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For a general dynamical system, it is proved that an equilibrium state belonging to a continuous
family of conditionally stable equilibrium states is stable. The result is applied to quantum ther-

modynamics to clarify in what restricted sense the entropy functional s( p) =

—kTrplnpcan

provide a Lyapunov criterion for the stability of thermodynamic equilibrium. A conjecture on a
special positive-definiteness property of — k Tr p In p remains to be proved.

I. INTRODUCTION

In this note we address the question of whether entropy
is indeed a Lyapunov function of the kind often implied in
some thermodynamics literature on the stability of the maxi-
mum entropy equilibrium states.’

For a general dynamical system,” we call L functions
those Lyapunov functions® that satisfy the hypothesis of
Lyapunov’s stability theorem.* We also define a special class
of nondecreasing functions, called .S functions, that satisfy
the hypothesis of a conditional stability theorem. We prove a
theorem giving a sufficient condition for the stability of equi-
librium: an equilibrium state is stable if it belongs to a contin-
uous family of conditionally stable equlhbrlum states
(Theorem 3).

We apply the theorem to quantum thermodynamics to
clarify the open question whether the entropy functional
s(p) = — k Tr p In p, together with the principle of nonde-
crease of entropy, indeed provides a Lyapunov criterion for
the stability of thermodynamic equilibrium. We show that
s(p)isnot an L function. We conjecture (Sec. III) that s( p) is
an § function, but provide only heuristic arguments in sup-
port of the conjecture. Thus, the open'question remains un-
resolved, and calls for a technical study of the conjecture.

- In view of our result, statements to the effect that the
second law of thermodynamics “can be formulated as a dyn-
amical principle in terms of the existence of a Lyapunov
variable,'” should be taken cum grano salis, for they are ei-
ther unnecessdrily strong, if by Lyapunov variable is meant
an L function,' or too weak, if by Lyapunov function is
meant an .S function.

Section II presents the general context of the problem.
Section III presents its application to quantum thermody-
namics.

Il. L FUNCTIONS AND S FUNCTIONS

Definition 1: A dynamical system® on a metric space
(#°, d) is a mapping u: R* X #— % such that

(1.1)  u(-, x): RT™—&% is continuous;

(1.2} ult,.): &—& is continuous;

(1.3) (0, x} =x;

(1.4)  ul(t+ 5, x) = ult, uls, x));
forallz,sin R*, and x in #°.

The mapping u(-,x) is called the motion passing through
x at time ¢ = 0. The set £ is also called the state space, and
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u(t,x) is the state at time ¢ for a motion passing through state -
x at time 0. A part of a motion u(-,x) over an interval [¢,,2,] in

R™, t, > t,, with u(t,,x) = x, and u(t,,x) = x,, is called a pro-

cess from state x, to state x,.° The metric d: X Z—R is

such that d (x,y) = Oif and only if x = y, d {x,y) = d (y,x)>0,

and d (x,y) + d (y,2)>d (x,z) for all x, y, zin 2.

The dynamical system is determined by a one-param-
eter semigroup At ): Z— & suchthat At )x = u(t, x)foralls
in R* and x in £, and that the inverse A(t)~' does not
necessarily exist, so that the semigroup may not be extenda-
ble to a group with A( — )= A(r)~ "

Definition 2: A state x, is an equilibrium state if and only
ifu(t x,)=x, forallzinR™.

Next, we recall the definitions of stability and instability
according to Lyapunov. We will use the term local stability
instead of Lyapunov stability to leave room for nonlocal sta-
bility concepts, such as that of metastability.®

Definition 3: An equilibrium state x, is locally stable if
and only if for each € > 0 there is a 8(¢) > O such that d (x,x,)

< &(€) implies d (u(t ,x),x,) < € for all > 0 and every x in Z°.

Definition 4: An equilibrium state x, is unstable if and
only if it is not locally stable, i.e., there is an € > 0 such that
forevery 6 > Othereisas>0and anx in Z° withd (x,x,) <&
such that d (u(z ,x),x, )>€.

For any >0, #,(x,) will denote any open neighbor-
hood of x, containing the open ball with radius » and center
x,, i.e., all the states x such that d (x,x,) < r.

Definition 5: A fanction L (-): Z—R is an L function on
an open neighborhood % ,(x,) of an equilibrium state x, if
and only if the following conditions hold.

