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ABSTRACT

What is the physical significance of entropy? What is the physical origin of irreversibility? Do entropy and
irreversibility exist only for complex and macroscopic systems?

Most physicists still accept and teach that the rationalization of these fundamental questions is given by Statistical
Mechanics. Indeed, for everyday laboratory physics, the mathematical formalism of Statistical Mechanics (canoni-
cal and grand-canonical, Boltzmann, Bose-Einstein and Fermi-Dirac distributions) allows a successful description of
the thermodynamic equilibrium properties of matter, including entropy values. However, as already recognized by
Schrédinger in 1936, Statistical Mechanics is impaired by conceptual ambiguities and logical inconsistencies, both in
its explanation of the meaning of entropy and in its implications on the concept of state of a system.

An alternative theory has been developed by Gyftopoulos, Hatsopoulos and the present author to eliminate these
stumbling conceptual blocks while maintaining the mathematical formalism so successful in applications. To resolve
both the problem of the meaning of entropy and that of the origin of irreversibility we have built entropy and
irreversibility into the laws of microscopic physics. The result is a theory, that we call Quantum Thermodynamics,
that has all the necessary features to combine Mechanics and Thermodynamics uniting all the successful results of
both theories, eliminating the logical inconsistencies of Statistical Mechanics and the paradoxes on irreversibility, and
providing an entirely new perspective on the microscopic origin of irreversibility, nonlinearity (therefore including
chaotic behavior) and maximal-entropy-generation nonequilibrium dynamics.

In terms of mathematical formalism, Quantum Thermodynamics differs from Statistical Mechanics mainly in the
equation of motion which is nonlinear, even though it reduces to the Schrodinger equation for all the states of
Quantum Mechanics, i.e., all zero-entropy states.

In terms of physical meaning, instead, the differences are drastic. The significance of the state operator of Quantum
Thermodynamics is entirely different from that of the density operator of Statistical Mechanics, even though the two are
mathematically equivalent, and not only because they obey different equations of motion. Quantum Thermodynamics
postulates that the set of true quantum states of a system is much broader than that contemplated in Quantum
Mechanics.

Conceptually, the augmented set of true quantum states is a revolutionary postulate with respect to traditional
quantum physics, although from the point of view of statistical mechanics practitioners the new theory is not as
traumatic as it seems. Paradoxically, the engineering thermodynamics community has already implicitly accepted the
fact that entropy, exactly like energy, is a true physical property of matter and, therefore, the range of ’true states’ of
a system is much broader than that of Mechanics (zero entropy), for it must include the whole set of nonzero-entropy
states.

In this paper we discuss the background and formalism of Quantum Thermodynamics including its nonlinear equation
of motion and the main general results. Our objective is to show in a not-too-technical manner that this theory provides
indeed a complete and coherent resolution of the century-old dilemma on the meaning of entropy and the origin
of irreversibility, including Onsager reciprocity relations and maximal-entropy-generation nonequilibrium dynamics,
which we believe provides the microscopic foundations of heat, mass and momentum transfer theories, including all
their implications such as Bejan’s Constructal Theory of natural phenomena.
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1 INTRODUCTION

There is no dispute about the results, the mathematical
formalism, and the practical consequences of the theories of
Mechanics and Equilibrium Thermodynamics, even thou-
gh their presentations and derivations still differ essentially
from author to author in logical structure and emphasis.

Both Mechanics (Classical and Quantum) and Equilibrium
Thermodynamics have been developed independently of
one another for different applications, and have enjoyed
innumerable great successes. There are no doubts that the
results of these theories will remain as milestones of the
development of Science.
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librium Thermodynamics give rise to an apparent incom-
patibility of results: a dilemma, a paradox that has con-
cerned generations of scientists during the last century
and still remains unresolved. The problem arises when
the general features of kinematics and dynamics in Mecha-
nics are confronted with the general features of kinematics
and dynamics implied by Equilibrium Thermodynamics.
These features are in striking conflict in the two theories.
The conflict concerns the notions of reversibility, availa-
bility of energy to adiabatic extraction, and existence of
stable equilibrium states.[1-2] Though perhaps presented
with emphasis on other related conflicting aspects, the ap-
parent incompatibility of the theories of Mechanics and
Equilibrium Thermodynamics is universally recognized by
all scientists that have tackled the problem.[3] What is not
universally recognized is how to rationalize the unconfor-
table paradoxical situation.[1]

The rationalization attempt better accepted within the
physical community is offered by the theory of Statistical
Mechanics. Like several other minor attempts of rationa-
lization,[1] Statistical Mechanics stems from the premise
that Mechanics and Equilibrium Thermodynamics occu-
py different levels in the hierarchy of physical theories:
they both describe the same physical reality, but Mecha-
nics (Quantum) is concerned with the true fundamental
description, whereas Equilibrium Thermodynamics copes
with the phenomenological description — in terms of a limi-
ted set of state variables — of systems with so many degrees
of freedom that the fundamental quantum mechanical de-
scription would be overwhelmingly complicated and hardly
reproducible.

When scrutinized in depth, this almost universally ac-
cepted premise and, therefore, the conceptual foundations
of Statistical Mechanics are found to be shaky and un-
sound. For example, they seem to require that we abandon
the concept of state of a system,[4] a keystone of traditional
physical thought. In spite of the lack of a sound conceptual
framework, the mathematical formalism and the results
of Statistical Mechanics have enjoyed such great successes
that the power of its methods have deeply convinced al-
most the entire physical community that the conceptual
problems can be safely ignored.

The formalism of Statistical Mechanics has also provi-
ded mathematical tools to attempt the extension of the
results beyond the realm of thermodynamic equilibrium.
In this area, the results have been successful in a variety
of specific nonequilibrium problems. The many attempts
to synthetize and generalize the results have generated im-
portant conclusions such as the Boltzmann equation, the
Onsager reciprocity relations, the fluctuation- dissipation
relations, and the Master equations. But, again, the weak-
ness of the conceptual foundations has forbidden so far the
development of a sound unified theory of nonequilibrium.

The situation can be summarized as follows. On the
one hand, the successes of Mechanics, Equilibrium Ther-
modynamics, and the formalism of Statistical Mechanics
for both equilibrium and nonequilibrium leave no doubts
on the validity of their end results. On the other hand,
the need remains of a coherent physical theory capable of
encompassing these same results within a sound unified
unambiguous conceptual framework.

that there is no such need because there is no experimental
observation that Statistical Mechanics cannot rationalize.
But the problem at hand is not that there is a body of ex-
perimental evidence that cannot be regularized by current
theories. Rather, it is that current theories have been deve-
loped and can be used only as ad-hoc working tools, succes-
sful to regularize the experimental evidence, but incapable
to resolve conclusively the century-old fundamental que-
stions on the physical roots of entropy and irreversibility,
and on the general description of nonequilibrium. These
fundamental questions have kept the scientific community
in a state of tension for longer than a century and cannot
be safely ignored.

In short, the irreversibility paradox, the dilemma on the
meaning of entropy, and the questions on the nature of no-
nequilibrium phenomena remain by and large unresolved
problems. The resolution of each of these problems requi-
res consideration of all of them at once, because they are
all intimately interrelated.

The notion of stability of equilibrium has played and
will play a central role in the efforts to fill the gap. Of
the two main schools of thought that during the past few
decades have attacked the problem, the Brussels school has
emphagized the role of instability and bifurcations in self-
organization of chemical and biological systems, and the
MIT school has emphasized that the essence of the second
law of Thermodynamics is a statement of existence and
uniqueness of the stable equilibrium states of a system.

