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ABSTRACT

We present a family of steepest entropy ascent (SEA) mod-
els of the Boltzmann equation. The models preserve the usual
collision invariants (mass, momentum, energy), as well as the
non-negativity of the phase-space distribution, and have a strong
built-in thermodynamic consistency, i.e., they entail a general
H-theorem valid even very far from equilibrium. This family
of models features a molecular-speed-dependent collision fre-
quency; each variant can be shown to approach a correspond-
ing BGK model with the same variable collision frequency in the
limit of small deviation from equilibrium. This includes power-
law dependence on the molecular speed for which the BGK
model is known to have a Prandtl number that can be adjusted
via the power-law exponent.

We compare numerical solutions of the constant and
velocity-dependent collision frequency variants of the SEA model
with the standard relaxation-time model and a Monte Carlo sim-
ulation of the original Boltzmann collision operator for hard
spheres for homogeneous relaxation from near-equilibrium and
highly non-equilibrium states. Good agreement is found between
all models in the near-equilibrium regime. However, for initial
states that are far from equilibrium, large differences are found;
this suggests that the maximum entropy production statistical
ansatz is not equivalent to Boltzmann collisional dynamics and
needs to be modified or augmented via additional constraints or
structure.

INTRODUCTION
Recent interest in microscale and nanoscale internal gaseous

flows in which kinetic effects are important [1] has renewed the
search for collision operator models that are simple yet more ac-
curate than the standard relaxation-time model, typically referred
to as the Bhatnagar-Gross-Krook (BGK) model [2–5]. Although
very simple, the latter is known [5] to lead to an incorrect value
of the Prandtl number, namely 1. As a result, this model is
incapable of capturing the interplay between heat and momen-
tum transport in coupled problems. This is particularly impor-
tant in nanoscale flows where, in contrast to the Navier-Stokes
regime where viscosity and temperature effects decouple in the
framework of a linearized analysis, a noticeable heat flux can
be present even if temperature is uniform [6]. To address this
limitation, but also provide a more realistic model of the origi-
nal Boltzmann hard-sphere (HS) dynamics for near-equilibrium
problems, the molecular-velocity-dependent collision frequency
variant of the BGK model was developed [7].

In this paper we investigate the strongly non-equilibrium
regime of the Boltzmann equation using a simple kinetic prob-
lem, namely homogeneous relaxation. Since the BGK model is
usually justified [8] as a near-equilibrium approximation of the
Boltzmann collision term, we compare its behavior with solu-
tions of the hard-sphere Boltzmann equation in the highly non-
equilibrium regime. The latter are obtained using direct simula-
tion Monte Carlo (DSMC), the prevalent method for obtaining
solutions of the original Boltzmann equation [9].
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Moreover, we investigate a new family of kinetic models
that differs significantly from the standard BGK model and its
ES (Gaussian) and velocity-dependent collision frequency vari-
ants. This new family of kinetic models does not involve a lo-
cal target Maxwellian, Gaussian, or pseudo-Maxwellian. Rather,
the new model selects the direction of the time evolution of the
local one-particle phase-space distribution on the basis of the lo-
cal direction of steepest entropy ascent (SEA) compatible with
mass, momentum, and energy conservation. An interesting fea-
ture of the SEA principle is its intrinsic thermodynamic consis-
tency. The H-theorem is easily proved to hold for arbitrary de-
viations from equilibrium. From the theoretical point of view,
the SEA model implements in the framework of kinetic theory
various possible variants of the so-called maximum entropy pro-
duction principle (MEPP), that during the last few decades has
been advocated as a unifying feature of several classes of irre-
versible phenomena [10–15].