(5.1)L (x) — L (x,)>al(d (x,x,)) for every x in % ,(x,) and
some function a(-): R—R such that ¢(0) = 0, € >0 implies
a(€) >0, and a(7) < a(s) implies 7 <.

(5.2) L (u(t x))<L (x)forallz >0andevery x in %, (x,).

(5.3) L (-} Z—R is continuous at x,, i.e., for each £ >0
thereisad’(§)> Osuchthat |L (x) — L (x,)| <¢ foreveryxin
Z withd (x,x,) <&'(£).

L functions are the special class of Lyapunov functions®
considered in the hypothesis of the classical Lyapunov sta-
bility theorem.*

Theorem 1. Lyapunov Stability Theorem: If L (-): #—R
isan L function on an open neighborhood # , (x, ) of an equi-
librium state x,, then x, is a locally stable equilibrium state.

Proof: For each € > 0 (we may suppose € < 7 with no loss
of generality), let § (€) = a(€) > 0, where a(-) is the function in
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condition (5.1). By éonditions {5.3) and (5.1), there is a
S(€) = 8'(§ (€)) > 0 such that L (x) — L (x,) < a(e) for every x
with d (x,x, ) < 8(€). By conditions (5.1) and (5.2),
L(x.)<L(x)— L (x.) <ale),

(1)
for every £> 0 and, hence, d (u(t x),x.) <€, i.e., x, satisfies
Definition 3. Thus, Theorem 1 is proved.

Definition 6: A single-valued function E (-): £”—R* isan
invariant if and only if E (u(t ,x)) = E (x) for all #in R* and
every x in Z.

Definition' 7: A subset € (E ) of % isa constant-E subset if
andonlyif E (x) = E forallxin & (E )and E (-)isan invariant.

a(d (uft x)x )<L (u(x,t )) —

Clearly, 7 (E ) coincides with £ if E (-) is a trivial invar-

iant, e.g., the constant functions E (-) = E. If E (-) is a nontri-
vial invariant with a range R, in R*, then each x in 2
belongs to one and only one constant-E subset % (E (x)) and
every motion u(-,x) lies entirely in € (E (x)), i.e., u(t ,x) is in
C(E(x)forallzinR™.

Definition 8: An equilibrium state x, is conditionally lo-
cally stable with respect to an invariant E () if and only if for
each 7 > 0 there is a §(7) > 0 such that d (x,x, ) < 8(5) implies
d (ult ,x),x,) <77 for all £ >0 and every x in € (E (x,)).

A conditionally locally stable equilibrium state x, [with
respect to a nontrivial invariant E ()] is not necessarily also
locally stable because stability with respect to “perturba-
tions” that bring the state off the constant-E subset % (E (x, ))
is not guaranteed by Definition 8.

Forany r>0, &, (x,) will denote any constant-E neigh-
borhood of x, containing the open disk in Z(E (x,)) with
radius 7 and center x,, i.e., all the states x such that d (x,x.,)

<rand E(x) = E(x,).

Definition 9: A function S(-): € (E (x, ))—Ris an S func-
tion on a constant-E neighborhood <, (x, ) of an equilibrium
state x, if and only if the following conditions hold.

(9.1) 5 (x,) — S (x)>a(d (x,x,)) for every x in%,(x,)and
some function a(-): R—R such that q(0) = 0 €>0 implies
a(€)> 0, and a(r) < a(s) implies 7 < s.

(9-2) S (u(t ,x))>S (x) for all #>0 and every x in &, (x,).

(9-3)S(-): € (E (x.)}—>R is continuous at x,, i.e., for each

. &>O0thereisad’({ ) > Osuchthat |S (x,) — S (x)| < forevery
xin €(E(x,)) with d (x,x,) < &(C).

§ functions acquire importance in view of the following
conditional stability theorem.

Theorem 2. Lyapunov Conditional Stability Theorem:
IfS(): €(E (x.))—>Ris an S function on a constant-E neigh-
borhood  ,(x, ) of an equilibrium state x,, then x, is condi-
tionally locally stable with respect to the invariant E (-).

The proof of this theorem is completely analogous to
that of Theorem 1 and will not be repeated.

