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Steepest-entropy-ascent quantum thermodynamic modeling of decoherence
in two different microscopic composite systems

Sergio Cano-Andrade,1,* Gian Paolo Beretta,2,† and Michael R. von Spakovsky1,‡
1Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

2Department of Mechanical and Industrial Engineering, Università di Brescia, Brescia 25123, Italy
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The steepest-entropy-ascent quantum thermodynamic (SEAQT) framework is used to model the decoherence
that occurs during the state evolution of two different microscopic composite systems. The test cases are a
two-spin- 1

2 -particle composite system and a particle-photon field composite system like that experimentally
studied in cavity quantum electrodynamics. The first system is used to study the characteristics of the nonlinear
equation of motion of the SEAQT framework when modeling the state evolution of a microscopic composite
system with particular interest in the phenomenon of decoherence. The second system is used to compare the
numerical predictions of the SEAQT framework with experimental cavity quantum electrodynamic data available
in the literature. For the two different numerical cases presented, the time evolution of the density operator of
the composite system as well as that of the reduced operators belonging to the two constituents is traced from
an initial nonequilibrium state of the composite along its relaxation towards stable equilibrium. Results show for
both cases how the initial entanglement and coherence is dissipated during the state relaxation towards a state of
stable equilibrium.
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I. INTRODUCTION

Much work has been devoted to the area of nonequilibrium
dynamics with the general aim to develop a deeper understand-
ing of the transition between microscopic and macroscopic
physics [1,2] that could result in more effective control skills
for the development of new technologies. This applies at all
spatial and temporal scales of analysis. Of particular interest
has been the consideration of the nonequilibrium phenomena
that occur at the nanoscale, particularly in relation to quantum
computing [3], quantum information [4,5], quantum cryp-
tography [6], and quantum teleportation [7] where quantum
entanglement, coherence, and decoherence are of importance.

A common approach to modeling these phenomena is to
use linear Markovian quantum master equations (QMEs),
i.e., those of the Kossakowski-Lindblad-Gorini-Sudarshan
type [8–10], based on the so-called open-system model, which
assumes that the system is attached to and weakly interacts
with a thermal bath (reservoir or environment). As a result,
quantum entanglement or coherence between system and
reservoir cyclically builds up and then dissipates (i.e., the
system and reservoir decohere) in a time frame for each
cycle significantly shorter than that of the system’s state
relaxation to stable equilibrium (i.e., the so-called Born-
Markov approximation [11,12]). In this regard, the dissipation
phenomenon results from a loss of information, i.e., of
correlations. As argued in [13], this theory of quantum open
systems [10,14–17] can be seen as a special case of the theory
of typicality [17–22] from which the laws of thermodynamics,
the second law in particular, are said to emerge.
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Linear Markovian QMEs fit the dissipative behavior of
simple systems well, making them good candidates to model
a variety of physical phenomena [23]. However, they fail,
among other things, to provide a proper description of the time
evolution of the state of the system for more general or strongly
coupled microscopic systems [24,25] primarily because the
Born-Markov approximation fails when the coupling becomes
strong [8], thus negating the very mechanism assumed to be
the cause of the irreversible relaxation to stable equilibrium.

An alternative approach is one that rationalizes the dissipa-
tion (or irreversibility) by assuming that it is not an emergent
effect of coarse graining and decoherence approximations but
instead a fundamental phenomenon [13]. This idea can be
traced back to work of Prigogine and co-workers [26–29] and
Park and co-workers and Hatsopoulos and co-workers [30–36]
as well as a few more recent contributors with diverse motiva-
tions [37–41]. Their work attempts to build thermodynamics
and irreversibility directly into the quantum dynamical level
of description based on the assumption that entropy and
irreversibility have a microscopic foundation. A by-product
of these attempts has been the development of an explicit
geometrically based mathematical formulation of a locally dis-
sipative nonlinear gradient dynamics that can be used to model
decoherence between strongly interacting subsystems of an
overall isolated system. In this model, the time evolution of
the overall density operator results from the interplay between
the usual Hamiltonian dynamics driven by the interactions
between subsystems and a phenomenological description of
the dynamics of dissipation and decoherence whereby the
reduced density operators of each subsystem are irreversibly
attracted in the locally perceived direction of steepest entropy
ascent (SEA) [42–44]. Though not conclusive, empirical
comparisons presented in [45] and in the present paper suggest
that the steepest-entropy-ascent construction in the quantum
thermodynamic (SEAQT) framework may indeed provide a
reasonable physical model for the phenomena of decoherence
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and decorrelation reported experimentally at a microscopic
level [46–54].

Whereas the validity of the SEA construction as a phe-
nomenological modeling tool is supported by its strong
compatibility with the second law of thermodynamics as well
as the differential geometric structure of most general theories
of nonequilibrium [55], its potential implications at the
fundamental level have remained controversial since its first
introduction [56] and have recently been the subject of debates
from several foundational points of view. The hypothesis
that a fundamental nonlinearity may exist at the fundamental
quantum level has often been criticized as incompatible with
the so-called no-signaling condition. However, work by Ferreo
et al. [57] suggests that, in principle, nonlinear quantum evolu-
tion is perfectly compatible with the impossibility of supralim-
inal communication. Furthermore, the general criticism made
in [58] against the existence of a fundamental nonlinearity,
i.e., that nonlinear variants of Schrödinger’s equation violate
the second law of thermodynamics, is concerned with setting
bounds not for possible modifications of the von Neumann
equation for the time evolution of the density operator,
but instead for possible modifications of the Schrödinger
equation for the time evolution of the wave vector. Such
modifications would deny that the evolution of pure quantum
states is Hamiltonian. It is important, however, to note that
for such states, the SEAQT equation of motion reduces to the
Schrödinger equation, i.e., pure states remain pure states and
evolve precisely according to Hamiltonian dynamics. From the
point of view of thermodynamics, pure quantum states have
zero (von Neumann) entropy since they are represented by
idempotent density operators, i.e., projectors onto the linear
span of a wave vector. Nonetheless, the presence of the
additional nonlinear term in the SEAQT evolution equation
makes such Hamiltonian, periodic evolutions of pure states
mildly unstable limit cycles in the sense that mixed density
operators in their vicinity slowly evolve away from the limit
cycle [59] and, for a closed system, eventually arrive at a stable
canonical state of maximum entropy, which is stable in the
Lyapunov sense [60]. This stability is the strongest known form
of compatibility with the second law of thermodynamics. In
fact, Beretta [61] purposely designed the SEAQT equation of
motion for the evolution of nonzero-entropy states (i.e., mixed
density operators) around the need to encompass this stability
requirement within the framework developed by Hatsopoulos
and Gyftopoulos [31] as a test of the unorthodox ansatz that
both the entropy and irreversibility might have microscopic
foundations. The present paper does not address or take sides
on any interpretational issue of this or any other sort. Rather,
the focus is on the use of the SEAQT equation of motion in its
version for composite systems [34] as a modeling tool, with
the expressed objective of testing its potential usefulness in
the phenomenological description of decoherence.

