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Summary. — A novel nonlinear equation of motion is proposed for
quantum systems consisting of a single elementary constituent of matter.
It is satisfied by pure states and by a special class of mixed states
evolving unitarily. But, in general, it generates a nonunitary evolution of
the state operator. It keeps the energy invariant and causes the entropy
to increase with time until the system reaches a state of equilibrium or
a limit eyecle.

PACS. 03.65. — Quantum theory; quantum mechanics.

1. - Introduction.

The purpose of this paper is to present a novel nonlinear equation of motion
for an isolated quantum system, including the irreversible motion from any
initial state to a unique stable equilibrium or thermodynamic equilibrium state.

(*) This work is based on part of a doctoral dissertation submitted by the first author
to the Massachusetts Institute of Technology.
(**) Address: G. P. Beretta, M.I.T., Room 3-339, Cambridge, MA 02139.

169



170 G. P. BERETTA, E. P. GYFTOPOULOS ETC.

Ever since the enunciation of the first and second laws of thermodynamics,
the relation between mechanics and thermodynamics has been the subject
of intensive scientific inquiry and controversy. Invariably, the two theories
are reconciled by regarding thermodynamics as a statistical, macroscopic, or
phenomenological theory ().

In particular, as stated in a recent review by WEHRL (*), « Entropy relates
macroscopic and microscopic aspects of nature and determines the behavior
of macroscopic systems, i.e. real matter, in equilibrium (or close to equilibrium).
Why this is true unfortunately is not yet understood in full detail, in spite of
a century’s efforts of thousands and thousands of physicists. There are many
opinions and proposals for a solution to this problem; however, none of them
seems to be completely satisfactory.»

Because of concerns gimilar to those of Wehrl, HAaTsOPOULOS and GYF-
TOPOULOS (3) concluded that thermodynamics should not be regarded as a
statistical, macroscopic theory. Instead, they proposed a unified quantum
theory which within a single structure encompasses both mechanics and thermo-
dynamics and in which the laws of thermodynamics are a necessary com-
plement to those of quantum physics. In this theory, which applies to all
systems, including a single constituent of matter, and to all states, including
states of thermodynamic equilibrium, mixed states represent probabﬂities
inherent only to the system, in the same sense that pure states represent
probabilities inherent only to the system.

Among other results, the theory proves the following.

a) For any system in any state, the only extensive property that remain®

invariant in all reversible adiabatic processes and does not decrease in all
adiabatic processes, in general, is given by the state functional

@ 8(0) = —kTr(gln g),

where %k denotes the Boltzmann constant. Because these two features are
characteristic of the entropy of equilibrium states of classical thermodynamics,
8(p) is called the entropy of the system in the state g, irrespective of whether
the state is thermodynamic equilibrium or not.

(1) See, e.g., J. voN NEUMANN: Mathematical Foundations of Quamium Mechanics,
English translation (Princeton University Press, Princeton, N.J., 1955); E. C. KEMBLE
Phys. Rev., 56, 1013, 1146 (1939); U. Fano: Rev. Mod. Phys., 29, 74 (1957); E.T.
JaynEs: Phys. Rev., 106, 620 (1957); 108, 171 (1957); W. BaND: Am. J. Phys., 26,
440, 540 (1958); E. C. G. SUDARSHAN, P. M. MareEWS and J. Ran: Phys. Eev., 121,
920 (1961); R. JaNCEL: Foundations of Olassical and Quantum Statistical Mechanics,
(Pergamon Press, Oxford, 1969); J. MEHRA and E. C. G. SUDARSHAN: Nuovo Cimento B,
11, 215 (1972).

(%) A. WEHRL: Rev. Mod. Phys., 50, 221 (1978).

(3 G.N. Hatsorouros and E.P. GyrrorouLos: Found. Phys., 6, 15, 127, 439, 561,
(1976). _
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b) For a system with Hamiltonian operator H, the von Neumann equa-
tion of motion
do )
2 £ __ 2
is valid for unitary processes. But it is incomplete because it describes neither
nonunitary reversible processes nor irreversible processes in which a system
approaches thermodynamic equilibrium.

HaTtsorPouLos and GYFTOPOULOS concluded that the complete equation
of motion remained to be discovered and that a) it must describe nonunitary
processes in general and, in the limit of unitary processes, reduce to eq. (2);
b) for all processes of an isolated system, it must imply the invariance of the
energy given by the expression Tr (Hp), and ¢), for an irreversible process of an
isolated system, it must result in an increase of the entropy given by the ex-
pression —k Tr (o 1n ).

For a number of reasons, statistical, thermodynamic, or quantum-mech-
anical, many efforts have been made to modify or complete the von Neumann
equation of motion (»4). The starting point of most of these efforts has ‘been
the search for a superoperator L(g) which is linear in p and such that

® X_Lo.

However, StvMoNs and PARK (5) concluded that, in general, no linear super-
operator is capable of describing the approach to a stable equilibrium state
starting from an arbitrary initial state, as would be required in & unified theory
of mechanies and thermodynamics.

A novel nonlinear quantum equation of motion which satisfies the require-
ments of quantum thermodynamics has been conceived by the first author.
In this paper, we present the form of the equation for an isolated system
consisting of a single constituent of matter (a particle, an assembly of indis-
tinguishable particles, or a field). The form of the equation for a composite
system of many distinguishable constituents will be discussed in a following
communication.

We have adopted the new equation of motion because it has the following
features: a) it is satisfied by pure states evolving according to the Schrédinger

{4) A recent review of these attempts is given by J.L. PArk and R.F. SiMMoNs, jr:
The knots of thermodynamsics, in Old and New Questions in Physics, Cosmology, Philosophy
and Theoretical Biology: Essays in Homor of Wolfgang Jourgrau, edited by A. vaN
DER MERWE (Plenum Press, New York, N.Y., 1983). See also J.L. Parx and W.
BaNxD: Found. Phys., 7, 813 (1977).

(») R.F. Stmmons, jr. and J. L. PaRK: Found. Phys., 11, 297 (1981).
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equation of motion and by a special elass of mixed states evolving according
to the von Neumann equation; b) it keeps the energy functional ¢(g) = Tr (Hp)
invariant and causes the state functional s(p) = — k Tr (¢ln p) to increase
until the system reaches a state of equilibrinm or a limit cycle, and ¢) it implies
that state functional s(g) satisfies all the requirements of entropy of thermo-
dynamics.

The paper is organized as follows. Statements of the nondynamical pos-
tulates of quantum theory and the proposed equation of motion for a single
congtituent of matter are given in sect. 2, some important theorems in sect. 3
and conclusions in sect. 4.