The recognition of the central role that stability plays
in Thermodynamics[5] is perhaps one of the most funda-
mental discoveries of the physics of the last four decades,
for it has provided the key to a coherent resolution of the
entropy-irreversibility-nonequilibrium dilemma. In this ar-
ticle: first, we review the conceptual and mathematical fra-
mework of the problem; then, we discuss the role played by
stability in guiding towards a coherent resolution; and, fi-
nally, we discuss the resolution offered by the new theory —
Quantum Thermodynamics — proposed by the MIT school
about twenty years ago (and still only partly recognized by
the orthodox physical community, see Ref. 18).

Even though Quantum Thermodynamics is based on
conceptual premises that are indeed quite revolutionary
and entirely different from those of Statistical Mechanics,
we cannot overemphasize that the new theory retains the
whole mathematical formalism of Statistical Mechanics —
the formalism used by physics practitioners every day —
but reinterprets it within a unified conceptual and mathe-
matical structure in an entirely new way which resolves the
open questions and opens new vistas on the fundamental
description of nonequilibrium, offering a powerful general
equation for irreversibile dynamics.

2 THE COMMON BASIC CONCEPTUAL
FRAMEWORK OF MECHANICS AND
THERMODYNAMICS

In this section, we establish the basic conceptual fra-
mework in which both Mechanics and Equilibrium Ther-
modynamics are embedded. To this end, we define the
basic terms that are traditional keystones of the kinematic
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essential in the discussion that follows. Specifically, we re-
view the concepts of constituent, system, property, state,
equation of motion, process, reversibility, equilibrium, and
stability of equilibrium.[6]

The idea of a constituent of matter denotes a specific
molecule, atom, ion, elementary particle, or field, that for
a given description is considered as indivisible. Within a
given level of description, the constituents are the elemen-
tary building blocks. Clearly, a specific molecule may be a
constituent for the description of a certain class of pheno-
mena, but not for other phenomena, in which its internal
structure may not be ignored and, therefore, a different
level of description must be chosen.

The kind of physical laws we are concerned with here
are the most fundamental, i.e., those equally applicable at
every level of description, such as the great conservation
principles of Mechanics.

2.1 Kinematics

A system is a (separable) collection of constituents de-
fined by the following specifications: (a) the type and the
range of values of the amount of each constituent; (b) the
type and the range of values of each of the parameters whi-
ch fully characterize the ezxternal forces exerted on the con-
stituents by bodies other than the constituents, for exam-
ple, the parameters that describe the geometrical shape
of a container; and (c) the internal forces between consti-
tuents such as the forces between molecules, the forces that
promote or inhibit a chemical reaction, the partitions that
separate constituents in one region of space from consti-
tuents in another region, or the interconnections between
separated parts. Everything that is not included in the sy-
stem is called the environment or the surroundings of the
system.

At any instant in time, the values of the amounts of ea-
ch type of constituent and the parameters of each external
force do not suffice to characterize completely the condi-
tion of the system at that time. We need, in addition, the
values of all the properties at the same instant in time. A
property is an attribute that can be evaluated by means
of a set of measurements and operations which are perfor-
med on the system with reference to one instant in time
and result in a value — the value of the property — inde-
pendent of the measuring devices, of other systems in the
environment, and of other instants in time. For example,
the instantaneous position of a particular constituent is a
property.

Some properties in a given set are independent if the va-
lue of each such property can be varied without affecting
the value of any other property in the set. Other proper-
ties are not independent. For example, speed and kinetic
energy of a molecule are not independent properties.

The values of the amounts of all the constituents, the
values of all the parameters, and the values of a complete
set of independent properties encompass all that can be
said at an instant in time about a system and about the
results of any measurement or observation that may be
performed on the system at that instant in time. As such,
the collection of all these values constitutes a complete
characterization of the system at that instant in time: the

2.2 Dynamics

The state of a system may change with time either spon-
taneously due to its internal dynamics or as a result of inte-
ractions with other systems, or both. Systems that cannot
induce any effects on each other’s state are called isolated.
Systems that are not isolated can influence each other in a
number of different ways.

The relation that describes the evolution of the state
of a system as a function of time is called the equation of
motion.

In classical thermodynamics, the complete equation of
motion is not known. For this reason, the description of a
change of state is done in terms of the end states, i.e., the
initial and the final states of the system, and the effects of
the interactions that are active during the change of sta-
te. Each mode of interaction is characterized by means
of well-specified effects, such as the net exchanges of some
additive properties across the boundaries of the interacting
systems. Even though the complete equation of motion is
not known, we know that it must entail some important
conclusions traditionally stated as the laws of thermody-
namics. These laws reflect some general and important
facets of the equation of motion such as the conditions
that energy is conserved and entropy cannot be destroyed.

The end states and the effects of the interactions associa-
ted with a change of state of a system are said to specify a
process. Processes may be classified on the basis of the mo-
des of interaction they involve. For example, a process that
involves no influence from other systems is called a sponta-
neous process. Again, a process that involves interactions
resulting in no external effects other than the change in
elevation of a weight (or an equivalent mechanical effect)
is called a weight process.

Processes may also be classified on the basis of whe-
ther it is physically possible to annull all their effects. A
process is either reversible or irreversible. A process is re-
versible if there is a way to restore both the system and its
environment to their respective initial states, i.e., if all the
effects of the process can be annulled. A process is irre-
versible if there is no way to restore both the system and
its environment to their respective initial states.

2.3 Types of States

Because the number of independent properties of a sy-
stem is very large even for a system consisting of a single
particle, and because most properties can vary over a large
range of values, the number of possible states of a system
is very large. To facilitate the discussion, we classify the
states of a system on the basis of their time evolution, i.e.,
according to the way they change as a function of time. We
classify states into four types: unsteady, steady, nonequi-
librium, and equilibrium. We further classify equilibrium
states into three types: unstable, metastable, and stable.

Unsteady is a state that changes with time as a result of
influences of other systems in its environment. Steady is a
state that does not change with time despite the influences
of other systems in the environment. Nonegquilibrium is a
state that changes spontaneously as a function of time, i.e.,



Atth EXTh CovsressaMNarienalessullakhasimissions delibilore - glrad1Givena A0 a Reafwedong sthiv¥itocharacterizing th8

is isolated from its environment. FEgquilibrium is a state
that does not change as a function of time if the system is
isolated, i.e., a state that does not change spontaneously.
Unstable equilibrium is an equilibrium state which, upon
experiencing a minute and short lived influence by a system
in the environment, proceeds from then on spontaneously
to a sequence of entirely different states. Metastable equi-
librium is an equilibrium state that may be changed to an
entirely different state without leaving net effects in the
environment of the system, but this can be done only by
means of interactions which have a finite temporary effect
on the state of the environment. Stable equilibrium is an
equilibrium state that can be altered to a different state on-
ly by interactions that leave net effects in the environment
of the system.

Starting either from a nonequilibrium or from an equi-
librium state that is not stable, a system can be made to
cause in its environment a change of state consisting solely
in the raise of a weight. In contrast, if we start from a sta-
ble equilibrium state such a raise of a weight is impossible.
This impossibility is one of the consequences of the first
law and the second law of thermodynamics.[6]

3 THE BASIC MATHEMATICAL
FRAMEWORK OF QUANTUM THEORY

The traditional structure of a physical theory is in terms
of mathematical entities associated with each basic con-
cept, and interrelations among such mathematical entities.
In general, with the concept of system is associated a me-
tric space, and with the concept of state an element of a
subset of the metric space called the state domain. The
different elements of the state domain represent all the dif-
ferent possible states of the system. With the concept of
property is associated a real functional defined on the state
domain. Different properties are represented by different
real functionals, and the value of each property at a given
state is given by the value of the corresponding functional
evaluated at the element in the state domain representing
the state. Some of the functionals representing properties
of the system may depend also on the amounts of consti-
tuents of the system and the parameters characterizing the
external forces.