The description of dissipation by means of the locally per-
ceived SEA construction effectively implements the principle
of local maximum-entropy production (LMEP) and does so via
the nonlinear SEAQT equation of motion [61], which consists
of two terms. The first is the usual linear Hamiltonian term of
standard unitary dynamics (Schrödinger–von Neumann equa-
tion) and the second is a structured nonlinear term designed
to implement the LMEP principle subject to the relevant

dynamical constraints [33,34,42,59,62]. Within the SEAQT
framework, the idea is to treat the composite system as being
isolated but in a mixed state, with the Hamiltonian describing
as usual the internal interactions between subsystems and the
nondissipative part of the time evolution, while the dissipative
aspects of state evolution are left to the non-Hamiltonian term
in the equation of motion. Of course, the physical explanation
of such a phenomenological term is an interpretational issue
that is beyond the stated scope of our paper. However, it
is clear that among the possible interpretations, the most
popular one is that dissipative effects are the results of
unavoidable interactions between the microscopic system and
its macroscopic surroundings, i.e., that the system is not
truly isolated but interacts with some heat bath without a net
exchange of energy between system and bath.

To illustrate the SEAQT approach, the phenomenon of
decoherence for a microscopic system composed of two spin- 1

2
particles is modeled as is a microscopic system composed of an
atom-photon field such as that experimentally studied in cavity
quantum electrodynamics (CQED) [47–49,63]. The paper is
organized as follows. Section II describes the characteristics
of the SEAQT framework. Section III presents some state
functionals for the characterization of entanglement or co-
herence and correlation. Section IV provides a description of
the model for the two-spin- 1

2 -particle microscopic composite
system. Section V describes the CQED experiment by Brune
et al. [63] and the model used here to numerically predict
the experimental results. Section VI presents the SEAQT
numerical results obtained for the two different models.
Section VII presents a summary and draws some conclusions.

II. CHARACTERISTICS OF THE SEAQT
EQUATION OF MOTION

The type of composite system of interest here to which the
SEAQT equation of motion is applied [34] is an isolated and
nonreactive composite system composed of M distinguishable
constituents (i.e., each constituent may be a single particle,
a group of indistinguishable constituents, or a field). The
overall Hilbert space H is the outer product of the Hilbert
spaces HJ of the individual constituents. The direct product
of all individual spaces except the J th one is denoted by
HJ̄ . Thus, the reduced density operator of the J th constituent
is ρJ = TrJ̄ ρ, where ρ is the overall density operator. The
identity operator may be written as I = IJ ⊗ IJ̄ and the overall
Hamiltonian operator is denoted by H.

The time evolution of the overall density operator is
assumed to obey an equation of motion in which the usual von
Neumann term −i[H,ρ]/� competes with a dissipative term
chosen so as to empirically model both irreversibility and deco-
herence, while satisfying a set of necessary conditions [64] for
compatibility with thermodynamics and quantum nonlocality
considerations. In particular, these conditions are: (i) separate
energy conservation for two noninteracting subsystems (i.e.,
if H = HA ⊗ IB + IA ⊗ HB), (ii) the separate nondecrease of
entropy (i.e., additivity of the entropy production rates) if two
subsystems are in independent states (i.e., if ρ = ρA ⊗ ρB),
(iii) the independence of the local time evolutions of two
subsystems if they are noninteracting and start in independent
states, and (iv) the impossibility of locality problems such
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as faster-than-light communication between noninteracting
subsystems even if they are in entangled or correlated states;
in particular, entanglement and correlations must not increase
in the absence of interactions; this does not, however, mean
that existing entanglement and/or correlations between A and
B established by past interactions will have no influence on
the time evolution of the local observables of either A or B.

The SEAQT dissipative term is designed to obtain a
description of decoherence compatible with these conditions
by assuming and implementing the principle of locally steepest
entropy ascent whereby the effect of the dissipative term is
to pull the density operator in a direction such that it is
locally perceived by each subsystem as the direction of steepest
entropy ascent (maximal entropy increase) as represented in
state space, compatible with the symmetries and conservation
constraints of the overall system. The strength of the pull in
the locally perceived SEA direction is the only parameter of
the model.

The implementation of the foregoing ideas requires precise
definitions of what is meant by the locally perceived energy
and entropy for a subsystem (in our case, the J th con-
stituent). Reference [34] proposes that such local observables
should be represented by (mean field) local operators defined
by

(H )J ≡ TrJ̄ [(IJ ⊗ ρJ̄ )H ], (1a)

(S)J ≡ −kBTrJ̄ [(IJ ⊗ ρJ̄ )B ln ρ]. (1b)

Note that by virtue of the partial trace, (H )J and (S)J are
operators on HJ that represent the partially averaged effect
with respect to all other constituents for the given overall
density operator. As such, from the local point of view of
the J th constituent, they represent the effective averaged local
operators associated with the energy and the entropy. They are
called the local effective perception of the overall Hamiltonian
operator and of the overall entropy operator −kB B ln ρ,
respectively. Their local mean values can be interpreted as
the effective local perceptions, from the point of view of the
J th constituent, of the overall system’s energy and entropy.
A similar definition of local effective mean field operator
has also been introduced in another quantum thermodynamics
context (see, e.g., Eq. 4.11 of [65]). As pointed out in [43],
it is noteworthy that when two subsystems are interacting,
their local mean energies are (strictly speaking) hard to
define because one does not know what fraction of the mean
interaction energy should be attributed to one or the other.
Similarly, when the states of the two subsystems are entangled
or correlated, their local mean entropies are hard to define
because one does not know what fraction of the correlation
entropy should be attributed to one or the other. Nonetheless,
the local mean values of the operators (H )J and (S)J

given, respectively, by Tr[ρJ (H )J ] = Tr[(ρJ ⊗ ρJ̄ )H ] and
Tr[ρJ (S)J ] = −kBTr[(ρJ ⊗ ρJ̄ )B ln ρ] are well-defined mean
value state functionals, which represent each subsystem’s local
perception of the overall system’s mean energy and entropy
and coincide with the actual overall system’s mean energy and
entropy only if the subsystems are, respectively, noninteracting
and uncorrelated.

