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Even for a single isolated constituent of  matter, a recent generalization of 
quantum mechanics, called quantum thermodynamics, postulates the existence 
of new nonmechanical individual states, not contemplated within conventional 
quantum mechanics, for which the time evolution is governed by a novel non- 
linear equation of motion, which entails an irreversible, energy-preserving inter- 
nal redistribution mechanism of relaxation towards stable equilibrium. For a 
single two-level atom interacting with the quantum electromagnetic field, we 
show that such irreversible internal redistribution mechanism entails interesting 
corrections to the conventional quantum electrodynamic predictions on absorp- 
tion, resonance fluorescence, and stimulated emission. For a two-level atom 
driven near resonance by a nearly monochromatic laser beam, we estimate the 
corrections implied on the spectral distribution of resonance fluorescence and 
on the absorption and stimulated emission line shape. We submit that our 
predictions call for further high-resolution studies of  atom-field interactions. 
For example, the value or a lower bound to the value of  the only unknown 
constant of  the theory, namely, the internal redistribution time constant, can 
only be established by a quantitative experimental study. 

1. I N T R O D U C T I O N  

The purpose of this article is to study the interaction between a two-level 
atom and the quantum electromagnetic field, within the framework of a 
novel generalized quantum dynamical theory which contains conventional 
quantum theory as a special case. 

The spectral distribution of the fluorescence resulting from a nearly 
resonant interaction has been first calculated by Mollow (1969) and later 
confirmed by several more rigorous treatments (Ackerhalt and Eberly, 1974; 
Kimble and Mandel, 1975; 1977; Cohen-Tannoudji and Reynaud, 1977; 
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Mollow, 1972; 1975; 1981) all within the framework of conventional quan- 
tum electrodynamics. Recent experimental studies (Schuda et al., 1974; Wu 
et al., 1975; Hartig et al., 1976; Grove et al., 1977; Wu et al., 1977; Citron, 
et al., 1977; Ezekiel and Wu, 1978; Cresser et al., 1982) of the phenomenon 
have verified the quantum electrodynamic predictions qualitatively. Quanti- 
tative comparisons between theory and experiments are satisfactory but still 
not conclusive. 

In an attempt to resolve the long-standing dilemma on the nature of 
entropy and irreversibility, 2 we have recently proposed a novel nonstatistical 
generalized quantum dynamical theory (Beretta et al., 1984; Beretta et al., 
1985; Beretta, in press) based on two fundamental hypotheses new to 
physics. We review the background motivation and the basic premises of 
the new theory, that we call quantum thermodynamics, in Section 2. Inherent 
to each elementary constituent of matter, including a single isolated two- 
level atom, quantum thermodynamics avers the existence of an irreversible 
energy-preserving internal redistribution mechanism not contemplated by 
conventional quantum theory. 

The main question addressed in this paper is whether the new theory 
entails experimentally verifiable predictions different from those of conven- 
tional quantum theory. To this end, we estimate the corrections implied by 
our nonconventional generalized quantum dynamics onto the conventional 
quantum electrodynamic predictions on the spectral distribution of 
resonance fluorescence and the absorption and stimulated emission line 
shape. 

Our objective is not to give a complete and fully rigorous treatment of 
atom-field interactions within quantum thermodynamics. Rather, it is to 
present a preliminary study that we hope will motivate higher resolution 
experimental investigations and more rigorous theoretical studies of such 
corrections. 

The article is organized as follows. Section 2 reviews background, 
motivation and premises of quantum thermodynamics. Section 3 presents 
the nonlinear equation of motion that we postulate for a single isolated 
two-level system. Section 4 briefly reviews the accepted quantum electrody- 
namic equations for a two-level atom interacting with the electromagnetic 
field under the standard approximations. Section 5 presents our approximate 
corrections to the quantum electrodynamic equations. The equations are 
solved in the steady-state long-time limit by introducing a useful shorthand 
notation. Sections 6 and 7 discuss important consequences of our postulates 
on the spectral distribution of resonance fluorescence and the absorption 
and stimulated emission line shape. 

2For a recent review, see Park and Simmons (1983). 
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2. QUANTUM THERMODYNAMICS 

Quantum thermodynamics is a generalization of  quantum mechanics 
designed to encompass within a single nonstatistical theory all the results 
of mechanics and thermodynamics. It is based on the following two funda- 
mental hypotheses that are new to physics and demand both theoretical 
and experimental scrutiny. 

The first hypothesis (Hatsopoulos and Gyftopoulos, 1976a-d) is that, 
in addition to the individual quantum states conceived of within conven- 
tional quantum theory and represented by indempotent state operators, a 
single strictly isolated system admits also of individual quantum states that 
must be represented by nonindempotent state operators. A state operator 
p is a linear, self-adjoint, nonnegative-definite, unit-trace operator on the 
Hilbert space of  the isolated system. Every idempotent state operator (p = 
p2 = p , )  is a projector onto the one-dimensional span of a vector tp in the 
Hilbert space, called the quantum mechanical state vector of  the isolated 
system. For an individual physical state of an isolated (noninteracting and 
uncorrelated) system, i.e., for a strictly homogeneous (von Neumann) 
ensemble of  such systems, conventional quantum mechanics conceives only 
of the description in terms of a quantum mechanical state vector or, 
equivalently, an idempotent state operator. Nonidempotent  (statistical or 
density) operators are used within conventional quantum theory only to 
describe nonindividual conditions, such as the reduced state of  a system 
correlated to other systems or the index of  statistics from a heterogeneous 
(yon Neumann) ensemble of identical systems. These conditions are 
excluded when we refer to an individual state of  an isolated (uncorrelated) 
system. Quantum thermodynamics is concerned exclusively with physical 
conditions that within conventional quantum theory would be described by 
idempotent (pure) statistical or density operators. For a system in such 
conditions, it postulates that the individual states must be described in terms 
of state operators that need not be idempotent. In terms of ensembles, the 
essence of  the Hatsopoulos-Gyftopoulos hypothesis is that we conceive of 
a pure or homogeneous ensemble (each member system of which is exactly 
in the same individual physical state as all the other member systems) that 
in our generalized quantum theory is represented by a state operator, not 
necessarily idempotent. The state operator (even if nonidempotent) rep- 
resents the individual state of a single system, not the index of statistics 
from a generally heterogeneous ensemble. For this reason, we say that our 
theory is nonstatistical. Indeed, the only uncertainties with which it is 
concerned are those inherent in the individual quantum state. The second 
hypothesis is that state operators evolve in time according to a nonlinear 
equation of  motion (Beretta, 1981) which for indempotent state operators 
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reduces to the Schroedinger equation of motion of conventional quantum 
dynamics, but for most nonidempotent individual state operators describes 
a constant energy, entropy increasing, irreversible relaxation towards a 
stable equilibrium state. 3 