3.1 Quantum Mechanics

In Quantum Mechanics, the metric space is a Hilbert
space H (dimH < o00), the states are the elements ¢ of
H, the properties are the real linear functionals of the
form (1, A¢) where (-,-) is the scalar product on H and
A some linear operator on . The composition of the sy-
stem is embedded in the structure of the Hilbert space.
Specifically,

H=H'ON @ -0 HM (1)

means that the system is composed of M distinguishable
subsystems which may, for example, correspond to the dif-
ferent constituents. If the system is composed of a type
of particle with amount that varies over a range, then a
functional on the Hilbert space represents the number of

external forces may appear as external parameters in some
property functionals. For example, the shape of a contai-
ner is embedded in the position functionals as the contour
outside which the functionals are identically null. The in-
ternal forces among constituents are embedded in the ex-
plicit form of the Hamiltonian operator H which gives rise
to the energy functional (¢, Hy) and determines the dyna-
mics of the system by means of the Schridinger equation
of motion i )
i
pri L (2)
Because the solution of the Schrédinger equation can be
written as

»(t) = U®)p(0) , 3)

where U (¢) is the unitary operator
U(t) = exp(—itH /) , (4)

it is standard jargon to say that the dynamics in Quantum
Mechanics is unitary.

3.2 Statistical Mechanics

The formalism of Statistical Mechanics requires as me-
tric space the space of all self-adjoint linear operators on H,
where 7 is the same Hilbert space that Quantum Mecha-
nics associates with the system. The “states” are the ele-
ments p in this metric space that are nonnegative-definite
and unit-trace. We use quotation marks because in Stati-
stical Mechanics these elements p, called density operators
or statistical operators, are interpreted as statistical indica-
tors. Each density operator is associated with a statistical
mixture of different “pure states” (read “true states”) each
of which is represented by an idempotent density operator
p (p* = p) so that p is a projection operator, p = Py, onto
the one-dimensional linear span of some element ¢ in H
and, as such, identifies a precise (true) state of Quantum
Mechanics.

The interpretation of density operators as statistical in-
dicators associated with statistical mixtures of different
quantum mechanical states, summarizes the almost uni-
versally accepted interpretation of Statistical Mechanics,[7]
but is fraught with conceptual inconsistencies. For exam-
ple, it stems from the premise that a system is always in
one (possibly unknown) state, but implies as a logical con-
sequence that a system may be at once in two or even more
states.[4] This self-inconsistency mines the very essence of
a keystone of traditional physical thought: the notion of
state of a system. A most vivid discussion of this point is
found in Ref. 4. For lack of better, the inconsistency is
almost universally ignored, probably with the implicit mo-
tivation that “perhaps the interpretation has some funda-
mental faults but the formalism is undoubtedly successful”
at regularizing physical phenomena. So, let us summarize a
few more points of the successful mathematical formalism.

The “states”, “mixed” (p?> # p) or “pure” (p? = p),
are the self-adjoint, nonnegative-definite, unit-trace linear
operators on 7. The “properties” are the real functionals
defined on the “state” domain, for example, the functionals
of the form TrAp where A is some linear operator on H and
Tr denotes the trace over H.
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the stable equilibrium states of Thermodynamics have a
mathematical expression that depends on the structure of
the system. For a system with no structure such as a single-
particle system, the expression is

_ _exp(=fH)
P~ Trow(-5H) @

where H is the Hamiltonian operator giving rise to the
energy functional TrHp and S is a positive scalar. For a
system with a variable amount of a single type of particle,
the expression is

_ exp(—=BH +vN)
~ Trexp(—8H +vN)’

(6)

where N is the number operator giving rise to the number-
of-particle functional TrNp and v is a scalar. For a system
with n types of particles each with variable amount, the
expression is

_ ep(—BH+ XL, uily)
Trexp(—BH + > i, vilN;)

(7)

If the system is composed of M distinguishable subsy-
stems, each consisting of n types of particles with variable
amounts, the structure is embedded in that of the Hilbert
space (Equation 1) and in that of the Hamiltonian and the
number operators,

M
H=Y HJ)eIJ)+V, (8)
J=1
M
Ni=S N eI, (9)
J=1

where H(J) denotes the Hamiltonian of the J-th subsy-
stem when isolated, V' denotes the interaction Hamiltonian
among the M subsystems, N;(J) denotes the number-of-
particles-of-i-th-type operator of the J-th subsystem, for

i =1,2,...,n and I(J) denotes the identity operator on

the Hilbert space H’ composed by the direct product of
the Hilbert spaces of all subsystems except the J-th one, so
that the Hilbert space of the overall system H = H’ @ H”’
and the identity operator I = I(J) ® I(J).

Of course the richness of this mathematical formalism
goes well beyond the brief summary just reported. The
results of Equilibrium Thermodynamics are all recovered
with success and much greater detail if the thermodynamic

entropy is represented by the functional
—kp Trplnp , (10)

where k is Boltzmann’s constant. The arguments that lead
to this expression and its interpretation within Statisti-
cal Mechanics will not be reported because they obviously
suffer the same incurable conceptual desease as the whole
accepted interpretation of Statistical Mechanics. But the
formalism works, and this is what counts to address our
problem.

The conceptual framework of Statistical Mechanics be-
comes even more unsound when the question of dynamics
is brought in. Given that a density operator p represents
the “state” or rather the “statistical description” at one
instant in time, how does it evolve in time? Starting with
the (faulty) statistical interpretation, all books invariably
report the “derivation” of the quantum equivalent of the
Liouville equation, i.e., the von Neumann equation

dp i
L =__[H 11

where [H,p] = Hp — pH. The argument starts from the
equation induced by the Schrédinger equation (Equation
2) on the projector Py, = |y){y|, i.e.,

dP, i

= Pl (12)
Then, the argument follows the interpretation of p as a
statistical superposition of one-dimensional projectors su-
ch as p = >, w;Py,. The projectors Py, represent the
endogenous description of the true but unknown state of
the system and the statistical weights w; represent the exo-
genous input of the statistical description. Thus, if each
term Py, of the endogenous part of the description follo-
ws Equation 12 and the exogenous part is not changed,
i.e., the w;’s are time invariant, then the resulting overall
descriptor p follows Equation 11.

Because the solutions of the von Neumann equation are

just superpositions of solutions of the Schridinger equation
written in terms of the projectors, i.e.,

Pyy = @) @)] = [U®)HO) (U (©)(0)]

= U0 @O)UT(t) = U Pyo)U ™' (t)
we have

p(t) =U®)p(O) U (t) (13)

where UT(t) = U~'(t) is the adjoint of the unitary opera-
tor in Equation 4 which generates the endogenous quan-
tum dynamics. It is again standard jargon to say that the
dynamics of density operators is unitary.

The von Neumann equation or, equivalently, Equation
13, is a result almost universally accepted as an indispensa-
ble dogma. But we should recall that it is fraught with the
same conceptual inconsistencies as the whole intepretation
of Statistical Mechanics because its derivation hinges on
such interpretation.

Based on the conclusion that the density operators evol-
ve according to the von Neumann equation, the functional
—kp Trpln p and, therefore, the “entropy” is an invariant
of the endogenous dynamics.

Here the problem becomes delicate. On the one hand,
the “entropy” functional —kg Trpln p is the key to the suc-
cessful regularization of the results of Equilibrium Ther-
modynamics within the Statistical Mechanics formalism.
Therefore, any proposal to represent the entropy by means
of some other functional[8] that increases with time under
unitary dynamics is not acceptable unless it is also shown
what relation the new functional bears with the entropy
of Equilibrium Thermodynamics. On the other hand, the
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se spontaneously as a result of an irreversible process, is
confronted with the invariance of the “entropy” functio-
nal —kp Trpln p under unitary dynamics. This leads to
the conclusion (within Statistical Mechanics) that entropy
generation by irreversibility cannot be a result of the endo-
genous dynamics and, hence, can only result from changes
in time of the exogenous statistical description. We are left
with the unconfortable conclusion that entropy generation
by irreversibility is only a kind of statistical illusion.