Clearly,if L (-)isan L functionthenS ()= — L (-)isanS
function. However, the converse is not true necessarily, i.e.,
if S(-}isan S function, L () = — S(-) is not necessarily an L
function. For example, condition (9.1) holds only on a con-
stant-E neighborhood of x,, whereas condition (5.1) is re-
quired to hold on an unconstrained neighborhood of x, .

For applications such as thermodynamics (see Sec. III),
it may be easier to construct S functions than L functions.
The following theorem gives a ‘sufficient condition under
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" <8(e,E (x)).

which stability can be proved even if no L function can be
found. The condition requires the existence of a continuous
family of conditionally stable equilibrium states in the neigh-
borhood of x,.

Theorem 3: Given an equilibrium state x,, if there exist
aninvariant E (-): #—R ; and a single-valued family of equi-
librium states x, (-): R z;— & such that the following condi-
tions hold, then x, is a stable equilibrium state.

(3.1) E(-) is continuous at x,, and E (x,) = E,

(3.2) x,(-) is continuous at E,, and x, (E,) = x, .

{3.3) For some £ >0, every x, (E ) with d (x, (E ),x,) < £ is
conditionally locally stable with respect to the invariant E (- ):

(3.3)" For some £ >0, there is an S function on a con-
stant-E neighborhood of each equilibrium state x, (E) with
d(x.(E)x,)<§. .

- By virtue of Theorem 2, conditions (3.3) and (3.3)" are
equivalent.

Proof: We must show that for each €>0 there is a
6(€) > Osuchthatd (x,x, ) < 8(€)implies d (u(t ,x),x,) < eforall
t>0. Let € > 0 be given. With no loss of generality, we may
suppose € < §.

For each E such that d {x, (E ),x.) < €/2, we define

7(€,E) = infld (xx.(E))|E (x) = E, d (x.x,)>€] ()

so that E(x)= and dxx, (E))<ncE), ie.,
d(x,x,(E(x))) <n(e,E (x)), implies d(x,x,}<€, because
d(x,x.)>€ would imply d(x.x,.(E))>7(e,E). Moreover,
7(€,E)>0 because the triangular inequality d (x.x,(E))
+d(x.(E)x.)>d(xx,), for each x with E(x)=E and
d(xx.)>€, implies d(xx(E))>€—e/2=€/2, but
7(€,E ) is the greatest lower bound of d (x,x, (E ))-and, there-
fore, (¢,E )>€/2 > 0.

Because x, (E) is conditionally stable (Condition 3.3),
there is a &(n(e,E))>0 such that E(x)=E and
d(x.x.(E)) <8(n(e,E)) imply d (u(t x)x, (E ) < 7(€,E ) for all
t>0 (Definition 8). We denote by &(¢,E) the lowest upper
bound of all the &’s that satisfy Definition 8 for a given
7(€.E), i.e., (e,E) = inf{S(n(e,E )}, and we define

V(€)= 1nf{6(e,E)lE such thatd (x,(E),x,) <€/2}, (3)

“sothat S8e.E)>y (e)}&(n(e,E )) > Obecause ' (¢)is the greatest

lower bound of §(¢,E ).
We now let y(e} =

&'(€) = inf{d (x,x,)|d (x.x(E (x)))>7(€),

d(x.(E (x)x.) < Me)/2}, 4
so that d(x,x.)<&'(e) and d(x,(E (x))x.) <y{€)/2 imply
d (x,x, (E (x))) < 7(€) because d (x,x, (E (x)))>y(€) would imply
d (x,x,)>&'(€). Moreover, §'(€) > O because the triangular ine-
quality d (x,x, ) + d (x, (E (x)),x,)>d (x,x.(E (x))), for each x
withd (x,x, (E (x)))>¥(€) and d (x, (E (x)),x. ) < Y{€)/2, implies
d (x,x.)>Vl€) — 7(€)/2 = y(e), but &'(€) is the greatest lower
bound of d (x,x, ) and, therefore, 8'(€)>1{€)/2>0. - .

Because of conditions (3.1) and (3.2), x, (E (-)) is contin-
uous at x, and, therefore, there is a §”(¢)>0 such that
d(x,x.)<8"(€)implies d (x, (E (x)), x. ) < y(€)/2. If we now let
ble) = min{6"(€),5'(e)}, then d(xx,)<b(€) implies
d(x.(E(x)x.) <¥€)/2<€/2 and d{xx,(E (x))) < Ve)<y(€)
Therefore,  d (uft, x)x, (E (x)) < 7(e,E (x))
and d (u(t ,x),x,) < €. Thus, Theorem 3 is proved.

min{e,y'(€)} and define
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lll. APPLICATION TO QUANTUM THERMODYNAMICS

Within quantum theory, Theorem 3 is immediately ap-
plicable to study the stability of equilibria of (possibly non-
linear) generalized evolution equations for irreversible dy-
namics.

