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(1) Introduction.-Rigorous definitions of electronegativity of atoms, neutral
or ionized, and of atomic orbitals are given. The definitions are consistent with
the rules of the statistics of ensembles and the quantum-mechanical picture of
atomic structure. The definitions have been extended to atoms in a molecule and
to atoms in a solid. The extensions, however, will be presented in future com-
munications.
The concept of electronegativity, "the power of an atom in a molecule to

attract electrons to itself,"' has been found to be a useful tool for the correlation
of a vast field of chemical knowledge and experience.2 But in spite of the great
amount of literature on the subject, no rigorous definition of electronegativity has
been suggested. The lack of definition has resulted in some confusion with re-
spect to both the physical concept represented by electronegativity and the units
of electronegativity.'-8

In the present communication, a free atom or a free ion is regarded as a thermo-
dynamic system, and the electronegativity of such a system is identified with the
negative of its electrochemical potential.
The electrochemical potential of a component in a phase may be evaluated by

means of the theory of statistical ensembles. This theory, whether related to
classical or quantum mechanics, applies to thermodynamic systems of any size.9
Consequently, it is possible to find ensemble (thermodynamic) properties, such as
the electrochemical potential, even of an atom representative of an ensemble of
one-atom members. If the center of mass of each atom is fixed in space, both the
one-atom members and the one-atom thermodynamic system representative of
the ensemble may be regarded as open systems having one independent com-
ponent, namely, electrons.
Even when all the mechanical properties of an atom, such as the energy eigen-

values and the number of electrons, assume only discrete values, the thermo-
dynamic properties of the one-atom system representative of the ensemble, such
as the energy E and the number of electrons n, assume continuous values. Each
of these properties may be expressed as a continuous function of two independent
thermodynamic variables.
The electrochemical potential M is defined as the partial derivative of E with

respect to n at constant entropy. This derivative must be evaluated for the
ensemble passing through equilibrium states because otherwise it is indeter-
minate. This fact in turn implies that in any calculation of ju, two independent
thermodynamic variables, say, n and temperature T, must be considered even if
the interest is in results at 00K. For example, if ,u is computed as the derivative
mentioned above, in order to vary n at constant entropy while the ensemble
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passes through equilibrium states, T must be varied. Hence, both n and T must
be retained in E.

In view of these remarks, this paper is organized as follows. First, a brief
review of the statistics of grand canonical ensembles is given. Second, this
statistics is applied to an ensemble of one-atom members. The procedure for
the calculation of the electrochemical potential is thus established. Third,
electronegativity is defined as the negative of the electrochemical potential.
For a neutral atom at 00K, this definition yields exact results which are identical
to those of Axlulliken.3 Finally, it is shown that when the electronic structure of
the atom is described by the Hartree-Fock approximation, that is when the elec-
trons are treated as an ideal substance, an orbital electronegativity can be de-
filled.

It should be noted that since the electrochemical potential is interpreted as the
escaping tendency (the opposite of the power to attract) of a component from a
thermodynamic system, it is reasonable to use the negative of this potential as a
measure of electronegativity.

(2) Statistics of Grand Canonical Ensembles.-Consider an ensemble of identi-
cal members, namely, members which have identical possible energy eigenstates.
Suppose that the ensemble is in thermodynamic equilibrium, at T, and that its
members can exchange energy and matter with the members of a reservoir.
Such an ensemble is defined as a grand canonical ensemble.9
For present purposes, the members of the ensemble are specified by the follow-

ing conditions: (a) each member has only one independent component; (b) the
energy eigenstates of each member are G1, G2, . . ., Gj, . . . ; and (c) each energy
cigenstate GI, G2, . . ., Gj, . . . is occupied by a number nI, n2, . . . nj, . . . of
particles of the component and has an energy E1, E2, . . . Ej, . . ., respectively.
Here, separate symbols for the energy and the occupation number are used for
each energy eigenstate, even though more than one of these symbols may repre-
sent the same number. For example, a g-fold degenerate state is counted as g
separate states.
When the laws of thermodynamics are applied to the ensemble and the reser-

voir,9 it is found that the fraction xi of members at the energy eigenstate Gi, the
probability xi that a member is at the state Gi, is given by the relation