Quantum thermodynamics has been developed in answer to the follow- 
ing two fundamental questions: (1) Can entropy and the second law of 
thermodynamics be conceived of exclusively as manifestations of microscopic 
quantum kinematic effects of the same nature but more general than those 
entailed by the Heisenberg uncertainty principle? (2) Can irreversibility be 
conceived of exclusively as a microscopic quantum dynamical effect that 
must be described by a proper generalization of the Schroedinger equation 
of motion? Quantum thermodynamics yields an affirmative answer to both 
questions. It encompasses quantum mechanics and equilibrium thermody- 
namics as special cases, it includes a new general microscopic nonstatistical 
description of nonequilibrium states, and it entails a unique deterministic 
description of irreversible but conservative relaxation towards equilibrium, 
based on the nonlinear irreversible equation of motion proposed by the 
author. 

The question that remains open is whether quantum thermodynamics 
entails experimentally verifiable predictions that are different from the 
predictions of conventional quantum theory. The aim of this paper is to 
show that indeed the new theory implies corrections to the conventional 
results. However, the magnitude of these corrections depends on a time 
constant the value of which can only be determined experimentally. We 
hope that our results will motivate experimental studies to verify the quan- 
tum thermodynamic corrections or at least determine a bound to the value 
of the internal redistribution time constant. 

To estimate the corrections implied by quantum thermodynamics onto 
the conventional quantum electrodynamic theory of resonance fluorescence, 
absorption, and stimulated emission, we proceed as follows. In Section 3, 
we write our equation of motion for a single isolated two-level atom with 
an arbitrary Hamiltonian operator. The equation consists of two terms: the 
first describes the conventional Hamiltonian contribution to the dynamics 
of the state operator, the second describes the postulated irreversible, 
conservative, inherent redistribution mechanism. In Section 4, for a system 
composed of a two-level atom and a nearly resonant electromagnetic field, 
we review the accepted quantum electrodynamic treatment (Ackerhalt and 

3The form of the new equation for a single elementary constituent of  matter, i.e., a single 
particle or a single quantum field, and detailed proofs of its most important general properties 
are presented in Beretta et al., (1984). The form of the equation of motion for a single isolated 
two-level system, that we will adopt here to describe the internal dynamics of a two-level 
atom, is further discussed in Beretta (1985). 
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Eberly, 1974; Kimble and Mandel, 1975; 1977; Cohen-Tannoudji  and 
Reynaud, 1977; Mollow, 1972; 1975; 1981)of the conventional Hamiltonian 
contribution to the evolution of the reduced state operator of  the two-level 
atom. In Section 5, to the conventional treatment we add the non-Hamil- 
tonian nonlinear term of the new equation of motion which represents the 
effect of the postulated additional relaxation mechanism inherent to the 
two-level atom. 

As a result, we find estimates for the corrections entailed by our 
postulates onto the absorption spectrum, the spectral density of  resonance 
fluorescence, and the absorption and stimulated emission line shape. All the 
results are in terms of an unknown constant, namely, the atomic redistribu- 
tion time constant. This constant must be estimated empirically, it cannot 
be "derived" from other theories because no other theory contemplates our 
nonindempotent  individual states and our nonlinear equation of  motion. 

3. NONLINEAR EQUATION OF MOTION FOR A SINGLE 
ISOLATED TWO-LEVEL SYSTEM 

We postulate that the individual state operator p of a single isolated 
two-level system with Hamiltonian operator H, evolves in time according 
to the equation (Beretta, 1985) 

p In p P l{p, H} 

Tr p In p 1 Tr p H  

t 1 T r p H l n p  T r p H  T r p H  2 
dp  . i - ~  T r  p H 2 _ ( T r  p H )  2 p ~ - t - ~  [H, p] = i f p 2 r  ( la)  

~0, i f p E = p  (lb)  

where ~" is an inherent relaxation time constant of the system. Determining 
the value or bounds to the value of ~- is an open experimental problem. 