Let us consider an isolated physical system with asso-
ciated Hilbert space #° (dim #°< « ), and Hamiltonian op-
erator H (possibly unbounded). For simplicity, let the num-
ber operators V; for each type i of elementary constituent be
c-number operators, i.e., N; = N, I. If H is unbounded, we
further assume that Trexp(—BH)< o for all B with
0<B< «,” and that the energy functional

E(p)=TrHp : (5)
is continuous’ on the set of self-adjoint, non-negative-defi-
nite, unit-trace operators on 5 with respect to the metric

d(pyp2) =Trlp, —ps|.
We then define the state space #°, to be the set of all self-

adjoint, non-negative-definite, unit-trace operators pon
with energy Tr Hp<c, with c a given finite constant, i.e.,

Z.={ponHlp' =p,

p>0, Trp=1, TrHp<c< o }. (6)

Operators p are called state operators for, within quantum
thermodynamics, they represent the states of the physical
system.

The entropy functional

s(p)= —kTrplnp (7)
is concave® and continuous® on 2°,. Moreover, for a given
value E in the range Ry, i.e., for -

inf(E(p)lpin 2.} < E <sup{E(p)|p in £, } (8)

the entropy functional s( p) has a unique maximum on the set

CE)=|pin Z |E(p)=E} (9)
at the state ‘
PolE)=exp( —B(E)H)/Trexp(—B(E)H), (10)

where B (E) is one-to-one and continuous in the specified
range for E (see Refs. 10 and 11). Namely s( PolE)) > s( p) for
every p#po(E) in € (E). Thus, the family of states p (E ) is
single valued and continuous in E.

Now, let us assume that the causal evolutlon of state
operators forms a dynamical system on (%, ,d ) such that the
energy functional is a nontrivial invariant and the entropy
functional is nondecreasing, i.e., for every p in £, the mo-
tion u(-,p) is such that

E(ult p) = E(p), (11)

 S(ule p)>s(p)s (12)
for all £>0.

Corsider a state po(E ) [Eq (10)]. Because E ( p) is an in-
variant, u( ,0o(E )) is in € (E ) for every 1>0. Because s( p) is
nondecreasing, s(u(t ,00(E )))>s(polE)) for every £>0. But
s(p)<s(polE)) for every ps#py(E) in €(E). Therefore,
u(t polE ) = po(E ),i.e.,eachp,(E )isanequilibriumstate (De-
finition 2). We conclude that conditions (3.1), (3.2), and (3.3)

" of Theorem 3 are satisfied for each equilibrium state po(E ). If
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each such equilibrium state were shown to be conditionally
locally stable then it would also be locally stable by virtue of
Theorem 3. '

It is noteworthy that, because in any neighborhood of
every equilibrium state py(E ) [excluding the state with E = ¢
and the state with 8 (E' ) = 0, if His bounded] there is another
state po(E’) such that s(po(E’))>s(poE)), the functions
L,(-)= —s(-Jand L,() = s( polE (-))) — s{-)arenot L functions
on any neighborhood of any stable equilibrium state in £,
with entropy less than the absolute maximum on #°,. In-
deed, we could have L,(po(E’))— L,(poE))<0 and

Ly{polE") — Lo po{E)) = 0 even though d (polE’)o(E))
> 0 and, therefore, neither L 1(-)nor L,(+) could satisfy condi-
tion(5.1).

The physical importance of showing that the maximum
entropy equilibrium states are locally stable emerges from
the second law of thermodynamics which requires them to
be the only (locally) stable equilibrium states.'? For the dyna-
mical system to be consistent with the second law of thermo-
dynamics, it must necessarily imply that the maximum en-
tropy equilibrium states are locally stable, and that any other
equilibrium state is unstable.