2. - Postulates.

To establish a mathematical framework in which to present the proposed
equation of motion, we begin by stating four nondynamical postulates of
quantum theory (¢).

21, Postulate 1: Systems. — To every physical system there corresponds
a complex, separable, complete, inner product space, a Hilbert space #. The
Hilbert space of a composite system of two distinguishable subsystems 1 and 2,
with associated Hilbert spaces £ and 72, respectively, is the direct product
space 1 (R 2.

2'2. Postulate 2: Correspondence principle. — Some linear, self-adjoint
operators 4, B, ... on Hilbert space 5 correspond to physical observables of
the system. If operator P corresponds to the observable P, then the oper-
ator f(P), where f iy a function, corresponds to the observable f(P).

2'3. Postulate 3: State preparations. — To every reproducible nnambiguous
preparation (") scheme I for a physical system there corresponds a linear,
self-adjoint, nonnegative-definite, unit-trace operator ¢ on 3 which containg
all physical predictions regarding data gathered immediately subsequent to
that preparation. The trace class operator ¢ thus represents the state of the
system prepared in the unambiguous manner IT and, subject to some ad-
ditional mathematical conditions discussed later, will be called the state
operator.

- 24, Postulate 4: Observables, measurements, data and ensembles. — The arith-
metic mean value of data yielded by measurements of the observable corres-

k‘) The nondynamical postulates are equivalent to those used in ref. (3).
(") The concept of unambiguous preparation has been defined in ref. (3).

P
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ponding to operator A on an ensemble of identical systems, all prepared.in
the unambiguous manner I7 with associated state operator g, is glven by the
value of the continuous linear functional

(4) a(g) = Tr (4o).

For example, the value ¢(gp) of the energy of a system in state o is given by
the value of the functional

(5) (o) = Tr (Hp).

Again, the value n(g) of the number of particles of a field (?) in state g is given
by the value of the functional

(6) . n(g) = Tr (Np),

where N is the particle-number operator.

Postulates 1 to 4, or some equivalent statements, represent the nondy-
namical foundations of gquantum theory for any system in any state.- To ¢om-'
plete the theory, we must augment them by a causal principle. We emphasize
that neither the four nondynamical postulates nor the causal principle discussed
below can be derived from other axioms. If they could, the postulates would
have been theorems and not the foundation of our theory. ‘

As already stated, the von Neumann equation (eq. (2)) is valid but in-
complete because it describes neither nonunitary reversible processes nor ir-
reversible processes. Such processes must be included in order to achieve a
satisfactory unification of quantum mechanics and thermodynamics.

We will postulate that the dynamical evolution of an isolated quantum
system is described by an equation of motion proposed by BERETTA (°). Our
motivation for adopting this postulate will become evident from the results
that we obtain in sect. 3. ‘ -

2°5. Postulate b: Equation of motion for a-single constituent of matler. —
For a system consisting of a single elementary constituent of matter, i.c. a.
single particle, a single assembly of indistingunigshable particles or a smgle field,
the state operator g evolves according to the equation

de

() ﬁ[H, -0,

where [H, Q] Hg — oH, 7 is a positive time constant and D, a, llnea.r, self-

)
/

T
cal )

(8) Here +# is a Fock space.
(®) G.P. BERETTA: Thesis, Sc. D. MIT (1981), unpubhshed

AR
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adjoint operator on the Hilbert space of the system, defined as a nonlinear
funection of p by

®  D=13(veD + (eD)),

. velng VveR, VeR, .. VoR,
cowi |(RoyIng)  (Boy By) (B, Ry) ... (B, Ry)
(Byy,Ing) (B, By) (B, Ry)...(R,, R,)

p— |Bylng (B,E) (B,R)..(R,R)

) ~ I'(/2E., VeFs, - VeoE) g
(Boy By) (Boy By) ... (Ro, By)
_ (By; Bo) (By, By) ... (By, R,
(10) I'veR,, VeRB,, ..., VeR) = . — . ) ’

(B:; Bo)  (Byy B,) ... (B, By)

(11a) (F, @)= (G, F)=4%Tr (I@I{F’ G} \/—FI\/—G \/—GI\/—F) ’
(11b) (AIB) = (BIA) =}Tr(A'B + BtA),

{F, G} = FG + GF, F, & are self-adjoint operators, |o| =V ot ¢ (), I'(4, ..., B)
is the Gram determinant (') of operators 4, ..., B (in general non—self-adjoint)
with respect to the real scalar product (-|-) defined by relation (11b) on the
get of linear operators on 5# (12), and operators R, are determined as follows.

For each elementary constituent, we define a set of linearly independent
self-adjoint operators {I, H, N,, ..., N,}, where I is the identity, H the Hamil-
tonian and each N, for i =1,..., n, commutes with the Hamiltonian. The
operators in this set, which always includes the identity and the Hamiltonian,

(1*) For a self-adjoint, unit trace but not necessarily definite operator p, we can
always write @ = Y. Pi|@x> <@x| + [dbpilgi> <pe|, where {g,} and {p;} are complete sets
of orthonormal eigenvectors and real eigenvalues of g. We then write py = |p.]
«exp [in6,), where 6, = 0 for p,>0 and 6, = 1 for p,< 0, and define operators +/g and
vgoln g as having the same eigenvectors as g, and eigenvalues vp; = V[p| exp [in6,/2]
and vp,lnp, = Vp; (In|p| + in6;), respectively. With these definitions, eq. (7) is
defined by postulate 5 for self-adjoint, unit-trace operators ¢ that are not necessarily
nonnegative definite.

(1) See, e.g., E.F. BEckENBACH and R. BELLMAN, Inequalities (Springer-Verlag,
New York, N.Y., 1965), p. 59-60; see also G. P. BERETTA: in Frontiers of Nonequili-
brium Statistical Physics, edited by G. T. Moore and M. O. Scvrry (Plenum Press,
New York, N.Y., in press).

(%) For a, b real scalars, A, B linear operators and A*, B! their adjoints, we have
(4, + 4,|B) = (4/B) + (4,|B), (A|B,+ By) = (4B,) + (A|B,), (ad|B) = a(4|B),
(4[bB) = b(A|B), and (4]|4) = Tr(A* 4) > 0 for A+ 0.
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are called the generators of the motion of the elementary constituent. Any
linear combination with real coefficients of the linearly independent generators
of the motion is also a well-defined self-adjoint operator on # (13). For each g,
if the operators {V'oI, v/oH, voN,,...,/oN,} are linearly independent,
then z = = -}- 1 and operators R, are defined as {R, = I, R, = H, R, = N,, ...,
R, = N,}, otherwise 2 <<n + 1 and the set {B} is any smaller subset of gen-
erators of the motion such that operators {V/o By, Vo R,,...,VoR,} are linearly
independent and span the set (vVoI, VoH, VoXN,, ..., VoN,}. By using well-
known properties of determinants, it can be readily verified that operator D
is invariant under transformation from one set {R.} to any other set {R;} with
the same defining properties. Moreover, it follows from the definition of op-
erators R, that the Gram determinant I'(V g Ry, Ve Ry, ..., VoR,) (eq. (10)) is
always strictly positive.