The geometrical considerations that lead to the construction
of the new SEA model equations will be presented elsewhere.
The purpose of the present paper is to present the new model,
discuss its conservation and H-theorem features, and present
some preliminary comparisons with established models in the
context of homogeneous relaxation. We specifically compare
the constant and variable collision frequency variant of the new
model with the corresponding BGK models and with the orig-
inal Boltzmann equation for hard spheres. We also show that
the new model reduces to the corresponding BGK model in the
near-equilibrium limit, for both the constant and the velocity-
dependent collision frequency variants. The results of these pre-
liminary comparisons suggest that a variable collision frequency
improves the agreement between the SEA and the HS model.
Further analysis of the SEA principle and further comparisons
with standard benchmark problems of kinetic theory, such as
shock structure, as well as a Chapman-Enskog-type analysis are
necessary before definitive conclusions can be drawn.

THE MAXIMUM ENTROPY LANDSCAPE IN THE KI-
NETIC THEORY OF GASES

The new kinetic model consists of a general rate equation de-
scribing a smooth constrained relaxation of the non-equilibrium
one-particle phase-space distribution in the direction of maxi-
mal local entropy increase compatible with the requirement of
mass, momentum, and energy conservation. The latter quantities
are related to the well known hydrodynamic fields of entropy
s(x, t), mass density ρ(x, t), macroscopic (flow) velocity vec-
tor v(x, t) = (vx,vy,vz) and mass-specific internal energy u(x, t).
They are calculated as moments of the single-particle distribution
function f (x,c, t) in the phase space of position x and molecular

velocity c via

ρ(x, t)s(x, t) = −kB

∫
Ωc

dc f (x,c, t) ln[b f (x,c, t)] (1)

ρ(x, t) = m
∫

Ωc

dc f (x,c, t) (2)

ρ(x, t)v(x, t) = m
∫

Ωc

dc f (x,c, t)c (3)

ρ(x, t)u(x, t) = m
∫

Ωc

dc f (x,c, t)½|c−v(x, t)|2 (4)

where m is the molecular mass, kB is the Boltzmann constant,
and b a suitable constant.

In this landscape, i.e., on each intersection surface defined
by given values of the local density, barycentric velocity vector,
and internal energy, there is one and only one stable equilibrium
state, corresponding to the phase-space distribution which maxi-
mizes the local entropy density [8]. Of course, the determination
of a distribution of maximum entropy subject to a set of linear
constraints has a long history of applications in many areas of
quantum physics, chemistry, information theory, and probability
theory, see e.g. [16–20]. In the framework of kinetic theory and
gas dynamics, the maximum entropy distribution represents the
local thermodynamic equilibrium state.

By the standard methods of Lagrange multipliers and func-
tional derivatives, it is straightforward to show that the distribu-
tion which maximizes the entropy functional (1) subject to the
constraints (2), (3), and (4) is

fMB(ρ,v,u) =
ρ

m

[
1

2πRT

]3/2

exp
[
−|c−v|2

2RT

]
(5)

which already satisfies constraints (2) and (3), and substituted in
(4) yields the Lagrange multiplier T = 2u/3R.

The Boltzmann equation describes the time evolution of the
single-particle phase-space distribution as a result of the inter-
play between collisionless advection and collisions. In the ab-
sence of body forces, it takes the form

∂ f
∂ t

+ c ·∇x f = QBoltz[ f ] (6)

where QBoltz[ f ] is the well-known Boltzmann collision integral
(see, e.g., [5]).

In view of the non-linearity of the Boltzmann collision term
QBoltz[ f ] and the associated numerical challenges in obtaining
accurate simulations of its behavior, several model equations
have been proposed where the term QBoltz[ f ] is substituted by
a model term Qmodel[ f ], which is simpler to handle and treat
numerically but featuring as many of the essential properties of
QBoltz[ f ] as possible. The minimal set of such features includes
mass, momentum, and energy conservation, the H-theorem and
the fact that Qmodel[ fMB] = 0 for every Maxwellian distribution
fMB.
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For example, the standard BGK model [2] is defined by

QBGK[ f ] =
M [ f ]− f

τ
(7)

where the target distribution M [ f ] is the Maxwellian (isotropic
Gaussian) with the same mass, momentum, and energy densities
as the actual non-equilibrium distribution f . The well-known
weakness of this model is that it yields the wrong ratio of thermal
conductivity to viscosity κ/µ = 5kB/2m.