exp [(nil;- Ei)/kTJ (1)
exp, [(niM - Ej)/kTJ

i

where,u is the electrochenlical potential of the component in the etisemble and ill
the reservoir, and k is Boltzmann's constant. Note that at 7' = 0, xi call be
computed only as a limit.
By virtue of equation (1), it follows that, statistically, the average number n

of particles representative of the ensemble is given by the relation
n = nixi

i

Eni exp [(niA- Ei)/kT]

exp [(ni- Ei))/kkT] (2)
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Equation (2) indicates that n is a continuous function of the continuous variables
jA and T. Conversely, equation (2) can be solved for the continuous function
,u(n, T) of the continuous variables n and T. The range of n is the same as that of
the discrete values n,.

It also follows from equation (1) that the average energy E of the ensemble is
given by the relation

E E-x= . (3)

This energy can be thought of as a continuous function of any two of the con-
tinuous variables n, Ja, and T, and it is related to the electrochemical potential by
the expression

E
= at constant entropy. (4)

O3n

The derivation of the last relation is given in reference 9.
(3) Electrochemical Potential of Atoms and Atomic Ions.-Consider the special

ensemble of identical, one-atom members of atomic number Z. Suppose that
each member may exchange energy and only electrons with a reservoir. In
thermodynamic equilibrium, this thermodynamic system constitutes a grand
canonical ensemble of one-component (electron) members.
To proceed with the statistical analysis of the system, suppose first that only

the ground state of the singly charged negative ion of the atomic species exists.
Thus, the possible energy eigenstates of each one-atom member of the ensemble
are as follows:

(a) Ground states: Figure 1 shows schematically the possible occupation
numbers nj,

n1= O, 1, 2,. . .,Z Z + 1, (5)

and the corresponding energies Es of the ground states of the neutral atom and all
the positive and negative ions. It is seen from the figure that as the electron
occupation number increases from zero (fully ionized atom) to Z + 1 (singly

Eigenstate Occupation Energy
Gi number ni Ei

Go 0 Eo Iz

Gi Ei Iz-
FIG. L.-Schematic of ground states

Positive of the neutral atom and all the positive
ions and negative ions of an atom forming

. . . only singly charged negative ions. No
degeneracies are shown.

GZ-. Z-1 EZ-1 I

GZ Z EZ 0 Neutral atom

GZ+, Z+l - EZ + -A Negative atom
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charged negative ion), the energies of the corresponding ground states satisfy the
relations

Eo > E > .. . > EZ-1 > Ez > Ez+,. (6)
If the arbitrary zero energy reference level is set at the energy Ez of the neutral
atom, relation (6) may be written in the form

Iz > Iz-1 > . . . > I, > 0 > - All (7)

where Ii and Ai are the ith ionization energy and electron affinity of the atom,
respectively.

(b) Excited states: To each occupation number n, smaller than or equal to
Z, there corresponds an infinite number of excited states. Let the energy of each
such state be denoted by Ej1. Each energy Efj is greater than the energy Et of
the corresponding ground state.

In terms of the above energy eigenstates, the average number n of electrons
representative of the ensemble is given by the relation

Z+1 z

E ni exp [(nig - Ej)/kT] + Ez nt exp [(niM - Ei)/kT]
i=O i=Oo (8)

z+1 z
E exp [(n - Ej)/kT] + E E exp [(noj- Ets)/kT]
i=o i=O j

It follows from equation (8) that the number of electrons of the atom, viewed as a
thermodynamic system, may assume any value between 0 and Z + 1, even
though the occupation numbers nj assume only discrete values. Moreover, for
given values n and T, equation (8) can be solved foru. Although the general
solution is numerically tedious, some general results can be readily established:

(i) If the ensemble is representative of either the fully ionized atom (n = 0)
or the singly charged negative ion (n = Z + 1), equation (8) yields

y = -X for n = 0, (9)
or

=+c forn= Z+ 1, (10)
respectively, for all values of T. These extreme values of jA are as expected, since
for sn = 0 and Z + 1 the variations dn of the electron component are restricted to
be only positive and negative, respectively. 10

(ii) For values of n in the range

Z < n < Z + 1, (11)

IA is positive. For all other values of n, the electrochemical potential is negative.
These facts can be readily verified by substitution of a nonnegative value of JA
in equation (8).