We will show that the generators are among the constants of the motion
of the system (theorem 4). This result would have been obtained even if the
von Neumann equation (eq. (2)) were used, since each non-Hamiltonian gen-
erator N, commutes with the Hamiltonian operator. We will see, however,
that, according to eq. (7), not all operators that commute with the Hamiltonian
are constants of the motion (theorem 5) as the system proceeds from an initial
state to a state of higher entropy.

Some elementary constituents of matter, such as a structureless particle,
would require only the identity and the Hamiltonian as generators of the motion.
Others, such as a field, however, would require the identity, the Hamiltonian
and the particle number operators as generators of the motion. Thus both
the nature and the number of the generators of the motion other than I and H
depend on the single constituent in question.

Because qualitatively none of the results to be derived below depends
on the value of the time constant r, on the specific nature of the physical
observables represented by N,, N,,..., N, or on whether their number is
greater than or equal to zero, we will proceed without specifying explicitly
these three characteristics of the single constituent.

If 5# is infinite-dimensional and some generators of the motion are un-
bounded, the self-adjoint operator dg/d¢ (eq. (7)) will be well defined only
for a subset @ of the linear, self-adjoint, unit-trace operators o on .

(8) This requirement is generally nontrivial because one expects that some generators
of the motion (in particular H) may be unbounded. For the definition of a well-defined
(densely defined) operator and that of commutativity for unbounded operators see,
e.g., M. REED and B. SimonN: Methods of Modern Mathematical Physics, Vol. 1: Fune-
tional Analysis (Academic Press, New York, N.Y., 1972), Chapt. I and VIII. For the
extension of the definition of Tr(g¢4) to unbounded operators A, see, e.g., A. JAMIOL-
KOWSKI: Rep. Math. Phys., 10, 267 (1976); H. Arak1 and E. H. Lies: Commun. Math.
Phys., 18, 160 (1970). For the additional technical conditions that must be imposed
on the generators of the motion in order for theorem 10 to hold, see W. Ocus and
W. BaYER: Z. Naturforsch., 28a, 1571 (1973).
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We have not been able to solve the technical mathematical problem to
find necessary and sufficient conditions that define the set J. These conditions
will be in terms of the domains of definition of the unbounded generators of
the motion. Similar conditions are required also by the von Neumann equa-
tion (eq. (2)) ().

An operator-valued function o(¢) defined for ¢>0 will be called a solution
if and only if ¢(0) is in @, and o(?) satisfies eq. (7) for every 1>0. We will gee
that solutions remain in § for every ¢>0 because ¢(?) remains self-adjoint and
unit trace (theorems 1 and 2).

A solution g(f) will be called physical if and only if o(?) is also nonnegative
definite, i.e. [o(t)| = o(?) for every ¢>0. We will denote by @ the subset of
operators ¢ in § through which there Passes a physical solution. Thus, by
definition, every physical solution lies entirely in . Only the operators o
in @ will qualify as state operators.

Ideally, we would like to demonstrate that, for every nonnegative-definite
0(0) in @, the equation of motion admits a unique physical solution. The
reason is that, in our attempts to unify quantum mechanics and thermo-
dynamies, an underlying hypothesis has been that the basic causal structure
of mechanics should be retained; specifically, future states of closed systems
should deterministically unfold from initial states along smooth unique paths
in gtate space. We recognize that this posture is subject to dispute. Other
scholars may prefer, for example, to seek explanations of physical processes
in such constructs as bifurcations born of singnlarities in the mathematical
representation. For us, however, causality captures the quintessence of being
« physical ».

Unfortunately, we are at present unable to demonstrate rigorously thig
desirable result. Instead, we will proceed by assuming only that physical
solutions exist in addition to the trivial unitary solutions discussed in the-
orems 3 and 8. In support of this assumption, we derive a particular class
of nontrivial, nonunitary, approximate solutions in appendix B. This derivation
is very important because it proves that the set of physical solutions is non-
empty.

Regarding the broader issue of existence and unigqueness of physical so-
lutions, presently we can offer only some heuristic and circumstantial evidence.
Specifically, we give rudiments of an approach to the proof of an existence and
uniqueness theorem in appendix O and of a nonnegativity conservation the-
orem in appendix D.

' We will see that the new equation of motion implies two alternative clas-
sifications of states: the first is into dissipative and nondissipative states
(theorem 7), the second is into nonequilibrium, unstable equilibrium and stable

(2¢) See, e.9,, E.B. Davies: Quantum Theory of Open Systems (Academic Press, New
York, N.Y., 1976), p. 82-83.
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equilibrium states (theorems 9 to 11). Each class of states has physma]ly inter-
esting and nontrivial dynamical characteristics.

— Theorems.

By virtue of the nontrivial physical solutions discussed in appendix B,
the set of physical solutions is nonempty. Thus some important ¢onsequences
of the theory represented by postulates 1 to 5 are as follows.

Theorem 1. Any solutlon ¢(?) of eq. (7) it self-adjoint,
Proof. Because g() is a solution, g(0) is self-adjoint and g(f) = do/dt is

well defined. Because dg/dt (eq. (7)) is self-adjomt, o(t) = p(0) + fg (¢)de is
self-adjoint for every t>0 Thus, theorem 1 is proved.

Theorem 2. Any solution o(t) of eq. (7) is unit trace.

Proof. Because g(t) is a solution, 0(0) is unit trace. Becanse it can be readily
verified that Tr ([H, g]) = 0 and Tr (D) = 0, d Tr (g)/dt = Tr (de/dt) = 0 and,
therefore, Tr (g(t)) = Tr (9(0)) = 1. Thus theorem 2 is proved. '

Theorem 3. 1If y(t) iz a solution of the Schrodinger equation

oy i
(12) 3 = 5 HY

then o(t) = P,, is a physical solution of eq. (7), where P,, is the projector
onto the one-dimensional subspace of 5 spanned by vector y(t).

Proof. Substituting projector P w1060 eq. (7), we find that all entries of
the first column of determinant ﬁ (eq. (9)) vanish for every ¢ because
\/P_V(; In P, is the null operator. With operator D equal to the null operator,
€q. (7) reduces for every ¢ to the von Neumann equation which is satisfied
by P,,. Thus theorem 3 is proved.