The Ellipsoidal-Statistical-BGK (ES-BGK) or Gaussian
BGK model [4, 21] is defined by

QES−BGK[ f ] =
G [ f ]− f

τ
(8)

where the local target distribution G [ f ] is an anisotropic Gaus-
sian with the same mass and momentum densities as the actual
non-equilibrium distribution f and a stress tensor given by a suit-
able linear combination of the stress tensor of f and the isotropic
(diagonal) stress tensor corresponding to the temperature of f .
This linear combination introduces a parameter that can be ad-
justed to achieve a Prandtl number in the range 2/3≤ Pr < ∞.

The velocity-dependent collision frequency BGK model [7,
22, 23], ν(c)BGK, is defined by

Qν(c)BGK[ f ] = ν(c)(P[ f ]− f ) (9)

where ν(c) is a velocity-dependent collision frequency and the
target distribution P[ f ] is a suitable pseudo-Maxwellian that we
define below [cf. Eqs. (25-27)]. It has been shown [22] that a
power law dependence ν(c)∼ |c−v|α yields an adjustable ratio
of thermal conductivity to viscosity given by

κ

µ
=

15
4

kB

m
10−2α +α2

15−3α
. (10)

For a comparison of these and other models see [24].

NOTATION
For compactness of notation, let us define the five-vector ψψψ

of collision invariant phase-space functions ψi(c), given by

ψ0 = 1, ψ1 = cx, ψ2 = cy, ψ3 = cz, ψ4 =½|c−v|2 =½C2 (11)

and the corresponding five-vector 〈ψψψ〉 of local averages

〈ψ0〉= 1, 〈ψ1〉= vx, 〈ψ2〉= vy, 〈ψ3〉= vz, 〈ψ4〉= u (12)

Here, angled brackets denote average with respect to the distri-
bution f (x,c, t), namely,

〈F〉= m
ρ

∫
Ωc

dc f (x,c, t)F(c) (13)

We also define the function

S( f ) =−kB ln(b f +1{ f=0}) (14)

where 1{ f=0} = 1(c){ f (c)=0} is a Heaviside-like (indicator) func-
tion equal to unity over the subset { f = 0} of Ωc where f van-
ishes, and equal to zero over the rest of Ωc, i.e., over the support
of f . In this way, function S( f ) is defined over the entire phase
space even if f is zero in some regions of it. Then, the local
specific entropy is given by

s(x) = 〈S( f )〉/m (15)

The essential features of the collision terms Q[ f ] in Eqs. (6-9)
are that, for any f ,

m
∫

Ωc

dcQ[ f ]ψ j = 0 for j = 0,1, . . . ,4 (16)

as well as the H-theorem∫
Ωc

dcQ[ f ]S( f )≥ 0 (17)

where the strict equality holds if and only if f is a Maxwellian.

STEEPEST LOCAL ENTROPY ASCENT COLLISION
TERM

The kinetic model studied here is defined by

QwSEA[ f ] =
1

kBτ
w(c, f ) f M( f ) (18)

where w=w(c, f ) is a suitable positive-definite function of c and
f (for example w = ζ [ f ] |c|α[ f ] or w = 1/ f ), M( f ) is the function
of f defined by

M( f ) = S( f )−
4

∑
j=0

γ j[ f ]ψ j (19)

and the five-vector γγγ[ f ] is defined (for each given f ) by the solu-
tion of the linear system of equations

4

∑
j=0
〈wψiψ j〉γ j = 〈wSψi〉 for i = 0, . . . ,4 (20)

We use the letter M in Eq. (19) because the function M( f ) repre-
sents at equilibrium the Massieu characteristic function and off
equilibrium its natural generalization.