In order to satisfy the nonlocality restriction expressed by
condition (iv) above, the SEAQT model assumes a factorized

expression for the dissipative term of the equation of motion,
which takes the form

dρ

dt
= − i

�
[H,ρ] −

M∑
J=1

1

τJ

DJ ⊗ ρJ̄ , (2)

where the internal-relaxation times τJ are considered to
be positive constants or positive functionals of the density
operator and each DJ is a traceless self-adjoint operator on
HJ that is assumed (see below) to be a function of only ρJ ,
(H )J , and (S)J . By partially tracing Eq. (2) over HJ̄ , it is
seen that each local density operator evolves according to the
equation

dρJ

dt
= − i

�
[HJ ,ρJ ] − i

�
TrJ̄ [VJ J̄ ,ρ] − 1

τJ

DJ , (3)

which shows that the global state ρ has a local effect not only
through the interaction Hamiltonian VJJ̄ , which in general
generates entanglement between interacting subsystems, but
also through the dissipative term DJ via its dependence on
ρJ , (H )J , and (S)J , which must be defined in such a way that
it destroys existing correlations without violating condition
(iv). For example, when subsystem J is not interacting with
subsystem J̄ , i.e., when VJJ̄ = 0, it should never be possible
to influence the local observables of J by acting only on the
Hamiltonian HJ̄ of J̄ (e.g., by switching on and off parameters
or measurement devices within J̄ ). That this property is indeed
fulfilled by the form of the operators DJ proposed in [34] is
still only conjecture, but is nonetheless confirmed heuristically
via application. Of course, many other important features
regarding thermodynamic compatibility, including conditions
(i)–(iii) above, have been proven rigorously. For example, each
local dissipative term separately conserves the overall system’s
mean energy and each subsystem’s contribution to the overall
system’s rate of entropy production is positive semidefinite.

The key ansatz of the SEAQT model is that each dis-
sipation operator DJ in Eq. (2) must be chosen so as to
maximize the overall rate of entropy production subject to
preserving the mean overall energy, the unit trace of the overall
density operator, and an additional technical constraint. This
constraint, as discussed in full detail in [44,62], is related
to the geometrical fact that the SEA path in state space
can only be identified with respect to a particular metric
chosen to measure distances in state space, i.e., a proper
measure of distance between density operators. Following the
well-known arguments in [66–68], the SEAQT model selects
the Fisher-Rao metric as the proper unique metric for the
purpose of computing the distance between two probability
distributions. With respect to this metric, Refs. [43,62] prove
that the following explicit expressions of the dissipation
operators DJ originally proposed in Ref. [34] indeed identify
the SEA direction. These operators are nonlinear functions of
the overall density operator and are defined as follows [34]:

DJ = 1
2 [

√
ρJ D̃J + (

√
ρJ D̃J )†], (4)

013848-3



CANO-ANDRADE, BERETTA, AND VON SPAKOVSKY PHYSICAL REVIEW A 91, 013848 (2015)

with D̃J given by

D̃J =

∣∣∣∣∣∣
√

ρJ (B ln ρ)J
√

ρJ (I )J
√

ρJ (H )J

(I,B ln ρ)J (I,I )J (I,H )J

(H,B ln ρ)J (H,I )J (H,H )J

∣∣∣∣∣∣∣∣∣∣ (I,I )J (I,H )J

(H,I )J (H,H )J

∣∣∣∣
, (5)

where B is the idempotent operator obtained by substituting
unity for each nonzero eigenvalue of the density operator ρ

(notice that B is essentially the projector onto the range of ρ

so that the operator B ln ρ is always well defined, even when
some of the eigenvalues of ρ are zero). Here |.| denotes the
determinant and (F,G)J for any operators F and G on H is
expressed as

(F,G)J = (
√

ρJ (F )J |√ρJ (G)J )J , (6)

where for any FJ and GJ on HJ ,

(FJ | GJ )J = 1
2 TrJ (F †

J GJ + G
†
J FJ ). (7)

Finally, the expectation value of the entropy for the overall,
composite, microscopic system is given by the von Neumann
entropy functional [69]

S = −kB Tr(ρ ln ρ). (8)

For the numerical simulations of the two-spin- 1
2 -particle

system considered here, the internal-relaxation times τA and
τB are assumed to be constants with a value of 1. For the
atom-photon field simulations, they are based on characteristic
times associated with the CQED experiments. Further details
are given below.

The following general properties of Eq. (2) are proven in
Ref. [34] and subsequent papers. The overall mean energy
E = Tr(Hρ) is a constant of the motion. The entropy S is a
nondecreasing function of time. The nondissipative density
operators, i.e., those for which the dissipative term in Eq. (2)
vanishes, are those and only those that satisfy for every J the
condition that

ρJ (B ln ρ)J = ρJ [λIJ IJ + λHJ (H )J ], (9)

where λIJ and λHJ are real scalars. If, in addition, ρ commutes
with the Hamiltonian operator, then it represents an equilib-
rium state. Among the nondissipative states, the noteworthy
density operators are those for the zero-entropy states and those
for the maximum-entropy states. The zero-entropy density
operators are in one-to-one correspondence with all the pure
states of the standard quantum mechanical description for
an isolated system. They evolve according to the standard
Schrödinger–von Neumann unitary time evolution, exactly
along the usual nondissipative trajectories. However, in the
context of Eq. (2), these trajectories are the limit cycles
of the complete dynamics of the dissipative system. The
maximum-entropy density operators, i.e., the one-parameter
family of canonical equilibrium states of thermodynamics
where

ρSE|E = e−H/kT (E)

Tr(e−H/kT (E))
(10)

and ρSE|E maximizes S = −kB Tr(ρ ln ρ) for each given
value of the overall mean energy E = Tr(Hρ), are the only

equilibrium states of the dynamics described by Eq. (2) that
are stable according to Lyapunov [60]. In other words, all
other nondissipative equilibrium states are unstable. This
last feature about the stability of the equilibrium states is
a very strong form of thermodynamic consistency, which
essentially implements and forces directly into the dynamical
model the Hatsopoulos-Keenan statement of the second law
of thermodynamics [70].