If uniqueness of physical solutions were proved, then theorem 3 would be
strengthened so that «given a solution g(t) with 0(0) = P, then o(t) = P,
for all times ¢». In other words, for pure states eq. (7) would reduce to the
Behrédinger equation.

Definition 1: Constants of the motion. A physical observable represented
by a linear, self-adjoint operator C is said to be a constant of the motlon of
the system if and only if -

s

 dofe) _d do
13) 3 =5 I (Co )_Tr(()'dt) 0

for all state operators p.
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Theorem 4. Bach of the generators of the motion is also a constant of the
motion of the system.

Proof. By virtue of eq. (7), the rate of change of the mean value ¢(p) of
an observable with corresponding linear operator C is given by the relation

o
an  m(0) =5 (0 Hle) —m)eT(WaTs VER - VAR,
where

(C,ng) (C,R) (GR) - (G,R)

(Ro, Inp) (Ro, By) (B, By) ... (B,, R,)

(15) m(g) = | (Ry,Ing) (By, Ro) (By, Ry) .. (By, Bo)

(B.;lng) (B Ro) (Bs, By (B, R,)

When C is one of the generators of the motion, then the first term in the right-
hand side of eq. (14) vanishes because ¢ commutes with H and the second
term vanishes because 4/p C is a linear combination of operators v o R;and,
therefore, the rows of determinant m(p) (eqa. (15)) are linearly dependent.
Thus theorem 4 is proved.

Theorem 4 shows that state property energy, e(p) = Tr (Hgp), is conserved.
In addition, the change of this property in any adiabatic process is uniquely
related to the amount of work involved in the process (3). Hence, we conclude
that the proposed equation of motion implies the first law of thermodynamics.

Theorem 5. A physical observable represented by a linear, self-adjoint
operator C is a constant of the motion if and only if ¢ is a linear combination
of the generators of the motion, i.c.

(16) C=hI+iH+ 34N,

{1

where ;, Az and A, for i =1, ..., n, are real scalar constants.

Proof. For C to be a constant of the motion, the right-hand side of eq. (14)
must vanish for every g. This occurs if and only if each of the two terms vanishes
independently because the first term is a linear and the second a nonlinear
functional of g.

Condition (16) is sufficient. The first term vanishes because each genperator
of the motion in € commutes with H. The second term vanishes for every g
because the operator v/¢ ¢ can be expressed as a linear combination of op-
erators 4/¢ RB; and, therefore, the first row of determinant m(g) (eq. (18)) is a
linear combination of the other rows.
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Condition (16) is also necessary for determinant m(g) to vanish for every g.
Indeed, for the particular strictly positive state operator

¢ = exp [0]/Tr (exp [C]),

m(g) equals the Gram determinant I'(v'¢ C, V¢ By, Vo Ry, ..., Vo R,). Because
a Gram determinant of vectors vanishes if and only if the vectors are linearly
dependent (*!), m(p) vanishes only if v/¢ C is a linear combination of operators
Vo R;. Because operators VoR, span the set {VoI, VoH,VoXN,,...,VoN,}
and (V) exists for ¢ = exp [C]/Tr (exp [C]), it follows that C must be a
linear combination of generators of the motion. Thus theorem 5 is proved.

Corollary 1. All the constants of the motion are also constants of the motion
according to the von Neumann equation (eq. (2)).

This corollary is a direct consequence of theorem 5, because each constant
of the motion ¢ commutes with the Hamiltonian operator. In general, how-
ever, not all constants of the motion according to the von Neumann equation
(eq. (2)) are constants of the motion according to eq. (7), because not all of
them satisfy condition (16). For example, H? is a constant of the motion accord-
ing to eq. (2), but not according to eq. (7). This is a physically meaningful quan-
tum-thermodynamic result because energy fluctuations are not conserved. For
example, an energy eigenstate with energy e has zero fluctuations, while a
thermodynamic equilibrium state (theorem (10)) with the same mean energy e
has nonzero fluctuations.

It follows that the generators of the motion are essential characteristics
of the definition of the system because they specify its time invariants.

Theorem 6. TFor a single constituent of matter, state property s(p) =
= — k Tr(p1n g) is a nondecreasing function of time.

Proof. Using eq. (7), relations (8) to (11) and theorem 2, we find

ds(g) do do
(17a) Er ——kTr(—(-ﬁlng —kTr %)

(Ing,ing) (Ing, R)) (Ing, R, ... (Ing, R,)
(Boy1ng) (Ro, Ry) (R, Ry) ... (Ry, R,)
(Ru In o) (By, Ry) (By, B,) ... (B, R,)

aw  B@_k | (RBilne) (RyR) (B,R) . B,R)
dat T F('\/ERM '\/ERU eeey '\/E-Rl) ’
ds(g) — I_" I'v/eln g, /o Ry, /o R, -, Ve R.)
dt ~t T'WoEo Veki, - VaR)

d k o~ ~
(17d) sd(te’ == (D\Dy,

(170)
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where the last of relations (17) follows from the fact that (Djv/gR,) = 0 for
i=0,1,..., # and, therefore, (Dv/gIn g) = (D|D). The right-hand side of
eq. (17¢) is nonnegative because Gram determinants are nonnegative (**) and,
by definition, I'(v¢ Ry, V@ Ry, ..., VoR,) is strictly positive. Similarly, the
scalar product (D)D) in eq. (17d) is nonnegative (12). Thus ds(e)/d? is non-
negative and theorem 6 is proved.

Theorem 6 is important because it is shown later that the functional s(p)
represents the thermodynamic entropy of the single elementary constituent
in state g.

_ Definition 2: Nondissipative states. A state operator ¢ is said to be non-
dissipative if and only if, for that state, ds(e)/dt = 0. Otherwise, the state
operator will be called dissipative.

Theorem 7. A given state operator g is nondissipative if and only if there
-exists a constant of the motion C (theorem 5) such that ‘

{18) eln g=pC = Cp.
Proof. Using definition 2 and relation (17¢), we find
(19) I'(Weln g,VoR,, VoR,,..., VeR,) =0.

The Gram determinant in eq. (19) vanishes if and only if operators vo1ln g,
Vo Ry, VoR,,...,VoR, are linearly dependent, i.e. if and only if there exist
real scalars o and yA;, not all zero, such that

(20) avVolng—y > 2A/pR,=0.
“ i=0

Because operators 4/gR, are linearly independent, we can set a0 and
o=y =1. Because operators /R, span the set {VoI, VeH,VeNy,..,
v/ N,}, there exist scalars A;, Az, A; such that

(21) ﬁ ﬂ.: \/ER{ = }'1\/2’1 -+ lx'\/EH + i lt\/EN{ = \/607

=0 =1

where C is a constant of the motion (theorem 5). Therefore, ds(g)/dt = 0 if
and only if there is a C such that

(22) Valng=vg0.