Using Eqs. (19) and (20), we verify the conservation condi-
tions as follows

kBτm
ρ

∫
Ωc

dcQwSEA[ f ]ψi = 〈wMψi〉

= 〈wSψi〉−
4

∑
j=0

γ j 〈wψiψ j〉= 0 (21)

Using the fact that 〈wMψi〉 = 0 and again Eq. (19), the proof of
the H-theorem is as follows

kBτm
ρ

∫
Ωc

dcQwSEA[ f ]S = 〈wMS〉

= 〈wMS〉−
4

∑
i=0

γi〈wMψi〉= 〈wMM〉, (22)
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which is clearly a non-negative definite functional of f for any
positive w.

Eq. (22) also shows that the local entropy production rate
is zero if and only if f wM = 0, i.e., for any local equilibrium
distribution feq such that QwSEA[ feq] = 0.

The distributions that satisfy this local equilibrium condition
are the partial-Maxwellians

feq[ωc] =
1ωc exp[−∑

4
k=1 λkψk]∫

Ωc
dc1ωc exp[−∑

4
j=1 λ jψ j]

(23)

where 1ωc is the Heaviside-like (indicator) function defined after
Eq. (14) and ωc is any subset of Ωc (notice that 1ωc = 12

ωc ).
It can be easily shown that distributions (23) are unstable (in

the sense of Lyapunov [25]) except when ωc = Ωc, i.e., 1ωc = 1,
in which case the distribution is a Maxwellian. As a result, the
Maxwellians emerge as the only stable equilibrium distributions
and we can assert that the QwSEA[ f ] collision term implements
the Hatsopoulos-Keenan statement of the second law [26, 27] at
the level of description of the Boltzmann equation.

The model just introduced was obtained by adapting the
geometrical reasoning and formulation developed in [15, 28] to
the present objective. The derivation and the geometrical back-
ground of the model will be discussed elsewhere. To conclude
this section we give a few general comments without proofs.

The new term QwSEA[ f ] models the effect of collisions by
attracting the phase-space distribution towards the path of steep-
est local entropy ascent compatible with the constraints of mass,
momentum, and energy conservation. In other words, within the
subset of the trajectories in state space that satisfy the conserva-
tion constraints, it selects the trajectory which for a given “trav-
eled length” d` in the given time lapse dt yields the maximal
local entropy production density. To measure the traveled length
in state space we must equip the state space with the definition
(choice) of a suitable metric. This choice is not unique and it
is related to the weight function w in the model. For example,
the most unbiased metric, i.e., the Fisher-Rao metric considered
in [28], corresponds in the present context to the choice of a uni-
form weight function w = 1. This is one of the two SEA cases
we study numerically in this paper, which reduces to the standard
BGK model in the near-equilibrium limit and hence yields the
wrong ratio of thermal conductivity to viscosity κ/µ = 5kB/2m.
The other case we will consider corresponds to w = ξCα , where
in our notation C =

√
2ψ4, with α =(

√
21−1)/2. The reason for

this choice is that in the near-equilibrium limit the model reduces
to a ν(c)BGK model exhibiting the correct ratio κ/µ = 15kB/4m
(correct Prandtl number for a monoatomic gas). The relation be-
tween the metric in state space and the weight function will be
discussed elsewhere.

Whereas to our knowledge the SEA principle has never been
applied in the context of kinetic theory, these ideas were orig-
inally conceived within the quantum context by one of the au-
thors [28–33] and have been considered to some extent also in

other contexts. Therefore, the present study is to be considered a
very preliminary exploration in order to extract some information
useful for further development and comparisons.

The empirical validity of the maximum entropy production
principle at the phenomenological level has been affirmed (ex-
plicitly or implicitly) as well as criticized by various authors in
the past few decades in different fields and frameworks, with a
variety of interpretations (see, e.g., [10–15]).

NEAR EQUILIBRIUM LIMIT
In order to investigate the near equilibrium limit of the SEA

model, we define the function φ representing the relative devia-
tion from the local pseudo-Maxwellian, such that

φ =
f − fP

fP
i.e., f = (1+φ) fP (24)

Here fP = P[ f ] is defined by the condition

SP =−kB ln(b fP) =
4

∑
j=0

γ
P
j ψ j (25)

where the set of γP
j ’s is determined by f from the conditions

〈wψ j〉P = 〈wψ j〉 for j = 0, . . . ,4 (26)

where

〈F〉P =
m

ρ(x, t)

∫
Ωc

dc fP(x,c, t)F(c) (27)

Notice that by its definition (25), fP is nonzero everywhere in
Ωc, i.e., we can write 1{ fP=0} = 0.

