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Part H o f  this three-part paper presents some of  the most important theorems 
that can be deduced from the four postulates o f  the unified theory discussed 
in Part L In Part IIa, it is shown that the maximum energy that can be extracted 
adiabatically from any system in any state is solely a function o f  the density 
operator ~ associated with the state. Moreover, it is shown that for any state 
of  a system, noneqmTibrium, equilibrium or stable equilibrium, a unique property 
S exists which is proportional to the total energy of  the system minus the 
maximum energy that can be extracted adiabatically from the system in com- 
bination with a reservoir. For statistically independent systems, p~vperty S 
is extensive, it is invariant during all reversible processes, and it increases 
during all irreversible processes. 

3. THEOREMS RELATED TO THE STABLE-EQUILIBRIUM 
POSTULATE 

This part  of  the paper presents some of  the most  impor tant  theorems related 
to the stable-equilibrium postulate. For  some theorems complete proofs are 
given either in the text or  in appendices; for some others only outlines o f  
the proofs are discussed. For  the remainder proofs are available in the 
literature. 

3.1. Energy Changes in Reversible Separable Processes 

An isolated system is by definition separable and its parameters are 
fixed. Its unitary processes are described by Eqs. (4) and (5), Part  I; they are 

1 Part I of this paper appeared in Found. Phys. 6(1) (1976). The numbering of the sections, 
equations, and references in this part of the paper continues from those in Part I. 

2 Massachusetts Institute of Technology, Cambridge, Massachusetts. 
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reversible and, by virtue of the time invariance of Tr(fi/t), they do not affect 
the value E of the energy. We will assume that the energy Tr(t3H ) is con- 
served for all processes in an isolated system. 

In general, the energy of a system can be altered during a unitary process 
by means of changes in parameters, namely by means of changes in H as 
a function of time. One such process that is described by Eqs. (4) and (6), 
Part I, alters the eigenvectors of t3 and the eigenvalues and eigenvectors of 
without affecting the eigenvalues of t3. 

Another involves cyclic changes in parameters, namely the initial and 
final values of the parameters are the same and, therefore, the initial and 
final Hamiltonians of the system are identical. 

A process involving Cyclic Changes in Parameters, whether unitary or 
nonunitary, will be denoted as a CCP process. In general, a CCP process 
results in a noncyclic variation of the eigenvectors of/3 and, therefore, non- 
cyclic changes of both the state and the energy of the system. CCP processes, 
whether unitary or nonunitary, play an important role in the subsequent 
development of our theory. 

3.2. Theorem 

In any class of states of a separable system that are interconnected 
by unitary CCP processes, the state of least energy is the stationary state 
for which the eigenvalues x~ of/~ are numbered in order opposite to that of 
the energy eigenvalues e~, namely 

xl > x 2  > ' "  > x ~  > -" for q < e2 < "'" < ek < "'" (9) 

The proof of this theorem is given in Appendix B. 

3.3. Theorem 

For a separable system for which the set {Ek} of the energy eigenvalues 
has no upper bound, any stable equilibrium state has the least energy of all 
the states that are interconnected with it by unitary CCP processes. 

The proof of this theorem is given in Appendix D. 
The restriction of this theorem to systems for which the set {e~} has no 

upper bound suggests a theorem of different form for other systems, such 
as, for example, pure nuclear spin systems. For simplicity and brevity we 
shall omit the set of theorems that apply to systems with bounded sets 
(ek}. In the context of Theorem 3.3, we simply assert that some of the stable 
equilibrium states of such systems are states of largest energy, and that they 
are associated with negative Kelvin temperatures (Section 3.16, Part IIb). 
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In all that follows only systems with sets {ek} that have no upper bound will 
be considered. 

It follows from Theorems 3.2 and 3.3 that for a stable equilibrium state 
rio the eigenvectors of  fi0 are the energy eigenvectors, and the eigenvalues 
xT~ ° are numbered in order opposite to that of  the eigenvalues ek, namely 

xl ° > x ~  ° > .'- > x ~  ° > . . .  for ~1 < e2 < "'" < e~ < "" (10) 

3.4. Adiabatic and Nonadiabatie Processes 

We shall call a process adiabatic if and only if its effects on each of the 
systems taking part  in the process could have been brought about by means 
of interactions with systems undergoing unitary processes. I f  this criterion 
cannot be satisfied, we shall call the process nonadiabatic. 