Taking the adjoint of eq. (22), we find that ¢ and ¢ commute. Multiplying
eq. (22) by Vg, we find that condition (18) is necessary for ¢ to be nondis-
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sipative. Using it directly in the evaluation of determinant (17b), we verify
that the eondition is also sufficient. Thus theorem 7 is proved.

Corollary 2. Any pure state operator ¢ = P, is nondissipative.
Indeed, for any pure state operator, oln ¢ is the null operator and con-
dition (18) is satisfied for C = 0.

Oorollary 3. A given state operator g is nondissipative if and only if there
exists a constant of the motion C and an idempotent operator B commuting
with € such that

(23) o= Bexp[(].

Because B is idempotent, it can be readily verified that Bln B is the null
operator and that the o given by eq. (23) satisfies condition (18) and, therefore,
is nondissipative. Conversely, if ¢ is nondissipative, then condition (18) is
valid for some ¢ commuting with g and we can define an idempotent operator B
having the same set of eigenvectors as that shared by ¢ and C, and eigenvalues
b, =1if p;+ 0 and b, = 0 if p, = 0, where p, is the i-th eigenvalue of go. Be-
cause g In ¢ = o0, we find that p, = b, exp [C,], ¢ = B exp [C] and, therefore,
that condition (23) is satisfied. '

Theorem 8. — A golution g,(¢) of the von Neumann equation is also a physical
solution of eq. (7) if and only if p,(0) is nondissipative.

Proof. Being a solution of eq. (2), g.(t) = U(t) 0.(0) U-(t), where the
unitary transformation U(t) = exp [— #H/[k]. If, for some %, p.(f) is non-
dissipative, then condition (18) is satisfied by g,(t) for every ¢ and g,(t,) for the
same constant of the motion € because [C, H] = 0. Therefore, p,(f) is non-
dissipative for every ¢ if and only if ¢,(0) is nondissipative. Moreover, by virtue
of relation (17d) and definition 2, each of the operators D and D equals the null
operator if and only if ¢ is nondissipative. Thus, if p,(t) is nondissipative and
satisfies eq. (2), then g,(¢) also satisfies eq. (7) because D = 0 for every f.
Conversely, if p.() is a solution of both eqs. (2) and (7), then g,(?) is nondissi-
pative because D= 0 and, therefore, D=0 for every t. Thus, theorem 8 is proved.

If uniqueness of physical solutions were proved, then theorem 8 would be
strengthened so that «if initially in a nondissipative state, a physical solution
evolves only through such states.» In other words, for such initial states,
eq. (7) would reduce to the von Neumann equation.

By virtue of corollary 3 and theorem 8, a solution of the form p,(f) =
= B,(t) exp [C], with B,(t) = U(t)B,(0) U~%(t) and [B,(0), H] # 0, can be re-
garded as a limit cycle.

It is seldom recognized that thermodynamics does not exclude the existence
of states of isolated systems which undergo steady, oscillatory time evolution.
These states are included in the proposed theory. Moreover, theorems 3 and 8
show that conventional quantum dynamics is included in the proposed guantum
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dynamics as a special case. Said differently, conventional quantum dynamics
describes only unitary transformations of nondissipative states of quantum
thermodynamies.

Definition 3: Equilibrium states. A state operator g is said to represent an
equilibrinm state if and only if

(24)

&8
I
(=4

If condition (24) is not satisfied, then ¢ represents a nonequilibrium state,

Theorem 9. A state operator g represents an equilibrium state if ¢ commutes
with the Hamiltonian operator H and is nondissipative.

Proof. The first term in the right-hand side of eq. (7) vanishes if @ com-
mutes with H. The second term vanishes if ¢ is nondissipative. Thus theorem 9
is valid.

Theorem 10. For given mean values of the generators of the motion, there
exists one and only one state operator g, for which s(g,) = — % Tr (0o 1n g,)
iy greater than s(g) of any other state operator corresponding to the same mean
values. The state operator g, is given by the relation

n ®
(25) go=exp [~ fH — 3 v,¥] / Tr (exp [~ BH — 39.7))) ,
=1 =1
where the coefficients § and v, for i = 1, 2, ..., n, are determined by the given

mean values.

The theorem is proved in the literature by imposing reasonable additional
technical eonditions of regularity on operators H and N, (*5). Relation (25)
is a generalization of the known thermodynamic-equilibrium distributions.

By virtue of corollary 3 and theorem 9, it is clear that g, is an equilibrium
state. For given mean values of the generators of the motion, a system admits
many equilibrinm states. We will see, however, that not all of these are ther-
modynamic equilibrium states. This feature of the theory reflects even for a
single constituent of matter innumerable experiences with macroscopic systems
that remain for long periods of time in an equilibrium state far from thermo-
dynamie equilibrium.

In whet follows, we examine the stability of equilibrium states in a special
sense that, we believe, captures the essence of the second law of thermody-

(*¥) W. Ocus and W. BAYER: ref. (1¥); see also A. KaTz: Principles of Statistical Mech-
anics (W. H. Freeman, San Francisco, Cal., 1967), p. 45-51.
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namics (»1¢). Specifically, we define a special stability concept and examine
whether there exists one and only one stable equilibrinm state for each set
of values of the energy and the other constants of the motion. This inquiry
differs from that in mechanics, classical or guantum, because in mechanics
a system admits as a stable equilibrium state only that of lowest energy.

Definition 4: subset £2. We denote by Q the set of all the linear, self-
adjoint, unit trace, nonnegative-definite operators ¢ on 5# that correspond
to finite mean values of the generators of the motion H and N, i.e. such that
Tr (Hg) < oo and Tr (N,p) < oo, for ¢ =1,..., n.

By virtue of theorem 4 every physical solution g(¢) with g(0) in 2 lies
entirely in Q. 7

Definition b: trace norm. We denote by | - || the trace operator norm defined
by |A| =Tr |[4], where |A|= (AtA)L

Definition 6: stable equilibrium states. An equilibrium state g, in 2 is said
to be stable if and only if for every € > 0 there is a § > 0 such that any physical
solution p(f) in £ with [o(0) — ¢, ]| < 6 remains with |p(f) — g,| < & for-every
t>0. '

Among all the self-adjoint (not necessarily definite) operators ¢(0) in the
open neighbourhcod [g(0) — ¢ | < é of an equilibrium state g,, this special
concept of stability requires that only those that are in the set £ and that
correspond to a physical solution o(?) need be considered. This concept extends
that of conditional or constrained stability considered by LIAPUNOFF (V) to a
differential operator equation like eq. (7).