Multiplying Eq. (25) by wψi and averaging with respect to
f we obtain the system

4

∑
j=0
〈wψiψ j〉γP

j = 〈wSPψi〉 for i = 0, . . . ,4 (28)

We note that all averages can be expressed as averages with
respect to the pseudo-Maxwellian fP by using the identity

〈F〉= 〈(1+φ)F〉P (29)

We may also write

S( f ) = Sφ +SP (30)

where

Sφ =−kB ln(1+φ +
1
fP

1{φ=−1}) (31)

and we used the fact that 1{ f=0} = 1{φ=−1}. Subtracting Eqs.
(28) from (20) and making use of Eqs. (29) and (30) we obtain

4

∑
j=0
〈w(1+φ)ψiψ j〉P (γ j− γ

P
j ) = 〈w(1+φ)Sφ ψi〉P

for i = 0, . . . ,4 (32)
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In the limit φ → 0, 1{φ=−1} = 0 and, to first order in φ , Sφ =
−kB φ so that the rhs of system (32) can be written as

−kB〈wφψi〉P =−kB(〈wψi〉−〈wψi〉P) = 0 (33)

In Eq. (33) the first equality follows from Eq. (29), while the
second equality follows from Eqs. (26). Since the matrix 〈w(1+
φ)ψiψ j〉P is in general non-singular, we conclude that, to first
order in φ , γ j = γP

j .
The function M defined by Eq. (19) can be rewritten in gen-

eral as follows

M( f ) = Sφ −
4

∑
j=0

(γ j− γ
P
j )ψ j (34)

Therefore, to first order in φ , M( f )→−kBφ and

QwSEA[ f ]→−
1
τ

fP wφ =
1
τ

w( fP− f ) (35)

which we may call wBGK approximation in that it coincides with
the standard BGK model for w = 1 and with the ν(c)BGK model
for w = τν(c). This also proves, in turn, that the wBGK approx-
imation near equilibrium is wSEA, for any w.

NUMERICAL EXPERIMENT SETUP AND RESULTS
Our preliminary comparisons are based on homogeneous

relaxation from a highly non-equilibrium initial distribution
f (x,c, t = 0) = f0 with zero macroscopic velocity. This initial
condition is constructed by mixing two Maxwellian distributions
with density n0, temperature T0, and non-zero but opposite mean
flow velocities in the x-direction, namely

f0 =
1
2
[ fMB(n0,(vshift,0,0),T0)+ fMB(n0,(−vshift,0,0),T0)]

(36)
where vshift = Ma

√
5kBT0/3m. From energy conservation, it

can be deduced that the final stable equilibrium state reached
at the end of the relaxation process is the Maxwellian with
density n0, zero macroscopic velocity and temperature T∞ =
(1 + 5Ma2/9)T0. For the results reported here, we set kB =
1.38×10−23 J/K, m = 6.63×10−26 kg, T0 = 273 K.

In [22] it is shown that if ν(c) = ζ Cα in the ν(c)BGK
model, Chapman-Enskog analysis yields the following expres-
sions for the viscosity and the thermal conductivity

µ =
1
2

ρ

ζ

(
2kBT

m

) 2−α
2 Γ

( 7−α

2

)
Γ
( 7

2

) (37)

κ =
kB

m
ρ

ζ

(
2kBT

m

) 2−α
2 10−2α +α2

8
Γ
( 5−α

2

)
Γ
( 5

2

) (38)

where the constants α and ζ can be adjusted to match both vis-
cosity and thermal conductivity, and hence the Prandtl number.