(iii) If the ensemble is representative of a neutral atom, n = Z. For this
value of n and in the limit of small temperatures (T approximately equals 00K),
equation (8) yields
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A = - (II+ Aj)/2+ kT In g2z- forn = Z, andT-, (12)
where gzl is the degeneracy of the state G,,1. Equation (12) is a special case of a
more general result discussed below.

(iv) If the ensemble is representative of a positive ion with an integral num-
ber a of electrons, n = o. For such a value of n, equation (8) may be written in
the equivalent form,
ff-1 ~~~~~~0>-1

Z (a- nj) exp [(niA - Ei)/kT] + .EE (o - ni) exp [(ni4 - Eij)/kT] =
i=O j

Z+1 z

E (ni - a) exp [(nij - Ei)/kT] + Z Ej (ni - o,) exp [(nit& - Eij)/kT]. (13)
i=u+i i=u+i j

For ;4 negative and in the limit of small temperatures, the first sum on either side
of equation (13) is much greater than the second. Hence, a good approximation
to equation (13) is given by the relation
Z+1 Z+1

E (a - no) exp [(niM - Ej)/kT] = A (ns- a) exp [(niA- Ei)/kT]
i =O iza+i

forn = aandT-O. (14)
For different ranges of negative values of ,u, the exponents nfM- E on either side
of equation (14) can be ordered. Given a range of values ofjA, suppose that the
largest exponents are 4y -El and rju - Er on the left- and right-hand side,
respectively, where

1< -1 and r> +1. (15)

It follows that, in the limit of small temperatures, equation (14) can be approxi-
mated by the simple expression

gz (oa- 1) exp [(4' - E1)/kT] = gr(r - a) exp [(rju- E,)/kT], (16)

where g9 and gT are the degeneracies of the states GI and Gr, respectively. The
last expression is satisfied for the value of Au given by the relation

= - [(Er- El) + kTln r( - ]/(r- 1)
gr (r-a

= -
-Iz-) +± kTln7'g (- ]/(r- 1) forn = a, and 7-*O. (17)

Yr (r o- )
This value of IA is acceptable if it is within the range of values assumed for the
ordering of the exponents, namely, within the range which resulted in approxi-
mate equation (16). Otherwise, another range of ,u and different values of 1 and r
must be considered.
For n equal to or smaller than Z - 1, consideration of thic ionization energies of

atoms as specified above results in values of . which are much smaller than that
for n= Z. F'or praetical purl)o.ses, it is convenieint (but tiot iiec(Xssary) to assumne

A = -CO for n < Z-1 and all T. (18)

rThe preceding statistical analysis can be readily applied to atoms which either
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can form both singly and doubly charged negative ions or cannot form negative
ions. Thus, for example, for atoms which form both singly and doubly charged
negative ions, nj ranges from 0 to Z + 2, it is found that for n = Z a possible
value of , is given by the relation

M1 = - (I2+ A2)/4 for n = Z and T = 0, (19)

provided that

312< 4I, + A2, and 4A1< 3A2-I2. (20)

4. Electronegativity of Atoms and Atomic Ions.-The electronegativity of a
neutral or charged atomic species is defined here as the negative of the electro-
chemical potential of the species viewed as a one-component member of a grand
canonical ensemble. Thus, the electronegativity x(n, T) is given by the relation

x(n, T) = - A (21)

and is a continuous function of the continuous variables n, and T. Note that
when the zero energy level is set at the level of the ground state of the neutral
atom, the value of the electrochemical potential equals that of the chemical
potential. For this energy reference level, the electronegativity equals the
negative of the chemical potential. Note also that x can be expressed as a
continuous function of another pair of continuous thermodynamic variables, say,
entropy and n.

Qualitatively, this definition of electronegativity is consistent with heuristic
descriptions given previously. The negative of ,u, the negative of the escaping
tendency, represents a power to attract. A power to attract is the notion as-
sociated with electronegativity. Moreover, equality of the electrochemical
potentials of a component in two different phases implies that there is no flow of
this component between the two phases. In direct analogy, equality of elec-
tronegativities of two atoms implies that there is no flow of electronic charge from
one atom to the other.