4 TOWARDS A BETTER THEORY

For a variety of ad-hoc reasons — statistical, phenome-
nological, information- theoretic, quantum-theoretic, con-
ceptual — many investigators have concluded that the von
Neumann equation of motion (Equation 11) is incomple-
te, and a number of modification have been attempted.[9]
The attempts have resulted in ad-hoc tools valid only for
the description of specific problems such as, e.g., the none-
quilibrium dynamics of lasers. However, because the un-
derlying conceptual framework has invariably been that
of Statistical Mechanics, none of these attempts has re-
moved the conceptual inconsistencies. Indeed, within the
framework of Statistical Mechanics a modification of the
von Neumann equation could be justified only as a way to
describe the exogenous dynamics of the statistical weights,
but this does not remove the conceptual inconsistencies.

The Brussels school has tried a seemingly different ap-
proach:[8] that of constructing a functional for the entro-
py, different from —kpg Trpln p, that would be increasing
in time under the unitary dynamics generated by the von
Neumann equation. The way this is done is by intro-
ducing a new “state” g obtained from the usual density
operator p by means of a transformation, p = A~1(L)p,
where A~!p is a superoperator on the Hilbert space
of the system defined as a function of the Liouville supe-
roperator L- = [H,-]/h and such that the von Neumann
equation for p, dp/dt = —iLp, induces an equation of mo-
tion for p, dp/dt = —iA=*(L)LA(L)p, as a result of which
the new “entropy” functional —kp Trpln g increases wi-
th time. Formally, once the old “state” p is substituted
with the new “state” p, this approach seems tantamount
to an attempt to modify the von Neumann equation, ca-
pable therefore only to describe the exogenous dynamics
of the statistical description but not to unify Mechanics
and Equilibrium Thermodynamics any better than done
by Statistical Mechanics.

However, the language used by the Brussels school in
presenting this approach during the last decades has gra-
dually adopted a new important element with growing con-
viction: the idea that entropy is a microscopic quantity
and that irreversibility should be incorporated in the mi-
croscopic description. However, credit for this new and
revolutionary idea, as well as its first adoption and cohe-
rent implementation, must be given to the pioneers of the
MIT school,[10] even though the Brussels school might ha-
ve reached this conclusion through an independent line of
thought. This is shown by the quite different developments
the idea has produced in the two schools. Within the re-
cent discussion on quantum entaglement and separability,

important future applications involving nanometric devi-
ces, fast switching times, clock synchronization, superden-
se coding, quantum computation, teleportation, quantum
cryptography, etc, the question of the existence of “sponta-
neous decoherence” at the microscopic level is emerging as
a fundamental test of standard Quantum Mechanics[18].

As we will see, the implementation proposed by the MIT
school has provided for the first time an alternative to Sta-
tistical Mechanics capable of retaining all the successful
aspects of its formalism within a sound conceptual fra-
mework free of inconsistencies and drastic departures from
the traditional structure of a physical theory, in particular,
with no need to abandon such keystones of traditional phy-
sical thought as the concept of trajectory and the principle
of causality.

5 A BROADER QUANTUM KINEMATICS

In their effort to implement the idea that entropy is a
microscopic nonstatistical property of matter in the same
sense as energy is a microscopic nonstatistical property,
Hatsopoulos and Gyftopoulos[10] concluded that the state
domain of Quantum Mechanics is too small to include all
the states that a physical system can assume. Indeed, the
entire body of results of Quantum Mechanics has been so
successful in describing empirical data that it must be re-
tained as a whole. A theory that includes also the results
of Equilibrium Thermodynamics and the successful part
of the formalism of Statistical Mechanics must necessarily
be an augmentation of Quantum Mechanics, a theory in
which Quantum Mechanics is only a subcase.

Next came the observation that all the successes of the
formalism of Statistical Mechanics based on the density
operators p are indeed independent of their statistical in-
terpretation. In other words, all that matters is to retain
the mathematical formalism, freeing it from its troubleso-
me statistical interpretation.

The great discovery was that all this can be achieved if
we admit that physical systems have access to many mo-
re states than those described by Quantum Mechanics and
that the set of states is in one-to-one correspondence wi-
th the set of self-adjoint, nonnegative-definite, unit-trace
linear operators p on the same Hilbert space H that Quan-
tum Mechanics associates with the system (mathemati-
cally, this set coincides with the set of density operators
of Statistical Mechanics). Figure 1 gives a pictorial idea
of the augmentation of the state domain implied by the
Hatsopoulos-Gyftopoulos kinematics. The states conside-
red in Quantum Mechanics are only the extreme points of
the set of states a system really admits.

In terms of interpretation, the conceptual inconsisten-
cies inherent in Statistical Mechanics are removed. The
state operators p are mathematically identical to the den-
sity operators of Statistical Mechanics, but now they repre-
sent true states, in exactly the same way as a state vector
1) represents a true state in Quantum Mechanics. Stati-
stics plays no more role, and a linear decomposition of an
operator p has no more physical meaning than a linear
decomposition of a vector 7 in Quantum Mechanics or a
Fourier expansion of a function. “Monsters”[4] that are at
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Figure 1: Pictorial representation of the augmented state
domain implied by the Hatsopoulos-Gyftopoulos kinema-
tics with respect to the state domain of standard Quantum
Mechanics.

once in two different states are removed together with the
exogenous statistics. The traditional concept of state of a
system is saved.

Of course, one of the most revolutionary ideas introdu-
ced by Quantum Mechanics has been the existence, within
the individual state of any system, of an indeterminacy re-
sulting in irreducible dispersions of measurement results.
This indeterminacy (usually expressed as the Heisenberg
uncertainty principle) is embedded in the mathematical
structure of Quantum Mechanics and is fully contained in
the description of states by means of vectors ¢ in a Hilbert
space. The indeterminacy is not removed by the augmen-
tation of the state domain to include all the state operators
p- Rather, a second level of indeterminacy is added for sta-
tes that are not mechanical, i.e., states such that p? # p.
Entropy, represented by the functional —kg Trpln p, can
now be interpreted as a measure of the breadth of this
additional indeterminacy, which is exactly as fundamental
and irreducible as the Heisenberg indeterminacy.
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nics and the state domain of Equilibrium Thermodynamics
are only two very small subsets of the entire state domain
of the system.

The role of stability goes far beyond the very important
result just cited, namely, the unification of Mechanics and
Thermodynamics within a single uncontradictory structu-
re that retains without modification all the successful ma-
thematical results of Mechanics, Equilibrium Thermody-
namics, and Statistical Mechanics. It provides further key
guidance in addressing the question of dynamics.

The question is as follows. According to the new kine-
matics a system can access many more states than con-
templated by Quantum Mechanics. The states of Quan-
tum Mechanics (p? = p) evolve in time according to the
Schrédinger equation of motion, which can be written ei-
ther as Equation 2 or as Equation 12. But how do all
the other states (p? # p) evolve in time? Such states are
beyond the realm of Quantum Mechanics and, therefore,
we cannot expect to derive their time evolution from that
of Mechanics. We have to find a dynamical law for these
states. At first glance, in view of the breadth of the set
of states in the augmented kinematics, the problem might
seem extremely open to a variety of different approaches.
On the contrary, instead, a careful analysis shows that the
problem is very much constrained by a number of restric-
tions imposed by the many conditions that such a general
dynamical law must satisfy. Among these conditions, we
will see that the most restrictive are those related to the
stability of the states of Equilibrium Thermodynamics as
required by the second law.

7 CAUSALITY AND CRITERIA FOR A GE-
NERAL DYNAMICAL LAW

6 ENTROPY AND THE SECOND LAW WITHOUT A, underlying premise of our approach is that a new

STATISTICS

The richness of the new augmented kinematics guaran-
tees enough room for the resolution of the many questions
that must be addressed in order to complete the theory
and accomplish the necessary unification. Among the que-
stions, the first is whether the second law of thermodyna-
mics can be part of the new theory without having to resort
to statistical, phenomenological or information- theoretic
arguments.