III. MEASURES OF ENTANGLEMENT OR
CORRELATION AND DECOHERENCE

Since the scope of this paper is to model decoherence
and decorrelation, measures for the entanglement of a pure
state or the correlation of a mixed state as well as a measure
for coherence must be adopted. For example, the following
correlation functional was defined in [34] based on the
subadditivity property of the von Neumann entropy functional:

σAB(ρ) = Tr(ρ ln ρ) − TrA(ρA ln ρA) − TrB(ρB ln ρB). (11)

The rate of change of this correlation functional is expressed
as

d[σAB(ρ)]

dt
= σ̇AB |H − σ̇AB |D, (12)

where the first term on the right-hand side represents the
contribution of the Hamiltonian term on the right-hand side
of Eq. (2), while the second term on the right-hand side of
Eq. (12) represents the contribution of the dissipative term in
Eq. (2). Based on the characteristics of Eq. (2), it is conjectured
in [34] that the dissipative term can only destroy correlations
between the subsystems so that σ̇AB |D should be non-negative
at all times. A mathematical proof of the conjecture has not
been worked out yet. However, our present numerical results
seem to confirm its validity.

A measure of the coherence and correlation of the system
is the trace norm of the commutator operator

‖C‖ = Tr(CC†), (13)

where C = i [H,ρ]. The norm can be used as an indicator of
how the off-diagonal elements of the matrix representing the
state operator of the composite system evolve towards zero.
Its time evolution can thus be thought of as a measure of
the evolution of the loss of correlation among constituents.
Equation (13) can also measure the time evolution of the loss
of coherence of the constituents when applied to the reduced
operators. Yet another measure of coherence and correlation,
which provides a theoretical description of the experimental
observations for a composite system formed by an atom and an
electromagnetic field mode, such as those of CQED, is given
by the two-atom correlation signal proposed in [48], i.e.,

η(t) = 1
2e−2n(1−e−γ t )sin2ϕ cos[n(1 − e−γ t ) sin 2ϕ], (14)

where n is the average number of photons in the field mode,
γ = 1/TR , TR is the photon lifetime in the cavity, t is the
decoherence effective time, and ϕ is the field phase shift.
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IV. TWO-SPIN- 1
2 -PARTICLE COMPOSITE SYSTEM

A. Energy eigenstructure of a two-spin- 1
2 -particle system

The first composite system considered here consists of two
interacting spin- 1

2 -type particles. It is assumed that the local
state of constituent A and that of B are fully represented in
factor spaces HA and HB , respectively. The Hilbert space
corresponding to the composite system is given as the outer
product of the two factor spaces such that

H = HA ⊗ HB. (15)

When the particles interact, their states become correlated
and the state or density operator ρ for the composite system
may be written as

ρ = ρA ⊗ ρB + ζ. (16)

In other words, by subtracting from ρ the outer product of
the local state operators represented by the reduced state
operators ρA ≡ TrBρ and ρB ≡ TrAρ, a correlation operator ζ

is obtained, which is the null operator only in the absence of
correlations.

The Hamiltonian operator on H, representing the total
energy of the composite system and the generator of its
standard quantum mechanical dynamics, is

H = HA ⊗ IB + IA ⊗ HB + V. (17)

Here, for two identical spin- 1
2 -type particles A and B, it is

assumed that

HA = 1
2 �ω0σ

z
A, (18a)

HB = 1
2 �ω0σ

z
B, (18b)

V = −� �σA ⊗ �σB, (18c)

where the �σi (i = A,B) are three-dimensional vectors of Pauli
operators, the σ z

i are their z components, ω0 is the transition
frequency between the excited and ground energy levels of
each particle, � is the reduced Planck constant, and � is the
strength of the coupling between the subsystems. Thus, the
assumed Hamiltonian is

H = −m
(
σ z

A ⊗ IB + IA ⊗ σ z
B

) − � (�σA ⊗ �σB), (19)

where m = 1
2 �ω0 is the unit strength of a uniform externally

applied magnetic field in the z direction. The strength of the
field given by �M = mẑ is small with respect to the Zeeman
interaction splitting effects. For simplicity and without loss of
generality, m and � are set to 1, while � is set to 0.02.

B. Construction of the initial entangled and correlated
nonequilibrium state operators

Since one of the objectives here is to test numerically the
condition that σ̇AB |D , as determined by Eq. (2), is always non-
negative, the initial density operators for the composite system
are generated randomly according to the following procedure.
To begin with, the one-to-one correspondence between the
density operators ρ of a two-level system and points inside or
on the Bloch sphere [3] is capitalized upon as is the fact that,
for mixed states, the eigenprojectors of ρ are represented by
opposite end points on the Bloch sphere of the diameter that
passes through the point representing ρ. Therefore, the density

operators of a two-level system belong to the three-parameter
(0 � θ � π , 0 � φ � 2π , and 0 � r � 1) family

ρ = 1
2I + 1

2 r �P (θ,φ) · �σ , (20)

where 1
2 (1 ± r) are the eigenvalues of ρ and the angles θ

and φ denote the azimuth and zenith spherical coordinates,
respectively, of the end point �P (θ,φ) on the Bloch sphere
of the ray that passes through the point representing ρ. The
eigenprojectors of ρ are

P ±
θ,φ = 1

2I ± 1
2

�P (θ,φ) · �σ . (21)

Setting r = 1 and θ = 0,π in Eq. (20), the projectors |0〉 〈0|
and |1〉 〈1|, respectively, are obtained where |0〉 and |1〉 repre-
sent the orthonormal basis for which the Pauli operators are
σx = |0〉 〈1| + |1〉 〈0|, σy = −i |0〉 〈1| + i |1〉 〈0|, and σ z =
|0〉 〈0| − |1〉 〈1| and, of course, the identity operator is I =
|0〉 〈0| + |1〉 〈1|. With respect to this basis, the eigenprojectors
may be written more explicitly as

P +
θ,φ = cos2

(
θ

2

)
|0〉 〈0| + sin2

(
θ

2

)
|1〉 〈1| + sin

(
θ

2

)

× cos

(
θ

2

)
[exp( − iφ) |1〉 〈0| + exp(iφ) |0〉 〈1| ],

(22)

P −
θ,φ = P +

θ+π,φ+π . (23)

By randomly selecting the angles θ and φ, one spans
between all possible orthogonal pairs P +

θ,φ and P −
θ,φ and

hence all possible spectral resolutions of the identity operator
I = P +

θ,φ + P −
θ,φ .