It is useful to introduce the three spin operators R1, R2, and R 3 which 
obey the commutation rule [R~, R,,] = iejmnRn and may be expressed in 
terms of the lowering and raising operators b = R 1 - iR2 and b t = R1 + JR214 

The state operator p ( t )  may then be represented as 

p ( t )  = � 8 9 1 8 9  R (2a) 

= 1 1 +  a * ( t ) b  t + c~(t)b + r 3 ( t ) R  3 (2b) 

4Other useful relations are Rj = oJ2, where ol, o2, and o 3 are the Pauli spin operators; 
R 1 = (b + bt)/2, R 2 = i(b - bt)/2, R 3 = [b *, b]/2 = b'~b - 1/2 = 1 / 2 -  bbt; {b*, b} = 1; b 2 = 
b*2=0; bR3 = b/2, R3b= - b / 2 ,  R3b*= b*/2 , bt Ra =-b* /2 .  
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The  n o n n e g a t i v i t y  o f  s tate  opera to r s  impl i e s  tha t  r(t) = Ir(t)l-< 1. A gene ra l  
H a m i l t o n i a n  o p e r a t o r  c o r r e s p o n d i n g  to the  ene rgy  re la t ive  to a p o i n t  m i d w a y  
b e t w e e n  the  two ene rgy  levels  m a y  be  r e p r e s e n t e d  as 

H = M2o(A1R1 + A2R2+ A3R3) = h l 2 o A -  R (3a) 

= -�89 + e ' b )  + htooR3 (3b) 

where  too = ~0A3 is the  t r a n s i t i o n  f r e q u e n c y  b e t w e e n  the  two levels ,  A = 

(A1, A2, A3) is a 3 -vec tor  wi th  A = IAI = 1, e is a c o m p l e x  sca la r  wi th  e*e  = 1, 
a n d  f ~  = 1)2+ o)g. 

U s i n g  Re l a t i o n s  2 a n d  3 for r # + A ,  5 e q u a t i o n  ( t )  r educes  to the  
f o l l owing  two e q u i v a l e n t  forms  6 

d r  
- d ~ -  OoA •  _ l r  K ( r ) [ r -  (A  �9 r ) A ]  (4) 

o r  

da JUt er 3 
- - +  iwoa + 
dt 2 

K ( a ' r 3 ) [  ~ 1 7 6 1 7 6  ] r f ~  2 2 (5a) 

K(a ,  r3) dr3 Jr iI~( e * a - ca*) - [f~2r3 + tOof~( e * a + c a * ) ]  
dt r ~  

(5b)  

where  

K ( r )  - 

r = Irl, a n d  

f(r) f(r) 
1-(A-r)" K(a, r3)= 1 -[o)or3-~'~(eot+e*ot*)]2/~"~20 

I 1, i f  r = 0 

1 - r  2 l + r  
f ( r )  = ~ - - ~ r  l n - ' l - r  i f 0 <  r <  1 ! 

L0, i f  r =  1 

(6) 

(7) 

Slf r = iA ,  p:: = p2 = p,~, where 0• are the eigenvectors of the Hamiltonian. Then equation 
(1) yields dr/dt = 0, i.e., such two states are equilibrium states. 

6Details of this derivation are given in Beretta (1985) where we prove that equation (1) is a 
well-defined evolution equation admitting unique solutions through every initial state 
operator. For example, we show that equation (1) preserves the nonnegativity of all its 
solutions for -oe < t < +oe. The solution through an initial state p(0)# p2(0) is a spiral on 
a constant mean energy plane which originates (as t -~ -oo) near (but not from ) the periodic 
(Schr6dinger) quantum mechanic unitary boundary solution with p2=p and tends (as 
t ~ +co) towards a stable equilibrium state. 
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4. QUANTUM ELECTRODYNAMIC REDUCED EQUATIONS OF 
MOTION 

We now briefly review the results of the quantum electrodynamic 
description of the interaction between a two-level atom and a nearly resonant 
electromagnetic field with a finite bandwidth spectrum. 7 We include the 
phenomenological treatment of external laser phase fluctuations not because 
they play any essential role in our theory, but because we want to bring 
out explicitly that their effects on the relevant spectral distributions are 
clearly distinguishable and qualitatively different from the fundamental 
effects we are searching for. 

According to conventional quantum mechanics, the isolated system 
composed of the atom and the field is always in a pure state and evolves 
according to the Schroedinger equation of motion. The Hamiltonian 
operator is written in the electric-dipole approximation neglecting the field- 
field coupling term. The driving field is assumed to be in a monochromatic 
coherent state with steady amplitude and a phase that performs a random 
walk with a diffusion time 1/A' corresponding to an effective bandwidth A' 
of the laser beam (Kimble and Mandel, 1977). Before averaging over the 
laser phases, the equations of motion for the reduced atomic state operator 
under the rotating-wave approximation (Ackerhalt and Eberly, 1974; 
Kimble and Mandel, 1975, 1977; Cohen-Tannoudji and Reynaud, 1977; 
Mollow, 1972; 1975; 1981), may be written as 

dc~( t) 
at F[/3 + i(aJo- 3J)]cr(t)+ ifle(t)r3(t)/2 = 0 (8a) 

dra( t ) 
- - + 2 f l [ r 3 ( t ) + l ] + i f l [ e * ( t ) a ( t ) - e ( t ) a * ( t ) ] = O  (8b) 

dt 
where 12 = 21~ �9 a~oo/h is the Rabi broadening parameter, hoJo is the energy 
difference between the two free-atom energy levels, p. is the atomic transition 
dipole moment matrix element between the two levels, a is the real steady 
amplitude of the driving field, /3"-2~.  Ix~O3o/3hc34rreo is one-half of the 
Einstein A coefficient (natural decay rate), 3' is the Lamb shift, 

e(t) = e -%t+i6(0 (9) 

is the time dependence of the eigenvalue of the positive frequency part of 
the free-field vector potential corresponding to the monochromatic coherent 
state with frequency ~ol and phase ~b(t), with random walk characteristic 
function (Kimble and Mandel, 1977) 

((e'l*('~)-*(~ = e -~'~2, r > 0  (10) 

7We follow closely the treatments in Mollow (1972, 1975) and Kimble and Mandel (1977). 
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where A' is the effective bandwidth of the driving laser field with spectrum 
centered at frequency to1- Equations (8) are rigorously valid in the limit as 
fl/too, ]to1- tool/too, and [l/tOo approach zero (Mollow, 1972; 1975). 