Theorem 11. For given finite mean values of the generators of the motion,
the equilibrium state g, corresponding to the maximum value s(g,} of s(g)
(theorem (10)) is stable.

The proof of this theorem is given in appendix A.

Definition T: unstable equilibrium stotes. An equilibrium state g, in £
is said to be unstable if and only if there is an & > 0 such that, for every ¢ > 0,
there is a physical solution g(t) in £ with |o(0) — g,] < & and |e(t) — o,| > ¢
after some ¢ > 0.

Conjecture. For given finite mean values of the generators of the motion,
all equilibrium states other than p, of theorem 10 are unstable.

A discussion of this conjecture is given in appendix E.

The conjecture and its discussion in appendix E can be extended to all
unitary motions of nondissipative, nonequilibrium states—limit cycles—to

(1¢) See also G.N. Harsorouros and J. H. KEENAN: Principles of General Thermo-
dynamics (Wiley and Sons, New York, N.Y., 1965), p. 30, 361.

(1") A. LIAPUNOFF: Probléme Général de la Stabilité du Mouvement, in Annals of Mathe-
matics Studies, Vol. 17 (Princeton University Press, Princeton, N.J., 1949), p. 210-213.
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show that they are unstable. The definition and the discussion of unstable limit
cycles would be identical to definition 7 and appendix E, respectively, except
that we would be considering limit cycles g,(t) (theorem 8) instead of equilibrium
states g,.

Assuming that the conjecture can be proved, by virtue of theorem 11 we
conclude that for given finite mean values of the generators of the motion a
system of a single constituent admits one and only one stable equilibrium state.
But this is a generalization of the statement of the second law of thermody-
namics used by HATSOPOULOS and GYFTOPOULOS (®) in their unified theory.
Hence, we further conclude that the proposed equation of motion implies the
second law of thermodynamics.

From the second law and eq. (2) in the limit of unitary processes, it has been
shown (%) that — &k Tr (p In ) satisfies all the requirements that the thermo-
dynamic entropy of a system must satisfy. Because all arguments of the proof
are valid here, we conclude that s(g) = — % Tr (g In ) represents the entropy
also when the dynamics of a single constituent of matter is deseribed by eq. (7).
Other quantum-thermodynamic results for both equilibrium and nonequilibrium
states are discussed in ref. (3).

4., — Conclusion.

We believe that the proposed equation of motion is consistent with both
mechanics and thermodynamics. One of its important consequences is that
the first law and, subject to the proof of the conjecture, the second law of
thermodynamics emerge as manifestations of the inherent quantum-dynamical
behaviour of the elementary constituents of matter. Therefore, these two laws
need not be added explicitly to the foundations of the theory because the theory
includes their implications.

Our present knowledge of the mathematical properties of the new equation
is far from complete. On the one hand, we are excited by its overall conceptual
elegance as & generalization of the traditional quantum law of motion which
satisfies our desideratum of direct compatibility with the principles of thermo-
dynamics. Thus, in our theory, no layer of statistical or information-theoretic
reasoning is required to bridge the gap between mechanics and thermodynamics,
for there is no such a gap. On the other hand, we remain quite perplexed by
several unresolved technical mathematical issues related to unbounded op-
erators on infinite-dimensional Hilbert space and to the general question of
existence and uniqueness of physical solutions.

In further communications, other physical implications of the theory will
be explored, inéluding the derivation of the Boltzmann equation, the derivation
of the Onsager phenomenological relations of irreversible thermodynamies,
the classical limit (£ —> 0) of eq. (7), and the experimental determination of the
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numerical value of the time constant v that must be assigned to each elementary
congtituent of matter (18),

L
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APPENDIX A

Proof of theorem 11.
On the set Q (definition 4), we define the real nonnegative functional

(A1) V(o) =s(gole]) —s(e) = % Tr (o1n o) — & Tr (g,[0] In go[0]) ,

where g,[p] is the unique operator in 2 defined by theorem 10 and the finite
mean values of the generators of the motion corresponding to operator 0.
Functional s(p) is continuous on the set £ with respect to the trace norm
|A] =Tr|A| because Tr(Hg)< co. This point is discussed by WEHRL (%9).
In particular, continuity at the states oolo] implies that, given any > 0,
there is a 8> 0 such that |s(g) — s(g[o])| = V(g) <7 for every g in 2 with

le— edlell = Tr o — glo]| < é.
Next we define the nonnegative function a(z) by

(A.2) a(@) = inf V(e),

where set Q, is such that

(A.3) 2. = {olee 2, Je— oololl =2}
Thus, for every p in 0,

(A-4) a(lle— eolell) < V(o).

) Lemma Al. For every ¢ > 0 thereis a 6 > 0 such that V(e) < a(e) for every o
in 2 with o — g,[e]] < 8.

Proof. Using the continuity of functional V(o) at states g,[o] and selecting
1 = a(e) for every given ¢, we find that V(p) < a(e). Thus lemma Al is proved.

Lemma A2. Function a(z) is such that a(x) < a(y) implies z < y,

(18) A referee suggested two other aspects of our theory that need further investiga-
tion and elarification. The first is to study the invariance properties of the new equation
of motion under the usual symmetry groups. The second is to explore the implications
of the nonlinear equation on the quantum theory of measurement.

(**) A. WEHRL: ref. (2), p. 241.
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Proof. For a(x) < a(y), if we assume x> y and for each operator g, in Q,
define the operator g, = &g, -+ (1—¢)golg,], Where 0 <e¢=y/r<<1, then
00[0s] = 0ol0.] and we find that each g, belongs to 2, and, therefore, is such
that V(g,)>a(y). Moreover, from the concavity of s(g) and definition (A.1),
it follows that V(g,) < eV(g.). Thus, for every g, in £,, we find that V(g,) >
> a(y)/e and, therefore, that a(y)/e is a lower bound of V(g) on Q..
Because the greatest lower bound of V() on 2, is a(x) (definition (A.2)), we
find a(x)>a(y)/e and, hence, a(x) > a(y) which is a contradiction. If v =y,
then set {2, coincides with £, and, by definition, a(x) = a(y) which again is a
contradiction. We conclude that # < y and, thus, lemma A2 is proved.