This construction for both subsystems A and B of our
composite of two two-level systems is repeated, obtaining
the two resolutions of the identity operators on the respective
factor spaces HA and HB ,

IA = P A+
θA,φA

+ P A−
θA,φA

, (24a)

IB = P B+
θB ,φB

+ P B−
θB ,φB

, (24b)

and noticing that by randomly selecting the angles θA,
φA, θB , and φB , ones spans between all possible spectral
resolutions of the identity operator on the overall Hilbert space
H = HA ⊗ HB ,

I = P A+
θA,φA

⊗ P B+
θB ,φB

+ P A−
θA,φA

⊗ P B−
θB ,φB

+P A+
θA,φA

⊗ P B−
θB ,φB

+ P A−
θA,φA

⊗ P B+
θB ,φB

. (25)

Therefore, the density operators of the composite of the two
two-level systems belong to the family

ρ = ω+ +P A+
θA,φA

⊗ P B+
θB ,φB

+ ω− −P A−
θA,φA

⊗ P B−
θB ,φB

+ω+ −P A+
θA,φA

⊗ P B−
θB ,φB

+ ω− +P A−
θA,φA

⊗ P B+
θB ,φB

, (26)

where the ω, being the eigenvalues of ρ, must be non-negative
and sum to unity. The procedure to select random initial states
is thus completed by generating four random number x1, x2,
x3, and x4 between 0 and 1 and setting the ω based on

ωi = xi∑
i xi

(27)
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FIG. 1. (Color online) Bloch sphere representation of the re-
duced density operators ρA ≡ TrBρ and ρB ≡ TrAρ of the two
subsystems corresponding to about 5000 randomly generated initial
density operators ρ for the two-spin- 1

2 -particle composite system: (a)
constituent A and (b) constituent B.

so that the conditions that they be non-negative and sum to
unity are satisfied. To be more specific, for selecting randomly
the angles θA, φA, θB , and φB , the point picking approach given
in [71] is used. In this scheme, four random numbers y1, y2,
y3, and y4 between 0 and 1 are generated and then

θA = arccos(2y2 − 1), (28a)

θB = arccos(2y4 − 1), (28b)

φA = 2

π
y1, (28c)

φB = 2

π
y3 (28d)

are determined. Among the state operators that can be obtained
with Eq. (26) is that for the final stable equilibrium state
reached at the end of the state relaxation, which takes the
canonical form given by Eq. (10) with the Hamiltonian
operator given by Eq. (19). Figure 1 depicts the Bloch sphere
representation of the reduced density operators for constituents
A and B, corresponding to about 5000 randomly generated
density operators. The time evolution of the energy eigenlevel
occupation probabilities showing the energy redistribution
within the energy eigenlevels of the system are found from

pj = 〈Pεj
〉 = Tr(Pεj

ρ), (29)

where the Pεj
= |εj 〉〈εj | are the eigenprojectors of the Hamil-

tonian operator.

V. PARTICLE-PHOTON FIELD COMPOSITE SYSTEM

A. Cavity quantum electrodynamic experiments and SEAQT
modeling assumptions

The second composite system considered here consists of a
particle-photon field such as those of CQED. The description
of the experiments and the values used here in the modeling
are based on the work developed by Haroche et al. [46–51,63].

A schematic representation of the experimental configura-
tion is depicted in Fig. 2. Initially, Rb atoms are contained
in an oven B from which one atom in eigenstate |ψB〉 = |0〉
(excited level) is selected and subsequently subjected to a
classical resonant microwave π/2 pulse in R1 supplied by

Coupling

Atom

Fi
el
d

2R1R DB C

S’

SBψ Cψ
2R

ψ
1Rψ

FIG. 2. (Color online) Schematic representation of an atom-field
CQED experiment [47].

the source S′. This creates a state in a superposition of
circular Rydberg eigenlevels |0〉 and |1〉 (ground level) for
the atom, corresponding to principal quantum numbers 51
and 50, respectively. Afterward, the atom is allowed to enter
the high-Q quantum cavity C that contains an electromagnetic
field mode in a Fock state |α〉 previously injected into the cavity
by an external source S. The atom and cavity are off-resonance
and therefore absorption of photons is not exhibited during
the interaction. The atom only shifts the phase of the field
mode by an amount ϕ. This phase shift causes the coupling
of the excited level of the atom to the field mode state with
phase |α0〉 ≡ ∣∣αeiϕ

〉
and the coupling of the ground state of the

atom to the field mode state with phase |α1〉 ≡ |αe−iϕ〉. In this
manner, an entanglement between the states of the constituents
is created such that

|ψC〉 = 1√
2

(|0,α0〉 + |1,α1〉). (30)

After leaving the cavity, the atom is subjected again to a
resonant microwave pulse in R2 equal to that at R1, mixing
the atom energy levels and creating a blurred state for the
composite, which preserves the quantum ambiguity of the field
phase such that

|ψR2〉 = 1
2e−iϕ |0〉 (|α0〉 − |α1〉) + 1

2 |1〉 (|α0〉 + |α1〉). (31)

Finally, the excited eigenlevel state of the Rb atom is
observed and recorded by a detector D, projecting the state
of the electromagnetic field into a superposition of coherent
states |α0〉 and |α1〉. Since at this point the state of the atom
has been unveiled, the only coherence left in the system is that
belonging to the photon field.

In the SEAQT model, the detection of the first atom in
|0〉 is simulated by assigning a value of 1 in Eq. (31) to the
probability of finding the state of the atom in its excited level
eigenstate so that, at this time, the coherence of the composite
is due to the phase difference in the states of the field only. The
initial thermodynamic state for the first atom-field composite
system used in this model becomes

ρ 0 = |ψR2〉〈ψR2 |, (32)

where the probability Pe ≈ 1 of the atom being in its excited
eigenlevel state is used. Equation (32) represents a pure (zero-
entropy) state.

Since Eq. (2) evolves pure states into pure states, we need
to slightly perturb the state ρ 0 given by Eq. (32) into a
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neighboring mixed state. This activates the dissipative term
in Eq. (2), which thereafter attracts the density operator
towards thermodynamic equilibrium. The slight perturbation
is obtained using the procedure suggested in [59], i.e., by
assuming the initial state to be

ρ(0) = λρ0 + (1 − λ)ρSE|E=Tr(Hρ0), (33)

where ρSE|E=Tr(Hρ0) is the stable equilibrium state given by
Eq. (10). A value of λ = 0.95 is used in the perturbation in
order to start the evolution from a nonequilibrium state very
close to the original zero-entropy initial state (λ = 1) given by
Eq. (32).