For example, a unitary (Hamiltonian) dynamical system
withu(t p) = U(t pU(t)~',U(t) = exp( — iH /#),wouldsa-
tisfy conditions (11) and (12) with s(x(z ,p)) = s( p). However,
it would imply the existence of other stable equilibrium
states in addition to those with maximum entropy for a given
energy E. Indeed, every equilibrium state p, of such a dyna-
mical system, i.e., every state operator with p,H = Hp,,
wouldbelocally stablebecaused (u(t, p),p.) = d ( p, p. )forall
t and every p, i.e., each motion would remain at a fixed dis-
tance from every equilibrium state,' and, therefore, Defini-
tion 3 would be satisfied for each € > 0 with 8(¢) = €. Thus, a
unitary (Hamiltonian) dynamical system would not be con-
sistent with the second law of thermodynamics.

In general, the existence of dissipative motions, i.e., mo-
tions with s{u(z ,p)) > s( p) for some >0, reduces both the
number of equilibrium states and the number of equilibrium
states that are stable. For examiple, the dynamical system
generated by the nonlinear evolution equation recently pro-
posed by the author in the framework of quantum thermody-
namics'*'> not only satisfies conditions (11) and (12), but
seems also to contain enough dissipative motions to imply
that only the maximum entropy equilibrium states are local-
ly stable, whereas the many other equilibrium states are all
unstable, which is consistent with the second law of thermo-
dynamics.

This paper addresses only the question of whether the
principle of nondecrease of entropy [condition (12)], togeth-
er with the properties of the entropy functional [Eq. (7)] and
the specific structure of the maximum entropy states [Eq.
(10)], is sufficient to imply the local stability of the maximum
entropy thermodynamic equilibrium states. In view of

Theorem 3, we concluded that it would suffice to show that
‘the entropy functional is an S function and, specifically, that

it satisfies condition (9.1) for each equilibrium state p (E ).
In some thermodynamic literature, it is usually stated

that entropy provides a Lyapunov criterion for the stability

of the thermodynamic equilibrium states."'* However, a rig-
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orous justification of these assertions is found nowhere in the
literature.

The question would be resolved if we could prove that
the functional s( po(E )) — s( p), when restricted to the con-
stant-E subset containing p,(E ), is positive definite in the
sense made precise by the conjecture below. If the conjecture
could be proved, then condition (9.1) would be satisfied, en-
tropy would be an S function in the neighborhood of each
maximum entropy equilibrium state, and Theorem 3 would
guarantee the local stability of such states. Only then, and in
the strict sense specified here, would it be correct to aver that
entropy provides a Lyapunov criterion for the stability of
thermodynamic equilibrium.

Conjecture: Given a state operator of the form

exp( — Z;4;R;)

J
Tr exp( — 2, A.R,)

such that Tr exp( — 2,4;R;) < «, there is a function a(-):

po= - (13)

R—R such that a(0) = 0, € > 0 implies a(€) > 0, a(r) < a(s) im-

plies r < s, and

Trplnp — TrpoInp, > a(Tr|p — pol), ’ (14)
- for every state operator p such that Tr R,p = Tr R, p, for
every j, and Tr |p — po| <& for some £ > 0.

We have no proof of this conjecture. But its validity
seems to be plausible in view of the following facts: (1) state
operator p, is the unique state maximizing — Tr p In p over
the set of states with Tr R;p =Tr R;p,; (2) — Trplnp is
continuous in p, (see Ref. 9); (3) — Tr p In p is strictly con-
. cave (see Ref. 8); and (4) state operator p, is strictly positive.

Heuristically, there should be a way to expand the functional

— Tr p In p (restricted over the set with Tr R;p = Tr R;p,)
- in a Taylor series about p,, to find

—Trplnp= —Trp,Inp,

+ D, Tr(p — po) + D, Tr( p —pof + - (‘1'

5
Then, D, should equal zero because p, maximizes
— Tr p In p over the restricted set, and D, should be defined
and strictly negative because p, is strictly positive and
— Tr p In p is strictly concave. A proof on these lines, how-
ever, would involve several technical problems of the kind
discussed in Ref. 8, such as the essential singularity of func-
tion — y In y aty = 0, the delicate question of continuity of
— Tr p In p, the question of differentiability of — Tr p In p,

and so on.

We hope that the arguments just outlined in support of
the conjecture will provide sufficient motivation for a rigor-
ous technical study that would settle an important open

308 J. Math. Phys., Vol. 27, No. 1, January 1986

question in the field of thermodynamics.
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