Comparison between the left-hand sides of equations (5) and (8) shows 
that the presence of the atomic dipole's own radiation effectively modifies 
(radiation reaction) the atom's (reduced) characteristics so as to produce 
a finite decay rate and a shift in the transition frequency (Ackerhalt et al., 
1973). 

5. APPROXIMATE EQUATIONS FOR NONIDEMPOTENT 
ATOM-FIELD STATES 

We now investigate the consequences of our assumption that the 
composite isolated atom-field system may exist in nonmechanical states 
that must be described by nonidempotent state operators evolving according 
to the general nonlinear equation of motion of quantum thermodynamics. 
As a first model, in this paper we assume that the corresponding effect on 
the time evolution of the reduced atomic state operator is well approximated 
by adding to the right-hand side of equations (8) the right-hand side of 
equations (5), with "e substituted by e(t) [equation (9)]. It is beyond our 
present objectives to justify rigorously the foregoing assumption in terms 
of our general nonlinear dynamics. We simply emphasize that our pre- 
liminary results based on this assumption are interesting and intriguing 
enough to stimulate further more rigorous investigations. 

We will write our subsequent results in terms of the following set of 
dimensionless parameters: 

~=/3/too 

= , .q/ , , /2 /~ 

a = 1 / / 3 ~  

= ~ . ' / , s  

=w,/fl (11) 

0 = ( to l - too+ y)//3 

// = (0) -- to l ) / /~  

f l '=  (2772+ 02) w2 

with the assumption that/3, fl, l-l/rE << too(f, ~/, 3 ~  << 1). 8 

SUnder these approximations, the matrix elements [AI~3 = [AI3~ =-A~:%/2 [equation (18)] 
can for all purposes be set equal to zero. 
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The governing equations become 

1 da(t)  r~(t) 
----+dt (1 + il.~ - iO)a(t) + b?e(t) - - ~  

= -Act(t)-A~rle(t)~2+A~2rl2e2(t)a*(t ) (12a) 

1 dr3(t) ~i~e*(t)ot(t)+2~2)+x/~ _i~Te(t)e~,(t) 
x/r2fl dt 

= - A~Tle*(t)ol(t) -- A~?e(t)a*(t) (12b) 

where we defined the variable 
A = ~K(a, r3) (12c) 

with K(ot, r3) given by equations (6) and (7). 
Equations (12) reduce to the quantum electrodynamic case for 8 = 0. 

They are nonlinear for 8 > 0. Whether 8 = 0 or 8 > 0, as long as the exciting 
field amplitude does not vanish (~/> 0), equations (12) admit of a steady 
state nonequilibrium solution in the long-time limit t--> co. 

From here on, we will study only the long-time limit, asymptotic 
solutions of equations (12). In that limit the function A becomes a constant 
and the equations become linear. Thus, we will first determine the steady 
state expressions for a and r 3 as functions of A [equation (41)] and then 
use equation (12c) to solve for A, a, and r3. 

In the long-time limit, because the dynamic equations become linear, 
the substitutions 

el(t) ~ b(t), r3(t)/x/2<-->x/2R3(t), el*(t) ~ b*(t) (13) 

allow us to pass to the Heisenberg picture which will result particularly 
useful to evaluate correlation functions. 

We now introduce useful shorthand notation: 

------b( t) i 
X(t )=  ~htRf3f t) , U =  (14) 

x(t) = (X(t)) = r3(t)/ff2, u =  (15) 
a*(t) 

ge(t, r) = (b*(t)X(t+ r)) (16) 

ga(t, r) -- ([X(t + ~'), b*(t)]) (17) 
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A =  

I + A - i 0  h/(1--iA~) --A~:2,/2 

hT(1 -- iA~:) 2 --i~/(1 + iA~) 
--A~2~ 2 -h7(1 + iA~:) 1 + A+ iO 

(18) 

e ! )  0 0 
I:(t) = 1 0 

0 e*(t) 

F(t, z )=  e(t) ei[6('+~)-6(~ r) 

I 
il.~ 0 0 

B =  0 0 0 

0 0 -i/~ 

(19) 

(20) 

(21) 

Equations (12a) and (12b) may be rewritten as 

l i ( t )  = - E ( t ) .  [ A + B ] .  E*(t) .  x ( t ) -x /2u  (22) 
# 

and, in the long-time limit Heisenberg picture, as 

f iX( t )  = - E ( t ) .  [ A + B ] .  E*(t) .  X( t ) -v /2U (23) 

Moreover, using equation (23), we find 
1 a 
fl 0~. ge(t, ~') = -E( t+z )"  [A+B]  �9 E * ( / + z ) .  ge(t, r)-x/2c~*(t)u (24) 

1 0 
ar  ga(t, ~-)= - E ( t +  r) �9 [A+B ]  �9 E*(t + ~') �9 ga(t, r) (25) /3 

Next, we introduce the slowly varying functions 

x~(t) = E*(t) �9 x(t) (26) 

ges(t, ~') = F(t, r ge(t, ~') (27a) 

gas(t, ~') = F(t, ~r). ga(t, ~') (27b) 

where equations (20) and (27) have been selected so that IF(t, r)]11 = e i~'~ 
is phase independent  and, therefore, the interesting two-time atomic correla- 
tion functions (cf. Sections 6 and 7) are given by 

(([ge(t, ~')]1))= e-'%~(([g,s(t, T)]I) ) (28) 

(([g~(t, ~')]1))= e-i%~(([ga~(t, z)]l)) (29) 
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Equations (22), (24), and (25) become 

1. - [  -1E(t)  . [:*(t)] . x~(t)-x/2u (30) ~x , ( t )  = A + B  /3 

-~O--~ge,(t , 7.)=-- A + B -  F*( t+ r ) .  OF(t+7.)07" " ge,(t, 7.) 

