (highest entropy)

Strong causality:

given any initial state the
trajectory 1s unique and
defined for -0 <t <+o0

We can trace back the

entropy
lowest entropy ' generation
‘ancestral’ state .

& *‘ow N Phys.Rev.E, 73, 026113 (2006) —6 _‘_l' —2
3 > G.P. Beretta, time t/ 009

Stable equilibrium sta




time-entropy
uncertainty
bound

re (highest entropy)

—_ T,I/T[,l
- TR, entropy
C— T/T-Ez 4

== T/TE,

entropy
generation

Stable equilibrium sta

-6 -4 =2
dimensionless time, ¢/7 time t/t




Part 1V

e Structure of the nonlinear dynamical law for composite systems

» Locality and separability

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




Dealing with composite systems

In linear dynamics, the equation of motion remains

and the structure of the Hamiltonian
H=Hys®2Ip+I4s®2Hg+ Vag
generates the proper unitary time evolution.

In our nonlinear dynamics, the “proper” time evolution
obtains only if the structure of the system is embedded
explicitly also in the dynamical equation itself:

——{(AM)*, pa} pp+ pa®@ {(AM)", pp}

1
2ksTR

Yo ZkET

Nuovo Cimento B, 87, 77 (198
quant-ph-0112046
Rep.Math.Phys. (2009)

[H Pl 5 {ﬁM p}

would entail unphysical results such as superluminal en-
AT crey exchange even in the absence of interactions!




o 1

-[H, pl+ {(AM)?, pa}e pp+ pa @ {(AM)", pp}

where 74, 7 are local characteristic times; for J = A. B

(AM)" = (AS)” — (AH)" /8,
0; = (AH)'(AH)") /((AS)" (AH)”)

The following "locally perceived” energy and entropy op-
Ts~will determine the ”steepest locally perceis !

Each local dissipative term separately “conserves” the
Nuovo Cimento B, 87, 77 (1985) overall system’s mean energy (H) = Tr(pH). Each sub-
quant-ph-0112046 system’s contribution to the overall system’s rate of en-
Rep.Math.Phys. (2009) tropy change is nonnegative definite

1
keTB

sy 1
G.P. Beretta, At —

((AM)A(AM)A) + (AM)B(AM)B)

kBTA



o 1

-[H, pl+ {(AM)?, pa}e pp+ pa @ {(AM)", pp}

where 74, 7 are local characteristic times; for J = A. B

(AM)" = (AS)” — (AH)" /8,
0; = (AH)'(AH)") /((AS)" (AH)”)

The following "locally perceived” energy and entropy op-
Ts~will determine the ”steepest locally perceis !

if p #py @ po
does not imply

dpy _
P (F'A)

Each local dissipative term separately “conserves” the
Nuovo Cimento B, 87, 77 (1985) overall system’s mean energy (H) = Tr(pH). Each sub-
quant-ph-0112046 system’s contribution to the overall system’s rate of en-
Rep.Math.Phys. (2009) tropy change is nonnegative definite

1
keTB

sy 1
G.P. Beretta, At —

((AM)A(AM)A) + (AM)B(AM)B)

kBTA



Rediscoveries

Epilogue

Measurable effects?

Summary

G.P. Beretta,

Conclusions

Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org



“rediscoveries” (15 years later)

e In 2001, S. Gheorghiu-Svirschevski [Phys.Rev.A,
63, 022105-054102 (2001)] re-derived our equation
from the variational principle

d(S) d(H)

ma subject to
T . di

—0, TP _ and 5p4p = ¢
dt
where ¢? is some real functional. Introducing La-

grange multipliers
LZ;;'D*SI— )t]'::r'ﬂ"’:r’- AH"'TD‘HI-)"«T';TD":TD
Maximizing yields exactly our dynamics equation.

e In 2001, A. Caticha [AIP Conf.Proc., 568, 72
(2001)] formally rederives steepest entropy ascent
dynamical equations, in the case of a continuous
(non quantum) probability distribution.

e In 2002, M. Lemanska and Z. Jaeger [Physica D,
170, 72 (2002)] attempt a similar approach, without
changing variables to square-root probabilities. As
a result, their equation diverges when some proba-
bility is zero.

Unfortunately, none of them acknowledged our work, Sept.27-Oct.2, 2009
except Gheorghiu-Svirschevski in an addendum.

odynamics.org
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NATURE VOL. 316 4 JULY 1985

Uniting mechanics and statistics

An adventurous scheme which seeks to incorporate thermodynamics into the quantum laws of motion
may end arguments about the arrow of time — but only if it works.

NEWSANDVEWS—— ———

Uniting mechanics and statistics

laws of motion

None of this implies that the arguments
about the reconciliation between micro-
scopic reversibility and macroscopic ir
reversibility will now be stilled. Indeed,
while for as long as the present justifica-

tion of the basis of statistical mechanics
holds water, there will be many who say
that what Beretta et al. have done is strict-
ly unnecessary. But this is a field in which
the proof of the pudding is in the eating.
John Maddox

Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




resonance fluorescence

O detector

off

Irreversible internal redistribution
implies
asymmetries
in the spectral distribution

Int.J. Theor.Phys., 24, 1233 (1985)
G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009

References available at: www.quantumthermodynamics.org




laser beam (“‘probe™)

absorption and
stimulated emission

O detector

- ——8-0.0
L eeeee § = 0.1
0} |

Irreversible internal redistribution
implies
attenuation
of stimulated emission

Negative values

= stimulated emission

Int.J. Theor.Phys., 24, 1233 (1985)
G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009

References available at: www.quantumthermodynamics.org




Conclusions - “an ontic role of the density operator makes
Quantum Thermodynamics fundamental”

Nonlinearity requires a non-universal formal structure of the dynamical law. The
structure 1s "model dependent": like the Hamiltonian, it depends on what
subsystems are assumed as elementary and separable, i.e., non communicating.

Standard (pure state) quantum mechanics emerges as the (mildly unstable)
boundary solutions (limit cycles) of the more general theory

The theory 1s conceptually controversial, but mathematically robust, awaits
experimental validation and philosophycal scrutiny

G.P. Beretta, Perimeter Institute, Sept.27-Oct.2, 2009
References available at: www.quantumthermodynamics.org




	Mechanics and Thermodynamics fundamentally united by density operators with an ontic status obeying a locally maximum entropy production dynamics. But at what price?
	The Keenan school of Thermodynamics�from engineering, to physics, to mathematical-physics, and back!
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67