As the next step in the experiments, once the state of the
photon field has been prepared in a Schrödinger cat state,
the field is allowed to stay inside the cavity during a time
t (decoherence time) in order to allow for decoherence, i.e.,
the loss of quantum superposition in the state of the field.
In the SEAQT model, this relaxation is simulated by using
Eq. (2) to drive the perturbed initial state operator of the first
atom-field composite system given by Eq. (33) towards a state
of thermodynamic equilibrium during a time t (decoherence
time), which is equivalent to that of the experiments.

After the state of the first atom-field composite system has
been allowed to relax (decohere) for a certain period of time t

(again noting that this decoherence time is equivalent for both
the experiments and the SEAQT model), the next step is to
obtain an indicator of the coherence left in the field. In the
experiments, to monitor the decoherence of the photon field
without developing a direct measurement on it that causes
the collapse of the quantum state, a second Rb atom with
characteristics identical to those of the first one is put through
the same path after the delay (or decoherence) time of t . This
second atom also shifts the phase of the electromagnetic field,
producing four phase components, of which two are zero
because the second atom undoes the phase shift of the first
atom and partially recombines the state components. If there
is no decoherence (this would be possible only if t = 0), the
probability of finding the second atom in the excited level
eigenstate would be equal to one. On the other hand, if the
photon field is allowed to relax (or decohere) for a certain
period of time t �= 0, the probability of finding the second
atom in the excited level eigenstate would be lower than one.
A certain number of events are recorded at each delay (or
decoherence) time t and the average value is reported.

In the SEAQT model, numerical results of the evolution
of the state of the first atom-field system are obtained at
every instant of time, allowing one to observe the progressive
decoherence of the field at every instant of time. Thus, the
coherence of the field is tested by calculating the observable
given by Eq. (13) from the numerical simulations. This is
an indicator of how the off-diagonal elements in the density
matrix of the first atom-field composite system decay with
time. The decay of these off-diagonal elements is an indicator
of the decoherence of the first atom-field composite system
that is monitored experimentally in [63] and monitored using
standard theory in [48] by taking advantage of the interference
existent between the two atoms. As for the case of standard
theory given by Eq. (14), the SEAQT decoherence indicator
given by Eq. (13) provides a value of 0.5 if no decoherence has

taken place and a value of 0 if the first atom-field composite
system is in a fully incoherent statistical mixture.

For this first atom-field SEAQT model and consistent with
standard theory (see the choice of the relaxation constant κ

in [50]), the internal relaxation times τJ are assumed to be a
function of the residence time TR of the field in the cavity, i.e.,
τJ = αTR , where α is a positive constant chosen so that τJ is
close to the characteristic decoherence time reported for the
experiment (see Sec. VI and the discussion of Fig. 13). The
nondimensional decoherence time is therefore given as it is for
the case of the experiments and standard theory, as t/TR .

B. Atom-field Jaynes-Cummings Hamiltonian

In the modeling of a composite field mode-atom system, it
is usually assumed that the single mode of an electromagnetic
field is quantized and treated as a two-level-type harmonic
oscillator fully represented in a two-dimensional Hilbert space
HF , while the atom is treated as a two-level-type spin- 1

2 parti-
cle fully represented in spaceHA [72–74]. The Hamiltonian on
H = HA ⊗ HF describing the total energy of the composite
is the traditional Jaynes-Cummings Hamiltonian [75–77] (in
the rotating-wave approximation) such that

H = 1
2 �ωeg(σ z ⊗ IF ) + �ωf (IA ⊗ N ) + V, (34)

where the first term on the right-hand side is the Hamiltonian of
the noninteracting particle, the second term is the Hamiltonian
of the noninteracting photon field mode, and V is the
interaction operator given by

V = 1
2 ��0(a ⊗ σ+ + a† ⊗ σ−), (35)

where � is the reduced Planck constant, σ z is the z Pauli
operator, σ+ and σ− are the raising and lowering (spin-flip)
operators, a† and a are the creation and annihilation operators,
N = a†a is the photon number operator, ωeg is the transition
frequency between the excited and ground energy levels of the
atom, ωf is the cavity frequency, and �0 is the Rabi frequency,
which indicates the strength of the atom-field interaction.

For the present model, values taken from [63] are used.
The transition frequency between the excited and ground
energy levels of the atom is ωeg/2π = 51.099 GHz and the
Rabi frequency is �0/2π = 24 kHz. Detuning parameters of
δ/2π = 70 and 170 kHz, corresponding to phase shifts of
2ϕ = 100◦ and 50◦, respectively, and where δ = ωeg − ωf

are also used.

VI. NUMERICAL RESULTS

A. Two-spin- 1
2 -particle composite system

Figure 3 shows an energy-entropy (〈E〉 − 〈S〉) diagram for
the state evolution of the system. The four points depicted
inside the curve are possible initial nonequilibrium states
obtained with the approach described in Sec. IV B and illustrate
the fact that any nonequilibrium state can be modeled with the
approach used in this paper. Although state A1 and states B1,
B2, B3, and B4 are all modeled in terms of their evolution
towards a state of stable equilibrium, the focus here is on the
evolution of state A1 only, for which a complete set of results
is presented. With this in mind, the system evolves at constant
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FIG. 3. (Color online) Energy-entropy diagram for the state evo-
lution of the two-spin- 1

2 -particle composite system. States A1 and
ASE are for the particular case presented in detail in the following
figures, while states Bi are other possible initial nonequilibrium states
generated.

energy from state A1 towards the state of stable equilibrium
at ASE that for this case just happens to have a high negative
absolute temperature. When the state of the system reaches
ASE, the density operator takes the canonical form of Eq. (10).

Figure 4 shows the norm of the commutator operator
defined by Eq. (13). The evolution of the norm is taken as
an indicator of how the off-diagonal elements of the matrix
represent the density operator decay; as a result, it is also an
indicator of how the coherence of the system disappears as the
state of the system evolves towards ASE. A drastic descent
is observed at the beginning of the evolution because the
coherence of the system is being annihilated by the dissipative
term of the SEAQT equation of motion. This drastic descent is
in accord with the locally perceived SEA ansatz upon which the
dynamical model is constructed. As seen in Fig. 5(a) where the
evolution of the composite system entropy is given, the entropy
increases very rapidly at the beginning of the evolution and
then quickly slows its increase, asymptotically approaching
its stable equilibrium value. Figure 5(b) depicts the entropy

]
[

]
[

FIG. 4. (Color online) Evolution of ||C||, which is the norm of
the commutator term C = i[H, ρ] for the two-particle composite
system.