Proof of Theorem 11. For any physical solution o(t) of eq. (7), the mean.
values of the generators of the motion are invariant (theorem 4), g,[o(#)] =
= go[0(0)] = o, dV/[dt = —ds/dt<0 (theorem 6) and, therefore, V(o(t))<
<V(0(0)) for every ¢>0. By lemma Al, for every &> 0 there is a >0

such that V(p(0)) < a(e) for every physical solution o(f) with |g(0) — g,| < 6.
Using eq. (A.4) for every ¢, we find

(A.5) a(le(®— o) <V (e(®)) <V (e(0) < al(e) .

By lemma A2, relations (A.5) imply that [o(¢) — g,] <e. Thus we conclude
that every g, in £2 is stable (definition 6) and theorem 11 is proved.

APPENDIX B

A class of approximate phisical sclutions.

As an example of nontrivial results, we find a particular class of non-
unitary approximate physical solutions. We select an equilibrium state

(B.1) e.=Bexp[(], [B,(]l=[B,H]=0,

where B and O are defined in theorem 5 and corollary 3. For the same B
and C, we consider states ¢ in the class defined by the relations

(B.2) e=e¢B=Bgo, [,01=0, Tr(eR)="Tr(o.R)

for ¢ =1,2,...,2
or, equivalently,
(B.3) 0 = oI + e®) = B(I + ¢D)exp [C],
where

(B4) e¢®=Bpexp[—C]—1I), [H0]=0, Tr(o,PR,)=0.
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In the limit as ¢ >0 and |@| = Tr |®| < oo, eq. (7) reduces to the form ()

de g 0—0,

Thus
(B.6) () —exp [— é] exp [—1%{] 0(0) exp [’E;—I] + {1—— exp [— %” Qo -

Equation (B.5) has the same form as a Bloch relaxation equation. Its solution
(eq. (B.6)) is physical and unique, remains in the class defined by relations (B.2),
is analytic in #, conserves the nullity and rank of 0(0), evolves from lower to

higher entropy, i.e. s((0)) < s(o(#)) < s(e.), and tends asymptotically to 0o
i.e. o(f) > g, for t — oo.

ArPPENDIX O

Existence and uniqueness of solutions.

We conjecture that eq. (7) admits a solution o(?) for each g(0) in the subset §
of the linear, self-adjoint, unit-trace operators ¢ on 5. In support of this
conjecture, we note that the right-hand side of eq. (7) is a linear combination
of operators ¢1n g, pR,; and their adjoints, for ¢ = 0,1,...,2, with coefficients
that involve trace functionals of the same operators. For a system with a
finite-dimensional Hilbert space, these operators are continuous with respect
to the trace norm (2!). Continuity of de/dt is an important necessary condition
to guarantee the existence of continuous solutions o(t) for every p(0). We
conjecture that, perhaps by imposing additional technical restrictions on the
set @ and on the generators of the motion R;, the existence of solutions of
eq. (7) can be proved.

We also conjecture that, given a o(0), we can find a unique ¢(?). In support
of this conjecture, we first consider an ordinary nonlinear differential equa-
tion of the form

dy 1
(C.1) E—F(Z'/)—;i'llny,

where y is real, F(y) < oo for all y, F(0) = 0 and dF/dy éxists and is finite.
It can be verified that the term F(y) satisfies a Cauchy-Lipschitz condition

(*) We find 7+ ¢®—exp [¢D]; 0B exp [¢® + 0]; vglnp—>1/g (c® + 0); (B, In g) —
—&(R,;, )+ (R, 0) for i=1,2,..., 2, where (-, -) is defined by relation (11); (R;, &)=
= Tr (¢, PB;) + ¢ Tr (¢, D*R;) — 0; D — 64/g®; D — £0® ~—>£0, D = p— g,.

(') The continuity of operator glng is discussed, e.g., by A. WEHRL: ref. (2), p. 251.
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and the term yIny an Osgood condition (22), d.e.

1
(C.2) I?/l Iny,—yIn ?/zl < Klyl ?lzl In—r
|?/1“‘?/al

for0<y, < gp<e? and K = 1. It ean be shown that eq. (C.1) admits a
unique solution for each y(0). In partlcular, despite the logarithmic smg’ularlty
at y = 0, the solution y(¢) = 0 is unique.

Next, we rewrite eq. (7) in the form

(0:3) 2 fo—Temlgl,
where

(C4) f(e) —-——[H, e]—-(D elnlel)
Thus

(©5) P () — 1o,

where f,({p:}) = <9|f(0)lps> and {ps} is an eigenbasis of o.

For every ¢ in , we can verify that f,({p«}) vanishes for p, =0, and
admits a partial derivative with respect to each eigenvalue py. These ob-
servations suggest a similarity between eq. (C.1) and operator equation (C.3). In
particular, egs. (C.5) show the same type of logarithmic singularity as eq. (C.1).
We conjecture that conditions analogous to the Cauchy-Lipschitz onefor f(¢) and
to the Osgood one for gln g can be established and that, perhaps by imposing
additional technical restrictions on the set ¢ and on the generators of the
motion R,;, the uniqueness of solutions of eq. (7) can be proved.

APPENDIX D

Nonnegativity of solutions.

We conjecture that every solution o(t) with p(0) nonnegative definite is
physical. In support of this conjecture, we write the self—ad]mnt not neces-
sarlly definite, operator o(t) in @ as

@) e®) = 3 pult)lpnt)> <ou(0)] + [Pal0lgalt)) <pa(t]

(22) See, e.g., E.L. INCE: Ordinary Differential Equatwns (Dover, New York, N.Y.,
1956), p. 62-72. .
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where {g.(f)} and {p+(t)} are complete sets of orthonormal eigenvectors
(Kpe(D)]@x(t)> = 1) and real eigenvalues of o(t). Therefore,

(D.2) dLit)

6= gf’kl??ﬁ {oe| + %Ph(l‘l’:& <%| + |ox> <¢kl) +

o+ [Bulp> rl Gk + |05 o]+l <) b,
D3) b= (pléle> = —; <@IE, ellp) —1 <pilDlps,

‘where in writing the second equality in relation (D.3) we have used eq, A7),
Using eqs. (8)-(11) in eq. (D.3), we find (19) o

0 : Ps(Bo)ss oo Ps(Bo)ss s

3 (Boulpslnp| o
(D.4) : r o
© g | 2 Bt In [pa)

P:=-—; T - "—‘;Z’Anhhla

Wwhere (R.);; = <{@;|Rp;>.

Because g(?) is a solution, the set of functions {p;(t)} satisfies the system
of equations (D.4). If these functions are differentiableto all orders, then they also
satisfy the expressions for d2p,/d,..., d*p,/dt, ..., that follow by differen-
tiating eqs. (D.4) to all orders. Then, if in addition a function p;(t).is zero at
some time ?), we can readily verify that eqs. (D.4) imply that all the time
derivatives of p,(f) vanish at ,. Moreover, if the function p;(t) were analytic
in ¢, then it would be identically zero for all times .