Quantitatively, for atoms which can form singly charged negative ions, it is
seen from equations (12) and (21) that the exact value of the electronegativity
x(Z, 0) of the neutral atom is given by the relation

x(Z,0) = (II + A1)/2. -(22)

This value is identical to the approximate value recommended by Mlulliken.3
Also, the exact value of the electronegativity given by the negative of equation
(10) was suggested by A'Iulliken3 without reference to the restrictions represented
by relations (20).

5. Orbital Electronegativity.-The discuission in section 3 and the definition of
elec(troiiegati vity in secti(ii 4 are presiit~ed 8 i tiouit all! refereevtI( tlhe procedure
employed for the determination of the possible eniergy eigenstates of the members
of the enisemble. (Consideratiou of the approxillLate methiods used for the cal-
culation of the energy eigenvalues leads to the concept of orbital electronegativ-
ity.
To see this point clearly, consider a Z-electron atom. The quantum-mechan-
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ical analysis of the electronic structure of this atom is very difficult. The diffi-
culty is avoided if the electrons are treated as an ideal substance, that is, the
Z-electron Hamiltonian operator is reduced to an approximate sum of Z sepa-
rable, one-electron Hamiltonian operators. The reduction can be made by means
of different approximate methods. One of these is the Hartree-Fock method.
The Hartree-Fock one-electron operator defines an energy eigenvalue problem.

Each eigenfunction of this operator, one-electron orbital, can accommodate at
most two electrons with opposite spins. When the orbital, is occupied by an
electron with a given spin, it is called a spin-orbital. The negative of each eigen-
value is interpreted as an ionization energy. This interpretation is based on the
assumption that the extraction of the electron from the corresponding orbital
does not perturb the eigenstates of the other electrons, and it is known as Koop-
mans' theorem.1' Finally, the energy of a given state of the atom is given ap-
proximately by the sum of the energies of the occupied spin-orbitals.

This way of thinking about the atom has the following implications for an atom
which forms only singly charged negative ions. (a) The energies I, and Al of
the atom may be thought of as the ionization energy and the electron affinity of a
valence orbital, respectively. (b) Variations of the charge of the atom, re-
garded as a thermodynamic system, in the range

Z-1 < n < Z + 1 (23)

may be thought of as occurring because of continuous variations of the charge in
the valence orbital. (c) For values of n in the range represented by relations
(23), the energy E(n, T) (Eq. 3) is a function of the charge in the valence orbital
only. This statement is justified by Koopmans' theorem. (d) Suppose that
the average charge in the valence orbital is represented by q, so that

q = +e for n = Z-1, q = 0 for n = Z, andq= -e for n = Z + 1,

where e is the electronic charge. At zero temperature, the energy and electro-
chemical potential of the atom may be thought of as the energy Eo (q) and the
electrochemical potential Muo (q) per unit charge of the valence orbital, respectively.
From the results of section 4, it is readily verified that for

q = C, Eo(q) _I, A (q) e-
q = 0, Eo (q)= 0, Mo (q) =- (I, + Al)/2c, (24)
q = - c, Eo (q) -A , IAo Mq + cod

These values suggest that Eo (q) and ,uo (q) may be represented by the approxi-
mate continuous functions given by the relations

I,1+ A, I, - AlF- q2V/21
e A(q) +2 2 [1- - (25)

and

deo (q) I, + A, I, - Al (q/e) (if;
Mo(q)= - dq - 2e 2 [1 - (q/e)2]'/2
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(e) It follows that, at zero temperature, the electronegativity of the atom may be
thought of as an orbital electronegativity xo (q) given by the approximate relation

deo I1 + A1 I1-Al (q/e)
dq 2e 2 [1 - (q/e)211/2 (27)

(I) Similar statements can be made about other types of atoms.
Expressions somewhat analogous to those represented by equations (25) and

(27) have been introduced heuristically by other authors"2 who expressed doubts
about the validity of the assumption that both e0 (q) and xo (q) are continuous
functions of the continuous variable q. In view of the present work, it is seen
that orbital electronegativity is obtained from basic quantum-thermodynamic
arguments and that, indeed, eo (q) and xo (q) are continuous functions of the
continuous thermodynamic variable q.
The preceding approach to the definition of electronegativity has been ex-

tended to atoms in molecules and solids. The results will be presented in future
communications.
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