-4~a*(t) e't*~176 (31) 

10 [ _ ] ~ o T " g . s ( , z ) = - A + B -  F*(t+7").07.0 F(t+7.) "g.s(t, 7.) (32) 

where a*(t)  = e(t)ot*(t). 
We now take the average (( �9 )) over the ensemble of phases, assuming 

independence of the slowly varying atomic variables at time t from phase 
changes at subsequent times t+ 7. (7.> 0) (Kimble and Mandel, 1977) and, 
hence, also from the phase rates of change ~(t) and ~ ( t +  r). We also use 
the relation 

((ix~ (t))) = O ((e, t , ( ,+.)_,( , ) lx))  .=o = -hflx2 (33) 

obtained from equation (10). 
Equations (30), (31), and (32) become 

~ xs(t) = - [ A +  C].  X~(t) -4'2u (34) 

1 ;7.Fes(t, 7")=-[A+D]" U~,(t, z ) - , /2a*( t )  e-X~'u (35) /3 

1 0 I',,~(t, 7.) = - [ A + D ] .  ra~(t ,  7.) (36)  
/3 07. 

where 

eli 

x , ( t )  = (<xAt))) 

res(t, r)=((ges(t, T))> 

I'es(t, 7.)= ((go~(t, 7.))) 

c o  

0 , D= A 0 
0 0 4A 

(37) 

(38) 

(39) 

(40) 
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For any value of A, the eigenvalues of matrices ( A + C )  and ( A + D )  
have positive real part. Hence, the long-time limit, steady state solutions of 
equations (34), (35), and (36) are 

where 

Xs(c~) = -x /2[(A+ C)-1] �9 u (41) 

res(O0, 7)= e-t3X~G(oo)+ [e-~(a+D)~] �9 [res( 00, 0)-- G(oo)] (42) 

Ua~(oo, ~') = [e-~(A+D)~] �9 F ~ ( ~ ,  0) (43) 

G(oo) = -~<<~*(oo)) ) [ (A + V - ;t I)-'] �9 u (44) 

(((~(oo)))+ 1)/2 I 

Fe=(Oo, 0) = -((~*(o)))/~ [ (45) 

-((r3(oo))) 

Fas(oo, 0) = x/-2((oe~(oo))) (46) 

and we used the fact that 4 /[R3(~176 (r3(~176 + 1 ) / 2  
g e ( ~ , 0 ) = ( b + ( o o ) X ( ~ ) ) = / I - b t ( o ) / X / 2  = -ce*(oo)/~0 (47) 

/ I - 2 R 3 ( o o ) 1 \  -r~(~) 

The steady state solution [equation (41)] is a function of the variable A 
(equation 12c) which in the approximations adopted (rotating wave, f~ << ~oo) 
may be rewritten as 

1 - ((r(~))) 2 1 , 1 +((r(~))) (49) 
A = 8 1 -((r3(~i')i 2 2((r(oO)))In 1 - ((r(co))) 

with 
( I + A + A ) 2 + 0  2 

((r3(oo))) = (1 + A +  A)2+ 02+ n2(1 + A +  A +2  A~:0 ) (50) 

[(1 + A + X)2+ 02][(1 + A + A)2+ 02+2~12] (51) 
<(r(~)))2- [ ( 1 +  a +  A)2+ 02+ n2(1 + A +  ;~ + 2  A~0)] 2 

For each given value of s r/, 0, and A, equations (49)-(51) can be solved 
for A as a function of 8. As 7/varies from 10 .4 to 102, Figure 1 shows the 
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Fig. 1. Steady state values of  A / 8 =  
K ( a ,  r3) as a function of driving field 
strength 71 = f l / , / 2 f l .  (a) Dependence on 
the internal redistribution parameter  8 = 
1/fl~'. (b) Dependence  on the driving field 
effective bandwidth  A = A ' / f l .  (c) Depen- 
dence on the detuning parameter  0 = 
(~o,- ~o+ ~)/~. 
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dependences of A on 8 (part a), on h (part b), and on 0 (part c). In the 
weak-field limit (*/-~0), the ratio A/8 tends to +oo, i.e., the steady state 
effect of internal atomic relaxation is amplified. However, the emission 
intensity in that limit equals zero, as the steady state solution approaches 
the idempotent equilibrium state with r3 = - 1 .  In the strong-field limit 
(*/~ oo), instead, A tends to 8 as the steady state solution approaches the 
nonidempotent state r = O. 

The steady state fluorescent light intensity is proportional to 

1 1 ,/2(1 +A + A + 2A~0) 
({(r3(oo))) + 1) = ~ (1 + A + A)2+ 02+ */2(1 + A + A + 2A~:0) (52) 

This expression can be interpreted as the absorption spectrum. The effect 
of our atomic redistribution mechanism on the absorption spectrum is shown 
in Figure 2 for a weak-field case (part a) and a strong-field case (part b). 
The steady state fluorescent light intensity is evaluated from equation (52) 
with A obtained from equations (49), (50), and (51) for each value of 0. 
To display both the broadening introduced by a nonzero value of parameter 
8, and the imperceptible asymmetry introduced b y  a nonzero value of 
paramenter ~ (which for optical transitions is of order 10-6), we have set 

to an unrealistic value 0.01 and plotted the spectra by setting the maximum 
value equal to 1.0. The actual maxima for */= 0.1 (Figure 2a) are 0.3167, 
0.1666, and 0.0815, and for */= 10 (Figure 2b) are 0.03167, 0.03256, 0.03617, 
corresponding to 8 equal to 0.0, 0.5, and 1.0, respectively. Slight asymmetries 
in the absorption spectrum have been observed experimentally, (Schuda et 
al., 1974; Wu et al., 1975; Hartig et al., 1976; Grove et al., 1977; Wu et al., 
1977; Citron et al., 1977; Ezekiel and Wu, 1977; Cresser et al., 1982; Peuse 
et al., 1982) but it seems unlikely that the asymmetry predicted here could 
be actually detectable. What could be disclosed by a quantitative high- 
resolution experimental study is the broadening effect due to our internal 
redistribution parameter 8 or, at least, bounds to its value could be deter- 
mined. As the laser bandwidth parameter h contributes to broadening the 
absorption spectrum exactly like parameter 8, it is important that h be 
predetermined independently for the given laser beam. 