The second law is a statement of existence and unique-
ness of the stable equilibrium states for each set of values
of the energy functional, the number-of-particle functionals
and the parameters.[5-6] Adjoining this statement to the
structure of the new kinematics leads to identify explicitly
the state operators that represent stable equilibrium sta-
tes, and to prove that only the functional —kp Trpln p can
represent the thermodynamic entropy.[10] Mathematically,
the states of Equilibrium Thermodynamics are represen-
ted by exactly the same operators as in Statistical Mecha-
nics (Equations 5 to 7). Thus, the theory bridges the gap
between Mechanics and Equilibrium Thermodynamics.

Among all the states that a system can access, those of
Mechanics are represented by the idempotent state ope-
rators and those of Equilibrium Thermodynamics by ope-
rators of the form of Equations 5 to 7 depending on the

theory must retain as much as possible the traditional con-
ceptual keystones of physical thought. So far we have saved
the concept of state of a system. Here we intend to save
the principle of causality. By this principle, future states
of an isolated system should unfold deterministically from
initial states along smooth unique trajectories in the state
domain. Given the state at one instant in time and com-
plete description of the interactions, the future as well as
the past should always be predictable, at least in principle.

We see no reason to conclude that:[11] “the determini-
stic laws of physics, which were at one point the only ac-
ceptable laws, today seem like gross simplifications, nearly
a caricature of evolution.” The observation that:[12] “for
any dynamical system we never know the exact initial con-
ditions and therefore the trajectory” is not sufficient rea-
son to discard the concept of trajectory. The principle of
causality and the concept of trajectory can coexist very
well with all the interesting observations by the Brussels
school on the relation between organization and coherent
structures in chemical, biological, and fluid systems, and
bifurcations born of singularities and nonlinearities of the
dynamical laws. A clear example is given by the dynami-
cal laws of fluid mechanics, which are deterministic, obey
the principle of causality, and yet give rise to beautifully
organized and coherent vortex structures.
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a general dynamical law, we list below the most important.

Condition 1 — Causality, forward and backward in
time, and compatibility with standard Quantum
Mechanics

The states of Quantum Mechanics must evolve accor-
ding to the Schrédinger equation of motion. Therefore, the
trajectories passing through any state p such that p?> = p
must be entirely contained in the state domain of Quan-
tum Mechanics, i.e., the condition p? = p must be satisfied
along the entire trajectory. This also means that no tra-
jectory can enter or leave the state domain of Quantum
Mechanics. In view of the fact that the states of Quantum
Mechanics are the extreme points of our augmented state
domain, the trajectories of Quantum Mechanics must be
boundary solutions of the dynamical law. By continuity,
there must be trajectories that approach indefinitely the-
se boundary solutions either as ¢ — —oo or as t — 400.
Therefore, the periodic trajectories of Quantum Mechanics
should emerge as boundary limit cycles of the complete
dynamics.

Condition 2 — Conservation of energy and number
of particles

If the system is isolated, the value of the energy func-
tional TrH p must remain invariant along every trajecto-
ry. If the isolated system consists of a variable amount of
a single type of particle with a number operator N that
commutes with the Hamiltonian operator H, then also the
value of the number-of-particle functional Tr/Np must re-
main invariant along every trajectory. If the isolated sy-
stem consists of n types of particles each with variable
amount and each with a number operator N; that commu-
tes with the Hamiltonian H, then also the value of each
number-of-particle functional TrN;p must remain invariant
along every trajectory.

Condition 3 — Separate energy conservation for no-
ninteracting subsystems

For an isolated system composed of two subsystems A
and B with associated Hilbert spaces H4 and HB, so that
the Hilbert space of the system is H = H4 ® HB, if the
two subsystems are noninteracting, i.e., the Hamiltonian
operator H = H4 ® Ig + I4 ® Hg, then the functionals
Tr(Hs ® Ip)p and Tr(I4 ® Hp)p represent the energies of
the two subsystems and must remain invariant along every
trajectory.

Condition 4 — Conservation of independence for
uncorrelated and noninteracting subsystems

Two subsystems A and B are in independent states if the
state operator p = pa Q@ pp, where p4 = Trpp, pp = Trap,
Trg denotes the partial trace over HP and Tra the par-
tial trace over H4. For noninteracting subsystems, eve-
ry trajectory passing through a state in which the subsy-
stems are in independent states must maintain the sub-
systems in independent states along the entire trajectory.

stems do not interact with each other, each evolves in time
independently of the other.

Condition 5 — Stability and uniqueness of the ther-
modynamic equilibrium states. Second law

A state operator p represents an equilibrium state if
dp/dt = 0. For each given set of feasible values of the
energy functional TrHp and the number-of-particle func-
tionals TrN;p (i.e.,the functionals that must remain inva-
riant according to Condition 2 above), among all the equi-
librium states that the dynamical law may admit there
must be one and only one which is globally stable (defini-
tion below). This stable equilibrium state must represent
the corresponding state of Equilibrium Thermodynamics
and, therefore, must be of the form given by Equations 5
to 7. All the other equilibrium states that the dynamical
law may admit must not be globally stable.

Condition 6 — Entropy nondecrease. Irreversibility

The principle of nondecrease of entropy must be sa-
tisfied, i.e., the rate of change of the entropy functional
—kp Trpln p along every trajectory must be nonnegative.

It is clear that with all these conditions[22] the problem
of finding the complete dynamical law is not at all open to
much arbitrariness.

The condition concerning the stability of the thermo-
dynamic equilibrium states is extremely restrictive and
requires further discussion.

8 LYAPUNOYV STABILITY AND THERMODY-
NAMIC STABILITY

In order to implement Condition 5 above, we need to
establish the relation between the notion of stability im-
plied by the second law of Thermodynamics[5][10] (and
reviewed in Section 2) and the mathematical concept of
stability. An equilibrium state is stable, in the sense re-
quired by the second law, if it can be altered to a different
state only by interactions that leave net effects in the state
of the enviromment. We call this notion of stability global
stability. The notion of stability according to Lyapunov is
called local stability. In this Section we review the technical
definitions.

We denote the trajectories generated by the dynamical
law on our state domain by u(t, p), i.e., u(t, p) denotes the
state at time ¢ along the trajectory that at time ¢ = 0 pas-
ses through state p. A state p. is an equilibrium state if
and only if u(t, p.) = p. for all times ¢t. As sketched in Fi-
gure 2, an equilibrium state p, is locally stable (according to
Lyapunov) if and only if for every € > 0 there is a d(e) > 0
such that d(p,p.) < 6(¢) implies d(u(t, p), pe) < € for all
t > 0 and every p, i.e., such that every trajectory that
passes within the distance d(€) from state p. proceeds in
time without ever exceeding the distance ¢ from p.. Con-
versely, an equilibrium state p, is unstable if and only if
it is not locally stable, i.e., there is an € > 0 such that for
every 6 > 0 there is a trajectory passing within distance §
from p. and reaching at some later time farther than the
distance € from p,.
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Figure 2: Technical definitions of stability of equilibrium.
Thermodynamic equilibrium states are globally stable.

The Lyapunov concept of instability of equilibrium is
clearly equivalent to that of instability stated in Thermo-
dynamics according to which an equilibrium state is unsta-
ble if, upon experiencing a minute and short lived influence
by some system in the environment (i.e., just enough to ta-
ke it from state p. to a neighboring state at infinitesimal
distance 6), proceeds from then on spontaneously to a se-
quence of entirely different states (i.e., farther than some
finite distance €).