(a)

(b)

)
(

)
( )
(

FIG. 5. (Color online) (a) Entropy and (b) entropy generation rate
evolution for the two-spin- 1

2 -particle composite system.

generation rate evolution of the composite system where it can
be observed that d 〈S〉 /dt remains non-negative at all times.

Figure 6 shows the x, y, and z components of the vector
state representation for both constituents. It can be seen that
constituent A starts its evolution closer to the surface of its
corresponding unit sphere than constituent B. The red line
corresponds to the z component of the vector state, which
shows how the two constituents are coherently exchanging
energy, i.e., when the energy of constituent A decreases,
that of constituent B increases. The x and y components
evolve very fast towards a value of zero, which is reached
at a dimensionless time of about 10. This evolution towards
the center of the local Bloch sphere represents the loss of
local coherence of the constituents. In contrast, the nonlocal
coherence belonging to the off-diagonal elements of the
density matrix of the system continues its decay but at a very
gradual rate until it reaches a value of zero at which point the
Hamiltonian and density operators commute and the state of
the composite system is that of stable equilibrium (see Fig. 4
above). During this slow nonlinear and nonlocal decay, the
constituents continue exchanging energy with each other.

Figure 7 shows the evolution in time of the energy
eigenlevel occupation probabilities given by Eq. (29). As
can be seen, the largest redistribution of system energy takes
place primarily between two of the four energy eigenlevels
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(a)

(b)

FIG. 6. (Color online) Evolution of the components of the state
vector in their local Hilbert spaces: (a) constituent A (spin
subsystem A) and (b) constituent B (spin subsystem B).

of the system, the majority of which occurs during a short
nondimensional time interval corresponding to the decay of
the local coherence of the constituents. After this fast initial
redistribution, the redistribution of energy represented by
changes in the eigenlevel occupation probabilities occurs at
a much slower rate.

Figure 8 depicts the evolution in time of the entropy corre-
lation functional defined in Eq. (11), which is a measurement
of how the correlations between the constituents disappear

FIG. 7. (Color online) Evolution of the energy eigenlevel oc-
cupation probabilities of the composite system for a period of
t/τ = 0–1000.

)
(

)
(

FIG. 8. (Color online) Evolution of the entropy correlation
functional.

when the composite system evolves towards a state of stable
equilibrium. The correlation functional reaches a constant
value when the composite is at stable equilibrium, which
occurs at about 7 × 105 dimensionless time units and at which
the value of the correlation functional is σAB = 0.0051. The
fact that the correlation functional does not reach a value of
zero at stable equilibrium is because the interaction term V of
the Hamiltonian operator of Eq. (18c) is continuously creating
correlations. This creation of correlations is described by the
contribution of the Hamiltonian term of the equation of motion
to the rate of change of the correlation functional depicted in
Fig. 9(a), where it can be observed that this rate of change
oscillates continuously at a fixed amplitude even when the
composite system is at stable equilibrium.

Figure 9(b) shows the rate of change of the correlation
functional due to the dissipation term of the equation of motion
and is consistent with the conjecture that the dissipation term
can only destroy but never create correlations between con-
stituents. Indeed, the rate of change of the entropy correlation
is always non-negative. In an attempt to provide a broader
study of this conjecture, 5000 different initial nonzero-entropy
states are randomly generated as described in Sec. IV B.
Figure 10 shows the degree of purity (γ̄p = Trρ2) of the density
operator for the composite system for the 5000 different cases
tested. In the figure, a value of γ̄p = 1 defines a state that
is a pure state (i.e., one of zero entropy) and a value of
γ̄p = 0 defines a state that is a stable equilibrium state for
which the entropy is a maximum. The points in between
represent nonzero-entropy nonequilibrium states with varying
degrees of purity. It is observed that for this particular case,
the majority of the state operators are located near a zone
of purity of approximately 0.5. The closest state operator to
stable equilibrium corresponds to one with a degree of purity of
0.28 and the state operator closest to the zero-entropy surface
corresponds to one with a degree of purity of 0.86.

Figure 11 shows the rate of change of the contribution
of the dissipative term to the rate of change of the entropy
correlation functional σ̇AB |D for the different 5000 random
initial nonequilibrium states tested. It can be observed that
σ̇AB |D evolves to zero for all cases and remains non-negative
at all times. The evolution of the initial nonequilibrium
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FIG. 9. (Color online) Rate of change of the contribution of the
(a) Hamiltonian and (b) dissipative terms to the rate of change of the
entropy correlation functional.

state located closer to stable equilibrium shows the lowest
correlation so that the destruction of correlations is very low,
i.e., close to zero. The evolution of the initial nonequilibrium
state closest to a pure state shows an increase in the destruction
of correlations at the beginning of the evolution, reaching a
maximum at about t/τ = 0.6 and then decreasing to zero.
This increase in the rate of destruction of correlations early

FIG. 10. (Color online) Degree of purity for the different 5000
random initial nonequilibrium states tested (same as in Fig. 1).

FIG. 11. (Color online) Rate of change of the contribution of the
dissipative term to the rate of change of the entropy correlation
functional for the different 5000 random initial nonequilibrium states
tested. In the inset the evolution of six particular initial nonequilibrium
states (i.e., with degrees of purity of 0.59, 0.58, 0.43, 0.68, 0.86, and
0.28) is depicted in order to show a more detailed evolution of σ̇AB |D .

during the evolution also corresponds to an increase in the
entropy production of the composite system. In other words,
the entropy generation of the composite system increases as
well for the first part of the evolution and then decreases,
evolving towards zero.

Additional possible measures of decoherence are given by

KH = 1
2 [〈(H )A〉 + 〈(H )B〉] − 〈H 〉, (36a)

KS = 1
2 [〈(S)A〉 + 〈(S)B〉] − 〈S〉, (36b)

which represent the difference in the locally perceived energies
and the energy of the composite system and the difference
in the locally perceived entropies and the entropy of the
composite system, respectively. Figures 12(a) and 12(b) show
the evolution of KH and KS , respectively, where it can be
observed that these differences decay very quickly at first and
then very gradually approach zero but never quite get there
even at stable equilibrium, which occurs at about 7 × 105

dimensionless time units (not depicted in the figures).