If every solution g(f) were so «smooth» that each function psi(t) were
analytic in ¢ and at some time a funection 2;(t) were zero or strictly positive,
then we would conclude that at all times p,(f) would remain zero or strietly
Dositive, respectively. Indeed, by continuity, a strictly positive p,(t) could
change sign only by becoming zero. But then it would be zero at all times.
In other words, we would conclude that eq. (7) preserves the nonnegativity,
rank and nullity of solutions. o

The conclusion that the rank and nullity of o(?) are conserved would imply
that every nonstrictly positive initial state would tend towards an {unstable)
equilibrium state or a limit cycle and not a thermodynamic (stable) equilibrinm
state. In addition, it would be consistent with our underlying hypothesis that
traditional unitary quantum dynamics should emerge as an exact special case
of quantum thermodynamiecs. .

For the present, however, all of this is conjectural because we have not
found a rigorous proof that the solutions of eq. (7) are indeed analytic functions
of time. .



190 G. P. BERETTA, E. P, GYFTOPOULOS ETC.

APPENDIX E

Discussion of unstable equilibrium;

- Lemma El. For given mean values of the generators of the motion, g
(eq. (25)) is the only strictly positive, nondissipative state operator.

Proof. A state operator g is strictly positive if and only if all its eigen-
values are positive. It is nondissipative if and only if it satisfies condition (18).
By virtue of this condition, every strictly positive and nondissipative state
operator can be expressed in the form

®1) o o= exp[C],
‘where
(B.2) | o 0=3 AR,
=0 '
(BE.3) 1= Tr (exp [C]) = A(A)

and R, for ¢ = 0,1,..,2 =mn +1, are all the generators of motion.
< Moreover, it can be shown that

oA
(B.4) v Tr (R exp [C]) = Tr (R.) = 1;.
For given mean values Toy T1y -, ¥, Of the linearly independent generators of

the motion (r, = 1), the only solution () of eq. (E.4) is g,. Thus lemma E1
is proved.

Next, we consider an arbitrary equilibrium state g, gole.] in £ (defini-
tion 4) and the one-parameter family £, of operators

(E.5) 0, = (1—mn) 0. + noole.l

for 0 <'np < 1. Clearly, 2, lies entirely in Q.
Lemma E2. If ¢, is a state operator, then it is dissipative.

: ‘Proo;f. Every operator g, in £, is strictly positive (**). Therefore, by
virtue of lemma E1, if g, is in the set @ of state operators, then it is dissipative
because it differs from the unique oolo.]. Thus, lemma E2 is proved.

{28) An operator ¢ is nonnegative definite if and only if <y, gy >0 for all vectors y.
An operator p is strictly positive if and only if <y, gp> > 0 for all vectors y 0.
If g, were not strietly positive, a vector y %0 would exist such that (v, g,¥> <0, i.e.
(1—n) <Y, 2, ¥> < — 1KY, gol0,] ¥>- But, for 0< 71, this would imply that <y, g,[e.]¥> =0,
because both g, and g,[g,] are nonnegative definite, and y = 0 because gy[g,] is strictly
positive. Hence, ¢, must be strictly positive.
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For given finite mean values of the generators of the motion and for each
operator g, (eq. (E.B)), if there were a physical solution ¢(t) of eq. (7) such
that 0(0) = o, and if every initially strictly positive physical solution g(?)
remained strictly positive for every ¢ > 0 (appendix D), then equilibrium state g,
would be unstable because g, is strictly positive. Indeed, o(f) would remain
dissipative (lemma E1) and ds(p(?))/d¢ strictly positive (theorem 6) until
o(t) = go[o.] for some ¢> 0, finite or infinite. We conclude that p(f) with
0(0) = g, would tend to golg.]. For &= |g,[0.] — .|/ With »>1 and any
> 0, we would select 7 < 6/[ eol.] — g.] 80 that [@(0) — g.] = 7]0o[0e] — e.] < 6
Because [o(t) — g.] would tend to [go[o.] — 0.] = ne, there would be a ¢ >0
such that |o(f) — g.]| > ¢ and, thus, we would conclude that g, is unstable.

This discussion eould be repeated for a limit cycle p,(f) (theorem 8) in-
stead of an equilibrium state p,.

In complete analogy with the notions of unstable equilibrium and limit
cycles in mechanies, if initially in an unstable equilibrium state or a limit
cycle, a single isolated constituent of matter would never reach thermodynamic
equilibrium. However, in any neighbourhood of that equilibrium state or limit
eycle there would be a strietly positive, dissipative, nonequilibrinm state from
which the system proceeds towards thermodynamic or stable equilibrium.

® RIASSUNTO

Si propone una nuova equazione di evoluzione per sistemi quantistici composti da un
gingolo costituente materiale elementare. L’equazione & soddisfatta dall’evoluzione
unitaria degli stati puri e di una sottoclasse di stati misti. Ma, in generale, essa genera
un’evoluzione non unitaria dell’operatore di stato. L’equazione mantiene costante il
valor medio dell’energia e causa aumenti di entropia finché il sistema non raggiunge
uno stato di equilibrio oppure un ciclo limite.

KsanroBan TePMOJHHAMHKA. Hosoe YPaBHEHHE JBHIKCHHA JJd OJHOKOMIICHCHTHCIO
BeleCTBA.

Pestome (). — g KBaHTOBBIX CHCTEM, COCTOSIIAX M3 BEINECTBA, IPEACTABIIAIONIEIO
OIHY 3JIEMEHTAPHYIO KOMIIOHEHTY, MpEAJIaracTCs HOBOEC HEIMHCHHOE YPaBHEHHME NBIDKE-
HUS, VpaBHEHHE YIOBJIETBOPAECTCA IS YHCTHIX COCTOSIHHN M I CHELMANILHOTO KJlacca
CMEIIAHHABIX COCTOMHmMI. B o0memM ciyvae, 3TO ypaBHCHHME IEHEPHPYET HEYHHTAPHYIO
JBOJIOLMIO ONEPATOPA COCTOSHHA. OTO YpaBHEHHE COXpAHSET SHEPTHIO HHBapMAaHTHOM,
BBI3BIBAET YBEIHMYEHHE SHTPOIHH CO BPEMEHEM, ITOKAa CHCTEMa HE JOCTHTHET COCTOSHHS
DPaBHOBECHS.

(*) Ilepesedeno pedaxyueii.