It follows that the concept of stability in Thermodyna-
mics implies that of Lyapunov local stability. However, it
is stronger because it also excludes the concept of metasta-
bility. Namely, the states of Equilibrium Thermodynamics
are global stable equilibrium states in the sense that not
only they are locally stable but they cannot be altered
to entirely different states even by means of interactions
which leave temporary but finite effects in the environ-
ment. Mathematically, the concept of metastability can
be defined as follows. An equilibrium state p, is metasta-
ble if and only if it is locally stable but there is an > 0
and an € > 0 such that for every § > 0 there is a tra-
jectory u(t, p) passing at ¢ = 0 between distance n and
7+ § from pe, n < d(u(0,p),p:) < n+ 6, and reaching
at some later time ¢ > 0 a distance farther than 5 + e,
d(u(t, p), pe) > 1 + €. Thus, the concept of global stability
implied by the second law is as follows. An equilibrium
state p. is globally stable if for every nn > 0 and every € > 0
there is a d(e, ) > 0 such that every trajectory u(t, p) wi-
th n < d(u(0,p),pe) < n+ 0(e,n), i.e., passing at time
t = 0 between distance n and 1 + é from p., remains with
d(u(t, p), pe) > 1+ € for every t > 0, i.e., proceeds in time

issione del Galore - 24:28 G igna.200d1mBalngiona SHAHILO ¢, 25

The second law requires that for each set of values of
the invariants TrHp and TrN;p (as many as required by
the structure of the system), and of the parameters descri-
bing the external forces (such as the size of a container),
there is one and only one globally stable equilibrium state.
Thus, the dynamical law may admit many equilibrium sta-
tes that all share the same values of the invariants and the
parameters, but among all these only one is globally stable,
i.e., all the other equilibrium states are either unstable or
metastable.

For example, we may use this condition to show that
a unitary (Hamiltonian) dynamical law would be incon-
sistent with the second-law stability requirement. A uni-
tary dynamical law in our augmented kinematics would
be expressed by an equation of motion formally identi-
cal to Equation 11 with solutions given by Equation 13
and trajectories u(t,p) = U(t)p(0)U~1(¢) with U(t) =
exp(—itH/h). Such a dynamical law would admit as equi-
librium states all the states p. such that p.H = Hp,.
Of these states there are more than just one for each set
of values of the invariants. With respect to the metric
d(p1,p2) = Tr|p1 — p2|, it is easy to show[13] that eve-
ry trajectory u(t, p) would be equidistant from any given
equilibrium state pe, i.e., d(u(t, p), pe) = d(u(0, p), pe) for
all £ and all p. Therefore, all the equilibrium states would
be globally stable and there would be more than just one
for each set of values of the invariants, thus violating the
second-law requirement.

The entropy functional —kg Trpln p plays a useful role
in proving the stability of the states of Equilibrium Ther-
modynamics (Equations 5 to 7) provided the dynamical
law guarantees that —kp Tru(t, p) Inu(t, p) > —kg Trplnp
for every trajectory, i.e., provided Condition 6 above is sa-
tisfied. The proof of this is nontrivial and is given in Ref.
13 where, however, we also show that the entropy functio-
nal, contrary to what repeatedly emphasized by the Brus-
sels school, is not a Lyapunov function, even if, in a strict
sense[13] that depends on the continuity and the conditio-
nal stability of the states of Equilibrium Thermodynamics,
it does provide a criterion for the stability of these states.
Anyway, the statement that the second law[14] “can be for-
mulated as a dynamical principle in terms of the existence
of a Lyapunov variable” would be incorrect even if the en-
tropy were a Lyapunov variable, because it would suffice
only to guarantee the stability of the states of Equilibrium
Thermodynamics but not to guarantee, as required by the
second law, the instability or metastability of all the other
equilibrium states.

9 THE DYNAMICAL POSTULATE OF
QUANTUM THERMODYNAMICS

Let us summarize briefly the elements of Quantum Ther-
modynamics that we have already discussed. With every
system is associated a Hilbert space 7, the same H that
is associated with the system in Quantum Mechanics. The
composition of the system in terms of distinguishable sub-
systems is reflected by the structure of the Hilbert space
H as a direct product of subspaces. The subdivision into
constituents, considered as indivisible, is particularly im-
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system and specifies its elementary structure. This will
determine also the structure of the dynamical law.

With the state of the system is associated a state ope-
rator p, i.e., a self-adjoint, nonnegative-definite, unit-trace
linear operator on . If the state operator is idempotent,
i.e., p> = p, then p is a one-dimensional projector onto
the linear span of some vector ¢ in #, i.e., p = Py, and
corresponds to a mechanical state, i.e., a state of Quan-
tum Mechanics. If p is not idempotent then it corresponds
to a nonmechanical state, i.e., a state not contemplated
by Quantum Mechanics. Again, we emphasize that a uni-
que and key premise of Quantum Thermodynamics is that
in addition to the states of Quantum Mechanics a sy-
stem (even if strictly uncorrelated and isolated from the
rest of the universe) has access also to states that must
be described by nonidempotent state operators. Among
these nonmechanical states are, for example, those ex-
pressed in terms of functions of the Hamiltonian and the
number-of-particle operators in Equations 5 to 7.

The functional representing the entropy is —kp Trpln p.
It represents a property of matter in the same sense as the
energy functional TrH p represents a property of matter.
Entropy can be interpreted as a measure of the breadth of
the irreducible indeterminacy inherent in the states repre-
sented by nonidempotent state operators. This indetermi-
nacy is added on top of that implied by the Heisenberg
uncertainty principle, and is responsible, for example, of
the impossibility of adiabatic extraction of energy from
the states of Equilibrium Thermodynamics (impossibility
of perpetual motion of the second kind).

If a constituent is part of a system with other consti-
tuents, its state may be correlated or uncorrelated from the
rest of the system. Considering a system composed of M di-
stinguishable constituents, the Hilbert space H = H/ QH’
where 77 is the Hilbert space associated with the J-th
constituent of the system, and #” that associated with
the rest of the system. We say that constituent J is un-
correlated from the rest of the system if the state operator
p = pg @ py where pj = Tr3p and p7 = Tryp, Try denotes
the partial trace over H’ and Tr; the partial trace over
H7.

The most general way to represent a constituent is in
terms of a field consisting of variable amounts of all the n
types of particles present in the overall system. For the J-
th constituent considered as isolated, we denote the Hamil-
tonian operator on H”’ by H(J), the number-of-particles-
of-i-th-type operator by N;(J) and the identity operator
by I(J). The Hamiltonian H of the overall system, in-
cluding the interaction term, is given by Equation 8 and
the overall-number-of-particles-of-i-th-type operator N; by
Equation 9. To simplify the notation, and without loss of
generality, we assume that all the constituents of the sy-
stem are of this general kind. Then, for example, we can
specify that, say, the K-th constituent consists of only the
4-th type of particle with variable amount by imposing that
N;(K) is the null operator for every i # 4. Again, if the
K-th constituent consists of only the 2-nd type of particle
with a fixed amount, say, 5 particles, then N;(K) = 0 for
i # 2 and No(K) = 5I(K).

The dynamical law proposed by the present author to
complete Quantum Thermodynamics[15] is given by the

the Conditions 1 to 6 listed above,

(vVPiDs + (vPsD)') @ py

(14)
where 7;(p) is a positive internal-dissipation time functio-
nal (or constant) of constituent .J, X' denotes the adjoint
of operator X, and the operators D are defined as follows

D;=pr(Blnp)’ — (vpr(Blnp)’)e,  (15)

dp i M 1
g o -
i~ pihe) Jzzlzn(p)

where
(Blnp)’ = Tj[(I()) @ py)Blug],  (16)
(H)? =Tr3[(I(J) ® py)H] , (17)
and
(vP3(Blnp)’) (18)

denotes the orthogonal projection of operator ,/p (B In p)”’
onto the linear span

LIVp1, /i (H),/psNL(J), .. ., /pTNu(T)]
of operators \/p7, /ps(H)?, /PrNi(J), ..., /PINu(J),

with respect to the scalar product on the set of linear ope-
rators on H” defined by (F,G) = (1/2)Tr;(F'G + G'F).
Operator B is idempotent (B? = B) and is obtained from
the spectral expansion of the state operator p by substitu-
ting each nonzero eigenvalue of p with unity, so that TrB
equals the number of nonzero eigenvalues of p and Blnp
is a well-defined operator with eigenvalues that are either
zero or the logarithm of the nonzero eigenvalues of p. We
denote by BH the subspace of H spanned by the “occu-
pied” eigenvectors of p, i.e., the eigenvectors corresponding
to nonzero eigenvalues.