B. Atom-photon field composite system

As was the case for the two-particle spin- 1
2 system model,

the evolution of the norm of the commutator operator given
by Eq. (13) formed by the Hamiltonian and density operator
for the atom-field mode composite system is used here to
measure how the off-diagonal elements in the overall density
or state matrix decay with time as the composite system
evolves towards a state of stable equilibrium. When the atom
is detected by the experiment in its excited level state, the
state of the photon field is projected into a superposition of
coherent states |α0〉 and |α1〉. Thus, the only coherence existing
initially in the composite system is that belonging to the photon
field. This coherence of the photon field is a maximum at the
beginning of the state evolution. Consequently, the observable
of the composite system captured by Eq. (13) is an indicator
of how the coherence in the photon field is being dissipated in
time.

In Fig. 13 the results of the SEAQT model are compared
to the experimental data of [63] as well as to the theoretical
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(a) Evolution of KH

(b) Evolution of KS

FIG. 12. (Color online) Evolution of the difference between the
locally perceived energies and entropies of the constituents with
respect to the energy and entropy of the composite: (a) KH and
(b) KS .

prediction of the two-atom correlation signal η(t) reported in
the literature by Raimond et al. [48] and given by Eq. (14).
Figure 13(a) depicts the comparison for a case with the
detuning parameter δ/2π = 70 kHz. The closed triangles
correspond to the average values of the experimental mea-
surements obtained from [63]. The gray line corresponds to
the theoretical prediction made using the two-atom correlation
signal η(t) given by Eq. (14) [48], while the blue line represents
the SEAQT prediction using the norm of the commutator
operator ‖C‖ as a direct indicator of how the coherence of
the electromagnetic field mode is dissipated in time. Initially,
the system should, if it were ideal, be maximally coherent with
a magnitude of 0.5 for both the norm and two-atom correlation
signal. However, it is not and thus the initial magnitude of the
coherence has been moved (both for the correlation signal
and the norm), in accord with [48,63], from a value of 0.5
to a value of 0.18 on the vertical axis to take into account
experimental imperfections such as (i) the reflective quality
of the mirrors in the cavity, which have a damping time
(life of the photon inside the cavity) of 160 µs, (ii) noise in
the detection of the atom, and (iii) inhomogeneities in the
atomic beam caused by classical resonant microwave π/2
pulses applied at R1 and R2 [63,50]. In addition, the SEAQT
prediction corresponds to a value of τA = τF = 0.26 TR for the
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FIG. 13. (Color online) Comparison of the loss of coherence
predicted by the SEAQT model with the CQED experimental
results of [63] and theoretically calculated two-atom correlation
signal η(t) from [48] for two different values of the detuning: (a)
detuning parameter δ/2π = 70 kHz and (b) detuning parameter
δ/2π = 170 kHz.

internal-relaxation times of the constituents in Eq. (2). This is
very close to the characteristic decoherence time of 0.24 TR

reported for the CQED experiment in [63]. As can be seen,
the SEAQT model predicts the experimental data very well. A
very slight deviation from the experimental values is observed
with the fourth and fifth values, but this is well within the error
bars for the experimental values indicated in the figure. Also,
note that, though inconclusive, the experimental data averages
suggest that the coherence is destroyed at all times, i.e., that
the decoherence indicator is always non-negative, which is
consistent with the SEAQT predictions. This holds for the
second experiment as well [see Fig. 13(b)] even though the
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FIG. 14. (Color online) Comparison of the loss of coherence
predicted by the SEAQT model with the CQED experimental results
of Brune et al. [63].

uncertainties in the experimental data at t/TR = 1.5 make this
less of a certain conclusion.

Figure 13(b) depicts the comparison for a case with the
detuning parameter δ/2π = 170 kHz. The circles correspond
to average values of the experimental measurements obtained
from [63]. Again the gray line corresponds to the theoretical
prediction made using the correlation signal η(t) given by
Eq. (14) [48]. The red line represents the SEAQT prediction
using a value of τA = τF = 0.36 TR for the internal-relaxation
times of the constituents in the equation of motion. As
for the case of Fig. 13(a), the maximum value of the
theoretical predictions of η(t) and the numerical predictions of
SEAQT have been corrected to take into account experimental
imperfections. The SEAQT model predicts the experimental
data very well at the beginning and at the end of the
decoherence evolution. A deviation from the experimental
values is observed with the third, fourth, and fifth values,
although it is also observed that the uncertainty associated with
these measurements is higher than the rest of the experimental
values reported.

Finally, Fig. 14 shows the SEAQT decoherence prediction
of the experimental data of [63] in a single figure for the two
values of the detuning parameter. Another interesting feature
observed here is that, as seen in the experiments [63], the
decoherence takes place at a faster rate for smaller values of
detuning when the separation of the two state components of
the photon field increase. This is captured with the SEAQT
model. In addition, the coherence for the case of a detuning
of δ/2π = 170 kHz is smaller than for a detuning of δ/2π =

70 kHz at the last experimental value of the evolution. This
behavior is also captured by the SEAQT model.

VII. CONCLUSION

In this paper, an approach based on the principle of SEA
was used in which a nonlinear model dynamics of the state
evolution was embedded in the equation so as to describe
in a thermodynamically consistent way the decoherence and
decorrelation that occur during relaxation to equilibrium of
the two simplest composite systems found in nature. The
first composite system consists of two interacting correlated
particles of type spin 1

2 and the second consists of an atom
interacting with a photon field.

For the two-spin- 1
2 -particle composite system, results show

that the local coherence within each constituent (particle)
disappears in a very short period of time, whereas the
nonlocal coherence belonging to the composite system takes
a very long time to disappear. In addition, the conjecture
previously stated in [34] that the dissipation term of the
SEAQT equation of motion is capable of only destroying
correlations between constituents is heuristically confirmed
by randomly creating and modeling the state evolution for
5000 randomly generated initial nonequilibrium states. The
closest random initial nonequilibrium state to a pure state
corresponds to a quantum purity of 0.86 and that closest to
stable equilibrium corresponds to a quantum purity of 0.28.
For the atom-photon field composite system, the decoherence
phenomenon predicted with the SEAQT model was compared
to the experimental data of Brune et al. [63] for two values
of the detuning parameter, i.e., δ/2π = 70 and 170 kHz. The
comparison for both values shows that the SEAQT prediction
is in good agreement with the experiments.

Finally, the results obtained demonstrate that the dynamic
approach utilized in this paper is a robust and comprehensive
framework for simulating the nonlinear dynamics encountered
in complex quantum systems. As a predictive tool, the model
has the potential to be useful in finding ways of controlling the
decoherence, which is an impediment to the development of
quantum computers, quantum communication devices, atomic
clocks, etc. Applications to a whole variety of nonreactive and
reactive quantum systems are possible and are already being
developed.
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