For α = 0 and ζ = 1/τ we recover the Chapman-Enskog expres-
sions for the standard BGK model

µ = τρ
kBT
m

(39)

κ =
5
2

kB

m
τρ

kBT
m

(40)

where τ is the time between collisions assumed in the BGK
model.

In our implementation of the variable collision-frequency
SAE model, we set α = α∗ = (

√
21− 1)/2 to facilitate direct

comparison with the equivalent BGK model with Pr = 2/3.
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FIGURE 1. Normalized entropy as a function of time for different
collision operators for relaxation from the highly non-equilibrium initial
distribution given by (36) with Ma = 4. s(∞) denotes the entropy of the
final (t→∞) equilibrium state. Time is scaled by t|[s−s(∞)]=0.5 [s(0)−s(∞)],
the time for which the entropy change is half of the total change due to
the relaxation.

Figure 1 shows plots of entropy versus time for relaxation
from initial condition (36) for Ma = 4. For the sake of a more di-
rect comparison, we plot time nondimensionalized by the time
t|[s−s(∞)]=0.5 [s(0)−s(∞)] at which, according to each model, the
entropy change reaches half of the total entropy change s(t =
0)−s(t→∞) due to the relaxation. The entropy is normalized by
the magnitude of the total entropy change during the relaxation
process. The HS results shown in this and the following figures
were obtained using DSMC. The SEA and BGK models were
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FIGURE 2. Normalized parallel kinetic temperature as a function of
normalized entropy for different collision operators for relaxation from
the highly non-equilibrium initial distribution given by (36) with Ma =
4.

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

[s(t)− s(0)]/[s(∞)− s(0)]

〈c
4 x
〉(t

)
/
〈c

4 x
〉(∞

)

black solid line: HS-DSMC
blue dashed line: BGK
red dotted line: (w=1)SEA
cian dashed line: (ν=Cα∗

)BGK
magenta dashdot line: (w=Cα∗

) SEA

FIGURE 3. Normalized moment 〈c4
x〉(t)/〈c4

x〉(∞) as a function of
normalized entropy for different collision operators for relaxation from
the highly non-equilibrium initial distribution given by (36) with Ma =
4.
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FIGURE 4. Normalized moment 〈c4
x〉(t)/〈c4

x〉(∞) as a function of
normalized parallel kinetic temperature for different collision operators
for relaxation from the highly non-equilibrium initial distribution given
by (36) with Ma = 4.
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FIGURE 5. Normalized entropy as a function of time for different
collision operators for relaxation from the near-equilibrium initial dis-
tribution given by (36) with Ma = 0.2. s(∞) denotes the entropy of the
final (t→ ∞) equilibrium state.
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FIGURE 6. Normalized parallel kinetic temperature as a function of
normalized entropy for different collision operators for relaxation from
the near-equilibrium initial distribution given by (36) with Ma = 0.2.

0 0.2 0.4 0.6 0.8 1
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

[s(t)− s(0)]/[s(∞)− s(0)]

〈c
4 x
〉(t

)
/
〈c

4 x
〉(∞

)

black solid line: HS-DSMC
blue dashed line: BGK
red dotted line: (w=1)SEA
cian dashed line: (ν=Cα∗

)BGK
magenta dashdot line: (w=Cα∗

) SEA

FIGURE 7. Normalized moment 〈c4
x〉(t)/〈c4

x〉(∞) as a function of
normalized entropy for different collision operators for relaxation from
the near-equilibrium initial distribution given by (36) with Ma = 0.2.

numerically integrated using the Matlab package ode45; noting
the symmetry of the relaxation problem, the distribution function
was discretized in the variables cx and cr =

√
c2

y + c2
z . Follow-

ing a number of numerical experiments, the following discretiza-
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FIGURE 8. Normalized moment 〈c4
x〉(t)/〈c4

x〉(∞) as a function of
normalized parallel kinetic temperature for different collision operators
for relaxation from the highly non-equilibrium initial distribution given
by (36) with Ma = 0.2.

tion was determined as sufficient: cx was discretized in the range
±10

√
2kBT0/m using 30 cells, while cr was discretized in the

range 0 ≤ cr ≤ 10
√

2kBT0/m using at least 180 cells. Doubling
the number of cells in both directions has a negligible effect on
the solution. Integration of the resulting discrete system in time,
as well as all numerical integration in velocity space was based
on cell mid-point values.