6. RESONANCE FLUORESCENCE 

The time-dependent spectral distribution of the fluorescence (photon 
emission) at points in the far field not exposed to the driving field and after 
the propagation time delay, is proportional to the Fourier integral (Ackerhalt 
and Eberly, 1974; Kimble and Mandel, 1975; 1977; Cohen-Tannoudji and 
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Reynaud ,  1977; Mollow,  1972; 1975; 1981) 

Io ' +c .c .  (53) dr(([ge(t - % ~')]1)) e'~ 

which in the s teady state long-t ime limit becomes  

io o @e(V) = dr[re,(cc, r)]l ei'~'+c.c.  (54) 

where v = (o9 - o91)//3 and  we used equat ions  (28), (38), and the fact  that  
at s teady state Feb(t, r )  becomes  independen t  o f  the first a rgument  t. With 
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the help of equations (41), (42), (44), and (45), we find 

(1 [(A+ 0C)-1132 (55) 
- 2 [ ( A +  G)-;]22)/2 [ 

r,s(oo, 0) = 

[(A+ D -  AI)-']12 
G(oo) = 2[(A+ C)-1132 [(A+ D-hi- ' J22 (56) 

[(A+ D -  AI-')]32 

Io 1 G(oo) fl d~" ei~Te~(oo, z) = h - iv 

+ [ (A+D- iv l ) -~ ]  �9 [Fe~(OO, 0)-G(oo)] (57) 

After lengthy, but sraightforward manipulations, we find the following 
four equivalent expressions for the spectral density of the fluorescent light 

c 1 n(-iu) "l 
flgPs(v) =2{A- - iv  (A--/v--~-ivi+c'c '~ (58a) 

do dk +c.c.} (58b) 
2 h-i~, k=lPk+iV 

=c{hRedo-~'Imdo ~ RepkRedk+(v+Impk)Imdk} 
A 2- '~  ~ ~-k=l (Repk)2+(~'+Impk) 2 

= C "A2 + V2 

(58c) 

A [u(v)a(v)+ vO,)b(v)'] + ~,[v(v)a(~,)- u(z,)b(v)]" I 
(x2+ v2)[u(~,)2+ v(~,) 2] S 

where 
(58d) 

2 */ 
c = (1 + A +A)2+ 02+ ,/2(1 +A+  A + 2A~:0) (59) 

f(p) = det(A + D +pl)  = (p -Pl)(P -P2)(P -P3) (60a) 

= 2./211 +2A +p  + A(1 +2st0 - 4i~:A)] 

+(2+x +p)(1 +A+4X +p+ iO)(l+A+p-- iO) (60b) 

=p3+ (4+2a+ 5,X)p2+[2r (1 + A+ 2;t)(5 +a+2X) 

+ 2A (1 + A) + 02- 4iAO]p 
+2"0211 +2A +A(1 +2r - 4ir 

+ (2+ ,~)[(1 + A)(1 + A+4X) + 02-4ix0] (60c) 
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Pl, P2, P3 are the roots  o f  the cubic equa t ion  f (p )  = O, 

n(p) = ~72{2+p-  X ( p -  3 + X ) -  Ap[1 +2~0 + 2i~(1 + A+ x) ]  

- A A [ I + 2 i s  

- (2 + 1 + p ) ( 1  + A+ 41 + p  + i0)[1(2 + a + p )  + A(A + p ) ( 1  + 2s 

(61a) 

= - [A + A(1 + 2s 3 -- [a  (5 + A + 6A + iO) + A(1 + 2s 

�9 (3 + A + 6 A  + iO)]p 2 

- {2iX 0 (2 + 1) + A(1 + 2s + 12X + 9X 2 + 2(A + iO)(1 + 1 )] 

- r/2[ 1 - X - A(1 + 2s + 2is + A + X))]}p 

- x ( 2 +  x ) O  + A +4X + i0)[2+ X + a(1 + 2s 

+ rt212(1 + A ) +  X(3 - a -  X) - 2iAs + A +  X)] (61b) 

f ( - x ) -  n(-x)  
do = 

f ( - x )  

(1 + A + 3 X  + i0)(1 + A +  1 -- iO)+ ~72As + x) 
= (1 + A + 3X + i0)(1 + A -  X - iO) + "q2[1 + X + A(1 + 2s - 4is 

(62) 

n(pk) n(pk) j ~ k, h # k (63) 
dk = (X + Pk)f'(Pk) -- (X + Pk)(Pk --Pj)(Pk --Ph) 

f ,(p) = df(p) (64) 
clp 

u(v) = Re[ f ( - iv )]  = - (4  + 2A + 5X )v2-4XOv+ 2~12[1 +2X + A(1 + 2s 

+ (2 + a ) [  (1 + A) (1 + A + 4X) + 02] (65a) 

v(v) = Im[ f ( - iv ) ]  = v 3 -  [(1 + A + 2 X ) ( 5  + A + 2 X )  + 2 1 ( 1  + A ) +  02+2, /2]  v 