Equation 14 is well-defined over the entire state domain.
More explicit expressions of the operators Dj are given in
Refs. 15 and 23 where, among many other results, it is
shown that indeed Conditions 1 to 6 are satisfied. We
call the first term in the right-hand side of Equation 14
the Hamiltonian term and the second term the dissipative
term.

Despite its apparent complexity, the form of the equa-
tion of motion is geometrically simple and unique in that
the dissipative term identifies the direction (in state do-
main) of highest entropy ascent[19]. The important ef-
fect of the dissipative term is to alter the nonzero eigenva-
lues of p until the highest entropy (partially) canonical or
grand-canonical distribution is reached, compatible with
the initial values of the energy functioanl, the number-of-
particles functionals, and the cardinality of the zero ei-
genvalues, which remain invariant. Recently, Gheorghiu-
Svirschevski[18] “rediscovered” the equation of motion for
the single constituent case by deriving it from an equiva-
lent variational-principle formulation (which can be readily
extended to the multi-constituent case[23]), and obtained
an interesting general near-equilibrium linearization.

The Hamiltonian term of the equation of motion tends
to generate a reversible unitary evolution which, as we
know, would maintain the trajectory on a constant entro-
py surface in the state domain. The dissipative term tends
to generate an irreversible evolution by “pulling” the state
operator towards the local direction (in the state domain)
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Figure 3: Pictorial representation of a trajectory in the region of the augmented state domain where p? # p, showing that
the motion results from the combined action of the Hamiltonian term and the dissipative term in the equation of motion
of Quantum Thermodynamics. Where p? = p, the entropy and the dissipative term are zero, and the motion is driven
only by the Hamiltonian term and results in the usual periodic unitary evolution of standard Quantum Mechanics. The
picture agsumes that p has no zero eigenvalues or, equivalently, the Hilbert space is restricted to BH.

of steepest entropy ascent compatible with the conditions
on the time invariants and the structure of the system, i.e.,
equivalently, the direction of maximal local entropy genera-
tion or, which is the same, the direction of the local entropy
“gradient” with respect to state domain coordinates.

In view of its nonlinearity in the state operator p, the
“strength” of the dissipative term depends not only on the
internal-dissipation time 7;(p) but most importantly on
the instantaneous location of the state operator in the state
domain. The actual evolution results from the competition
of the Hamiltonian and the dissipative terms.

For a system consisting of a single constituent, the equa-
tion of motion is clearly simplified. Then, as illustrated in
Figure 3, the dissipative term pulls the state p exactly in
the direction of steepest ascent of —kp Trpln p compati-
ble with the invariance of Trp, TrN;p, TrH p, and the zero
eigenvalues and eigenvectors of p.

For a system with many constituents, the functionals
Try(H) p; and —kp Tryps(Blnp)’ represent a sort of
“local perception” by the J-th constituent of the overall
energy and entropy of the system. The structure of the
dissipative term is such that each constituent contributes
according to its own local attraction towards the direc-
tion of steepest locally perceived entropy ascent, name-
ly, the direction of projection of the gradient of the func-
tional —kg Tryps(Blnp)’ onto the local “plane” of con-
stant values of the functionals Trypy, TryN;(J)ps, and
Try(H)?pys, i.e., the local perception of the overall system
invariants (unit trace, energy and number of particles).

The explicit form of the equation for a single constituent

consisting of a single two-level atom or spin is discussed in
Ref. 16. In Ref. 17 we establish corrections implied by our
equation of motion onto the basic quantum-electrodynamic
results on resonance fluorescence and stimulated emission.

In Figure 4 we reproduce the noteworthy comment by
the Editor of Nature magazine published immediately after
publication of the articles in Ref. 15.

The nonlinearity of the dissipative term and the singu-
larity of operator B ln p guarantee at the level of the indi-
vidual dynamics of each constituent of matter a great rich-
ness of dynamical features which, together with the com-
plexity of structure for a system with many distinguishable
constituents, can certainly produce the wealth of nonequi-
librum conditions and self-organization behavior sought by
the Brussels school.

10 ORIGIN AND GENERALIZATION OF
ONSAGER RECIPROCAL RELATIONS

Another important question that is resolved by Quan-
tum Thermodynamics is related to the general description
of nonequilibrium states and their time evolution. We have
seen that the states of Quantum Mechanics and those of
Equilibrium Thermodynamics constitute very small sub-
sets of the state domain of Quantum Thermodynamics.
With the exception of a relatively small number of equili-
brium states that are not globally stable,[15] all the other
states are nonequilibrium.

An interesting way to represent a general state operator,
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Uniting mechanics and statistics

An adventurous scheme which seeks to incorporate thermodynamics into the quantum laws of motion
may end arguments about the arrow of time — but only if it works.

THE logical relationship between the laws
of mechanics and those of thermodynam-
ics deserves more attention than it usually
receives. Thermodynamics and statistical
mechanics are ways of describing the
behaviour of macroscopic systems made
from components whose behaviour is
determined by the laws of mechanics, clas-
sically those of Newton (as amended), but
otherwise the equations of motion of
quantum mechanics. Where the first law
of thermodynamics is concerned, there is
no difficulty. In both classical and quan-
tum mechanics, total energy is a constant
of the motion and is thus always con-
served, at least in a closed system.

The difficulty arises chiefly with the
second law of thermodynamics, and not
only because there is such a variety of
ways in which this principle can be de-
fined. But now a group of three theoreti-
cians has put forward an intriguing way in
which the laws of quantum mechanics may
be modified so as to incorporate the sec-
ond law from what appears to be the out-
set (Beretta, G. P., Gyptopoulos, E. P. &
Park, J. L., Il Nuovo Cimento B81,77-97,
1985). Whether the modification pro-
posed is sufficient, only time will tell, but
the objective seems well worth the trouble
Beretta et al. have taken.

The difficulty is well illustrated by the
way in which some kind of correspond-
ence is established between the mechani-
cal behaviour of a system and its thermo-
dynamic properties. For more than a
century, people have been brooding on
the.paradox that while the laws of classical
(and, for that matter, quantum) mechan-
ics are symmetrical with respect to time
inversion, the second law selects from all
possible trajectories of motion only those
corresponding to a continual increase of
the entropy. The arrow of time is conjured
like a rabbit from a hat.

The definition of entropy in terms of the
mechanical properties of the constituents
of asystem is similarly clouded. The classi-
cal model is Boltzmann's H-theorem
(1872), which shows that the rate of
change with time of a certain mathemati-
cal construct from the probability distribu-
tion of single particles in phase space will
always be zero or negative. So Boltzmann
argued, his quantity H is admirably suited
to be the negative of what is known in
thermodynamics as entropy. This is argu-
ment by analogy, but none the worse for
that — if it works.

Since Boltzmann’s time, there has

Figure 4: Reproduction (with permission) of a Nature magazine editorial comment on our articles in Ref. 15.

accumulated a rich literature on
implied paradox of the conflict between
the irreversibility of macroscopic pro-
cesses and the reversibility (in time) of the
laws of mechanics and thus of microscopic
processes. Indeed, the argument was
begun by Loschmidt in 1976, but now
even elementary text-books of thermo-
dynamics reckon to give some kind of
account of it.