Figure 2 shows relaxation of the “parallel kinetic temper-
ature” (the temperature based on the molecular velocity in the
x direction—the direction of the distribution shift) for the same
initial condition (Ma = 4). Figure 3 shows comparison of the 5
models for a higher parallel moment. In both figures, moments
are plotted against the normalized entropy change during the re-
laxation process. In Figure 4 the two moments are plotted against
each other.

The results of the standard BGK model are surprisingly
close to those of the HS model, even for relaxation from highly
non-equilibrium (Ma = 4) conditions, in spite of the fact that
this model does not provide the correct Prandtl number. The
constant-collision-frequency SEA model (w = 1) is not close to
the HS model, even though for late times (close to equilibrium)
it becomes equivalent to the BGK model. At the initial time it
appears to take a clearly different “direction” than the HS model.

This is perhaps to be expected, given the different origin
of the SEA model. For example, a basic difference between
the HS and BGK models compared to the constant-collision-

7 Copyright © 2013 by ASME



frequency SEA model, is that, in the latter, if the distribution
is zero in a region of Ωc it remains zero for all times; in fact,
more generally, in the SEA model, in regions of phase space
where the distribution approaches zero the rate of repopulation
by the collision term also approaches zero. Due to this feature
(which persists in all weighted variants except for choices of
w( f ) such that lim f→0 w( f ) f 6= 0) the plain SEA model pre-
serves the non-negativity of the phase-space distribution even
when solved backwards in time. Mathematically this means
that a given initial distribution belongs to a unique trajectory in
state space defined for all times −∞ < t < ∞. The BGK model
does not have this feature. Indeed, when solved backwards in
time, the solution becomes meaningless (negative) and must be
stopped as soon as the distribution becomes zero somewhere
in Ωc. In future work, we will investigate whether choices of
w( f ) such that lim f→0 w( f ) f 6= 0 as well as using the actual HS
collision frequency, τ−1w(c, f ) =

√
2πkBT/m3ρd2[exp(−C2)+

0.5
√

π(2C + 1/C)erf(C)], where d is the hard-sphere diameter,
provide better agreement with the HS model.

Figures 5-8 repeat the comparisons of Figures 1-4 for the
case Ma = 0.2. At this low Mach number the differences be-
tween the models are significantly smaller. We also observe val-
idation that the SEA model reduces to the BGK model with the
same collision frequency in the small deviation from equilibrium
(Mach number) limit.

CONCLUSIONS
We introduced a new family of models of the collision inte-

gral in the Boltzmann equation that implement the principle of
steepest entropy ascent (SEA). The models preserve the usual
collision invariants (mass, momentum, energy), as well as the
non-negativity of the phase-space distribution, and satisfy the H-
theorem in general. We proved that in the near-equilibrium limit
each member of the new family of models reduces to the corre-
sponding variable-collision-frequency BGK model. To compare
the SEA and BGK models in the far non-equilibrium regime,
we considered a simple case of homogeneous relaxation from
a highly non-equilibrium state. We compared numerical solu-
tions of the constant and velocity-dependent collision frequency
variants of the SEA model with the standard BGK model, the
variable collision frequency variant of the BGK model, and a
Monte Carlo simulation of the original Boltzmann equation for
hard spheres. Good agreement is confirmed between all models
in the near-equilibrium regime. The BGK model provides sur-
prisingly good agreement with the HS model even away from
equilibrium. Instead, far from equilibrium the constant collision
frequency variant of the SEA model exhibits large departures
from the HS model. The variable collision frequency variant
which leads to the correct Prandtl number yields results closer to
the HS model but still qualitatively different, especially at early
times. This suggests that the SEA is not equivalent to Boltzmann

collisional dynamics and needs to be modified or augmented via
additional constraints or structure.
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