- 4X[(2 + X) 0 + 2r/2As (65b) 

a(v) =Re[n(- iv)]  = [X(5+A+6X)+A(1 +2s + a + 6 1 ) ]  v2 

-2{O[A(2+ A)+A( I+  2s A)1+~12As A)}v 

- 1 ( 2 + 1 ) ( 1 +  A + 4 1 ) [ 2 + 1  +A(1  + 2 s  

+ rl212 + 31 -- a 2 +  A(2 - 1)]  (66a) 

b(v) = Im[n(- iv)]  = [A + A(1 + 2 s  v)vZ+{a(z+a) (4+ZA+9a)  

+ A(1 + 2s + 12& + 9a 2 + 2A(1 + a ) ]  -- r/211 - a - A(1 + 2s v 

-- a o (2 + 1 )[2 + a + A(1 + 2s - 2r/ZAs (5 + A + A ) (66b) 
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The spectral density is a superposition of four pseudo-Lorentzian terms, 
each of the form 

Xkrk + yk(V -- Uk) 
r~ + ( v - Uk ) 2 (67) 

which, if Yk << Xk, has a peak centered approximately at 

+ l y ~  
Vm,x ~ Vk 2 Xk rk (68) 

with height approximately equal to Xk/rk. The four terms of dPe(v) are 
centered at Vo = 0, vl = - I m  Pl, v2 = - I m  P2, and v3 = - I m  P3- 

In the strong-field limit ~7 >> 1, ~.(A= 8, Figure 1) with not too strong 
detuning (I 0l -- r/), the roots of  the cubic equation f (p )  = 0 are approximately 
given by 

2~12(l+8+2A)+O2(2+h) +4ih4~746s + 6 ) - O 3 ( 2 + h ) + 0 4  
Pl ~ 2~72+ 82 (2r/2 + 82)2 

(69a) 

~72[+2A0- (3 + ~ + 32,)] + 02[+h0 - (1 + 6 + 2h)] + if~' (69b) 
P2,3 ~ 2.q2+ 82 

The first term of  ~e(V) is centered at Vo=0 and represents elastically 
scattered light. The second term, centered at v~ = - I m p s ,  is very slightly 
shifted from 0 if the excitation bandwidth ~ ~ 0. However, this shift is 
negligible with respect to the Stark shift of the third and fourth peaks 
centered at //2,3 = "b~"~t" The spectral density at 0 and •  is approximately 
given by 

72(1 + ~ + h) + 82(2 + h )/A 
/3d~(0) = c2~72(1 + 8 +2h)  + 02(2+A ) (70a) 

n2(1 + a + ~) - ( •  - 82)(~ + x) 
r177 ~ (70b) 

On resonance (0 =0) ,  the strong-field limit spectral density is sym- 
metric, centered at the driving frequency (v = 0) and such that the ratio of 
the height of the central peak (excluding the elastic scattering contribution) 
to the height of  the side peaks is approximately equal to 

(3+ 6 + 3 h ) / ( l  + 6 +2A) (71) 

The effect of  the irreversible internal relaxation parameter 6 = 1/f i r  is shown 
in Figure 3a, where the central peak is truncated to magnify the effect of 6 
on the side peaks. The steady state values of h in Figure 3a are 0.0987, 
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0.4935, and 0.9873 for 3 equal to 0.1, 0.5, and 1.0, respectively. For 6 = 1.0, 
the ratio of  the height of  the inelastic part of the central peak and the height 
of the side peaks is approximately 2:1, instead of the quantum electrody- 
namic 3 : 1. If  the internal relaxation time constant ~- is taken to be a universal 
constant, then our effect is negligible for atomic transitions with large values 
of/3, whereas it is amplified for transitions with small values of/3 (as long 
as f~/T/3 << ~Oo). 

Off resonance (0 r 0), the strong-field limit spectral density is symmetric 
for A = 0 and 6 - 0. For A ~ 0, it becomes asymmetric (Kimble and Mandel, 
1977) and, as [0[ is increased, one of  the side peaks rapidly disappears and 
the other, centered at the atomic resonance frequency Wo, becomes dominant. 
For 0 = - 1 0  and A = 0.01 (i.e., for almost monochromatic excitation), the 
curve in Figure 3b corresponding to 6 = 0 shows that the bandwidth-induced 
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asymmetry is small. The effect of our irreversible atomic redistribution 
mechanism is to contribute an additional cause for asymmetry. In particular, 
the ratio of the heights of the two side peaks, for A = 0, is given by 

,02(1+ 6)+ a(O 2 - a ' O )  
,02(1 + 6) + 6(02 + fV0) (72) 

which, for example, for 0 = ,0/2 yields a ratio of (1 + 6 / 2 ) / ( 1  +26). 
Asymmetries in the spectrum of resonance fluorescence under nearly 

monochromatic excitation have been observed experimentally. (Schuda et 
al., 1974; Wu et al., 1975; Hartig et al., 1976; Grove et al., 1977; Wu et al., 
1977; Citron et al., 1977; Ezekiel and Wu, 1978; Cresser et al., 1982). It 
has been argued that they may be due to the bandwidth of the driving laser 
beam used in the experiments (Kimble and Mandel, 1977). Our results show 
that the postulated existence of an internal, atomic redistribution, relaxation 
mechanism may contribute an additional cause of asymmetries in the 
off-resonance fluorescence spectrum. In the weak-field limit ,0 << 1, with 
off-resonance (0 r 0) excitation, the fluorescence is dominated by elastic 
scattering centered at the driving frequency (Kimble and Mandel, 1977), 
for monochromatic excitation. An inelastic contribution centered at the 
atomic transition frequency becomes important for broad bandwidth excita- 
tion. Figure 4 shows that atomic redistribution enhances and broadens the 
inelastic contribution. 