The standard explanation is that the
apparent paradox is not a paradox at all,
but a confusion about timescales. Any
measure of entropy, that derived from
Boltzmann’s H or otherwise, will fluctuate
(and so decrease as well as increase on a
short timescale), which is not inconsistent
with the notion that the average value of
the entropy should increase steadily over
long periods of time (or remain unchang-
ed when the system is in equilibrium).

Much the same is said of the recurrence

Poincaré that the point in phase space

the -

both with what is known of the evolution
of thermodynamic systems and, perhaps
more important, the dynamics of real
microscopic systems. Beretta er al. have
convinced themselves that the function
they are seeking cannot be a linear func-
tion of m. What they propose is the addi-
tion to the right-hand side of the quantum
equation of motion of a particular func-
tion of m which, by including both the
square root and the logarithm of the state
operator of the system, is non-linear
enough to satisfy anybody’s taste.
Almost magically, the system has some
of the obviously necessary properties. For
example, for a system in a pure quantum
state, say that represented by a solution of
Schrodinger’s equation, the extra terms
vanish and the simple form of the equation
of motion applies. Similarly, constants of

i the motion in the new system are also con-
© stants of the motion determined by the
paradox, based on the observation due to

(momentum as well as position) repres- -

enting the state of a classical system will

return to more or less the same place after

a sufficient length of time. On the face of

states of a system will repeatedly recur.
The standard resolution of that paradox is
the observation that, for any realistic sys-
tem, the interval of time between recur-

simpler equation of motion.

What can be said about the entropy? In
reality, the state operator m is the equiva-
lent of what is called the density matrix in
quantum statistical mechanics, which is

© why Beretta et al. define entropy in terms
things, that means that non-equilibrium !

of the operator mlogm, where the logar-

- ithm is the natural logarithm of the opera-

~ plied by

rences will be huge, much greater than, -
say, the age of the Universe. Again there

is nothing wrong with these arguments,
but they are far from being rigorous.
So why not take the bull by the horns,

tor m. Specifically, the entropy of the neg-
ative of the trace of this operator muliti-
Boltzmann's constant; the
authors are able to show that is increases
(or does not increase) in the course of

~ time.

and build irreversibility into the laws of -
mechanics? That is the point from which :

Beretta er al. start. Properly, they
acknowledge that they are not the first to
tread this path. They work with quantum
statistical mechanics, where the formalism

is easier. They start from the equation of

motion for the operator representing the
state of a physical system, say m, which is,
in operator language, dm/dt=—i/h[H,m],
where ¢ is time, H the Hamiltonian oper-

ator of the system and i and # the square .
route of minus once and Planck's constant :

(divided by 2x) respectively. The quantity
in square brackets is the commutator of its
two components, mH—Hm.

The natural way to proceed is to assume
that this equation is modified in such a way
that the night-hand side is some other
function of the state operator m than in
the standard form. The objective is to find
a form of the function which is compatible

So is this a demonstration that the laws
of mechanics and of thermodynamics can
indeed be combined? Not quite. For one
thing, there are various mathematical
problems that make some of the steps in
the argument conjectural. Worse still,
some of the operator functions in the
formalism are sometimes undefined. But
the system does have the merit of hanging
together — the paper now published ex-
tends to composite systems the treatment
of one-component systems published a
year ago.

None of this implies that the arguments
about the reconciliation between micro-
scopic reversibility and macroscopic ir
reversibility will now be stilled. Indeed,
while for as long as the present justifica-
tion of the basis of statistical mechanics
hoids water, there will be many who say
that what Beretta ez al. have done is strict-
ly unnecessary. But this is a field in which
the proof of the pudding is in the eating.

John Maddox
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operators X7, Xs, ..., X;, ...that span the real space of
self-adjoint linear operators on H. We can write any state
operator as[19]

pe Bexp(—)_; fiXi/kB)
Tr[Bexp(— Y., fiXi/kB)]

where fi1, fo, ..., fi, -..are real scalars and B is an idem-
potent self-adjoint operator. The main and most impor-
tant difference between Equation 19 and Equations 5 to
7 is that the list of operators X; must be complete in the
sense that any other self-adjoint operator on BH can be
expressed as a linear combination of the X;’s. In gene-
ral, dimB?H = oo and the list of X;’s is infinite, however,
for finite dimensional B (states with a finite number of
occupied eigenvectors) the set of X;’s is finite.

In terms of Equation 19, the entropy functional becomes
a linear combination of the functionals TrX;p, i.e.,

—kpTrplnp = Z fiTcX;p (20)

2

(19)

so that the scalar f; can be interpreted as a generalized
“affinity” or “force” representing the marginal dependence
of the entropy functional on the change in value of the
property represented by functional TrX;p.

It is then interesting to evaluate the rate of change of
TrX;p as due to the equation of motion (Equation 14),
specifically, to the dissipative term of the equation of mo-
tion. We know that the Hamiltonian term cannot alter the
value of the entropy. Therefore, we focus our attention on
the contribution of the dissipative term, that we denote by
DTrX;p/Dt and call the dissipative rate of change of the
property represented by the functional TrX;p.

Substituting the explicit expression of the dissipative
term,[19] we find

T = S ) (21)

and

d DTrX;
—ks ETTPIHP = Z fiTtp = Z Z fifiLij (p)
i J

i

(22)
where
Mo
Lij(p) = s ((\/P_J(Xi)J)u:, (\/P_J(Xj)J)u:) = Lji(p)
= (23)
(Xi)? = Tr3{(1(J) ® py)Xi] (24)

(Vps(X))) e = Ves(X3) = (Vosr(X))e  (25)
(,-) denotes the scalar product (F,G) = (1/2)Tr;(F'G +
G'F), and (\/ps(X;)”) denotes the orthogonal projection
of operator /psy (X;)” onto the linear span L of operators
VP, PI(H) | \/pINL(J), ., \/PTNu(J).

In view of Equation 21, the functional L;;(p) can be
interpreted as a generalized “conductivity” expressing the
linear dependence of the dissipative rate of change of the
i-th functional TrX;p on the j-th affinity f;. The conclu-
sion that L;;(p) = Lj;(p), implies that at every state p, the
marginal dependence of the dissipative rate of change of the

ty f; is equal to the marginal dependence of the dissipative
rate of change of the j-th functional TrX;p on changes in
value of the i-th affinity f;. This conclusion represents
a proof of Onsager’s reciprocity relations expressing the
reciprocity of the mutual interrelations between different
irreversible rate phenomena simultaneously occurring at a
nonequilibrium state.

Onsager’s result[20] was obtained from empirical obser-
vations on nonequilibrium phenomena very close to sta-
ble thermodynamic equilibrium, so that the list of X;’s
was indeed very short, and the result valid only for a li-
mited class of states. Our result[19] generalizes the vali-
dity of Onsager’s reciprocity relations (as well as Callen’s
fluctuation-dissipation relations) to all nonequilibrium sta-
tes, close and far from stable thermodynamic equilibrium.
Of course, the price we have to pay to describe nonequi-
librium states far from stable equilibrium is that we must
use a much larger, possibly infinite list of X;’s.

11 CONCLUSION

All the results summarized in this article unfold from
the recognition of the role played by stability in Thermo-
dynamics.[5-6][10][13][15]

In our view, Quantum Thermodynamics constitutes the
first self-consistent and conceptually sound resolution of
the century-old dilemma on the nature of entropy and
irreversibility.

While encompassing all the successful results of Quan-
tum Mechanics, Equilibrium Thermodynamics, and the
formalism of Statistical Mechanics, it opens new vistas to-
wards a unifying reexamination of nonequilibrium pheno-
mena.

Its maximal-entropy-generation nonlinear dynamical
principle provides an all-encompassing microscopic founda-
tion of nonequilibrium phenomena, of Onsager reciprocity
and Callen dissipation-fluctuation relations, and therefore
of heat, mass and momentum transfer theories.

Maximal entropy generation at the microscopic level
Bejan’s Constructal Theory of natural phenomena.
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