It seems that with current high-resolution measurement techniques our 
present predictions and, hence, our underlying physical hypotheses, should 
be experimentally verifiable. At least, one could determine bounds to the 
value of the parameter 6, and, therefore, to the value of the only unknown 
constant of the theory, namely, the internal redistribution inherent time 
constant r appearing in equation (1). 

7. ABSORPTION AND STIMULATED EMISSION 

We now consider a two-level atom simultaneously excited by a strong, 
driving field with fixed spectrum centered at Wl and effective bandwidth 
fib, and by a weak, tunable monochromatic probe field of frequency w. The 
rate of absorption of energy from the weak probe field is proportional to 
the time-dependent line-shape function (Mollow, 1972; 1975) 

od ' r ( ( [ga( t -% ~)]l))ei~'~ + c.c. (73) 

which in the steady state long-time limit becomes 

io o ~ o ( ~ )  = d~[r,~(oo, r)]leir + c.c. (74) 
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w h e r e  1, = (to - toO~ft. N e g a t i v e  va lue s  o f  the  a b s o r p t i o n  l i n e - s h a p e  f u n c t i o n  
(I)a(~,) r e p r e s e n t  s t i m u l a t e d  e m i s s i o n ,  i .e.,  a m p l i f i c a t i o n  o f  the  p r o b e  f ield.  

W i t h  t he  h e l p  o f  e q u a t i o n s  (41),  (43),  a n d  (46) ,  we f ind  

ro~(oo, o) = 
2 [ ( A +  C) - ' ] 22  

- 2 [ ( A O C ) - ' ] 3 2  (75) 

IO ~  i~ ~,-r-r~ / ( 3 0  fl u z e  Jt ,,~ t , ~') = [ ( A +  D -  i u l ) - l ]  ' F a ~ ( ~ ,  O) (76) 



1254 Beretta 

and, after some manipulations, we find the following two equivalent 
expressions for the absorption line-shape: 

2c [ m ( - i v ) +  ] /3%,(v) (77a) =,7 c.c.j, 
4c a'( v)u( v) + b'( v)v( v ) 
n2 u(v)2+ v(v) z (77b) 

where c, f(p) ,  u(v), and v(v) are defined by Equations (59), (60), and (65), 
respectively, and 

re(p) = -~/2(3A +p)(1 +A+A - iO) 

+[(2+  A +p)(1 +A+4A + p +  iO)+2iA~*12][(1 +A+A)2+ 0 2] 
(78a) 
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Fig. 5. Absorption and stimulated emission 
line shape qba(v) versus dimensionless 
monochromatic probe-field frequency v. (a) 
Dependence on the driving field strength 7/ 
on resonance ( 0 = 0 )  with monochromatic 
driving field (A = 0). (b) Dependence on the 
detuning parameter 0 for a strong (7/= 10) 
monochromatic (A = 0) driving field. 
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= [ ( I + A + A ) 2 + 0 Z ] p 2 + { ( 3 + A + 5 A + i 0 ) [ ( I + A + A ) 2 + 0 2  ] 

- ~72(1 + a + , ~  - i O ) } p  + [(2+ a)(1 + a + 4 a  + io)  

+ 2 iA~72][(1 + A + h )2 _~_ 02 ]  __ 3 r/2h (1 + A + X - iO) (78b) 

a'(u) = Re[m(- iu) ]  = -[(1 + A +  h)z+ 02][v2+ vO - (2+ h)(1 + A+4X)] 

+ 7q2[vO -3A(1 + A +  h)] (79a) 

b'(v)  = I m [ m ( - i u ) ]  = -v[(1 +A+A)2+  02](3 + A+ 5A) + 0(2+ A) 

+ r/2[ v(1 + A+ h) + 3 t  + 2A~:] (79b) 

In the absence of the postulated atomic redistribution mechanism 
(a = 0), Figure 5a shows the well-known absorption line shapes for different 
driving field strengths. In the strong-field limit ( r /=  10), Figure 5b shows 
the effect of detuning. 

The effect of a on the on-resonance (0 = 0) stimulated absorption- 
emission line shape is shown in Figure 6 for both a strong (rl = 10) 
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monochromatic (A = 0) driving field, and a weaker (7 = 2) monochromatic 
(A = 0) driving field, for which the relative effect is particularly appreciable 
(Figure 6a). It is noteworthy that a nonzero value of 8 introduces no 
asymmetries in the line shape. Asymmetries are instead introduced by a ~t 
nonzero excitation bandwidth A (Figure 7). Thus, in the presence of both 
a nonzero 8 and a nonzero A (Figure 8) the contributions of the two effects 
are clearly distinguishable. 
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Again, we submit that a quantitative, high-resolution experimental 
study is needed to verify our predictions and, hence, the validity of the 
fundamental physical hypotheses of quantum thermodynamics. 

8. CONCLUSIONS 

We have postulated the existence of an internal atomic relaxation 
mechanism by which nonpure individual quantum states of a single isolated 
uncorrelated two-level atom tend to approach a stable equilibrium state. 
This relaxation mechanism is entailed by a novel nonlinear equation of 
motion [equation (1)] proposed by the author as an attempt to resolve the 
long-standing dilemma on the nature of entropy and irreversibility. 

We have estimated the corrections that our constant-energy irreversible 
atomic relaxation implies on the spectral distribution of the resonance 
fluorescence and the absorption and stimulated emission line shape from 
a two-level atom driven about resonance by a finite-bandwidth quantum 
electromagnetic laser field. 

Verification of some of our predictions, or at least the determination 
of bounds to the value of  the unknown internal redistribution time constant 
~- may be within reach of  current high-resolution experimental techniques. 
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