It  follows from Section 2.15, Part I, that any unitary process is adiabatic, 
although it will be shown (Section 3.28, Part  IIb) that some adiabatic 
processes are nonunitary. 

3.5. Work Interactions 

In an adiabatic process, interactions that alter the energy of a system 
will be called work. The measure of  work will be the change in energy of the 
system during the adiabatic process. 

I f  during a work interaction the energy E of a system decreases, the work 
is assigned a positive value and it is said that work is done by the system. 
Conversely, if during a work interaction the energy of a system increases, 
the work is assigned a negative value and it is said that work is received 
by the system. 

A separable system can do or receive work by means of changes in its 
parameters. These changes may be either noncyclic or cyclic. 

A separable system A can always do net work by means of net changes 
in its parameters. I f  the changes in parameters are cyclic, however, the system 
may or may no t  be capable of  doing work. For example, by virtue of  
Theorem 3.2, system A can do work reversibly starting from a nonequi- 
librium state and ending in a stationary state by means of a unitary CCP 
process. On the other hand, by virtue of  Theorem 3.6 below, a system in a 
stable equilibrium state cannot do work by means of an adiabatic CCP 
process. 

3.6. Theorem 

Starting from a stable equiblibrium state, a separable system cannot 
do work in any adiabatic CCP process. 
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In effect this theorem denies the existence of a perpetual motion machine 
of the second kind (PMM2), namely a device acting as a "Maxwellian 
demon." The proof  is given in Appendix E. 

3.7. Theorem 

From any state of a system the maximum energy that can be extracted 
adiabatically in a CCP process is the work done in a reversible adiabatic 
process that ends in a stable equilibrium state. Moreover, the energy change 
of a system starting from a given state and ending at a stable equilibrium 
state is the same for all reversible adiabatic CCP processes. 

Proof'. Let (W12) a be the work done in an adiabatic CCP process 
%2, reversible or irreversible, of a system starting from a given state A~ 
and ending in a state A2. Let (W~o)~ev be the work done in a reversible 
adiabatic CCP process ~ao of the system starting from the same state A1 
and ending in a stable equilibrium state Ao. We shall prove that (W~2) ~ 
cannot exceed (W10)rev. 

Starting with stable equilibrium state Ao, we shall subject the system to 
reversible adiabatic CCP process c~0t, the inverse of %0, and then to adia- 
batic CCP process cq2. The net work done by the system during the combined 
adiabatic CCP process ~ol + cq2 will be (Wm)~ev + (W1~)% By virtue of 
Theorem 3.6 this work must be nonpositive, namely 

(Wo~)]ev ÷ (W12)" ~< 0 (11) 

But since %0 is a reversible process, (WoOre v = --(W1o)rev and, therefore, 
relation (11) becomes 

(W12) a ~ (Wlo)~ev (12) 

Moreover, if ~12 was reversible and the end state A2 was a stable equilibrium 
state A~, then the work (Wl~)rev would have to satisfy the relations 

(Wls)~ev = --(Wsl)rev and (W~0re-~ ÷ (W10)~ev <~ 0 (13) 

and, therefore, by virtue of relation (12) and the stable-equilibrium postulate, 

(W~)~ev = (W~o)~ev (14) 

and state A, must be identical with state Ao. Equations (12) and (14) are 
formal statements of Theorem 3.7. 

This theorem implies that the quantity ( .W~0)aev is a function of the 
initial state A~ only and, therefore, that it is a property (a state function) 
of the system. We shall call this property the adiabatic availability ~. Since 
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it is an energy, the value of 7 j is given by an arithmetic mean of measurement 
results. Clearly it cannot exceed the energy of the system, and for a stable 
equilibrium state it is equal to zero (Theorem 3.6). 

3.8. Theorem 

The adiabatic availabity of any pure state is equal to its energy with 
respect to the ground state. 

The proof  of this theorem is the same as that of Theorem 2.18, Part I. 
From Theorem 3.8 it follows that a pure state other than the ground 

state cannot be a stable equilibrium state because the adiabatic availability 
of any stable equilibrium state is equal to zero (Theorem 3.6). 

The definitions given in Section 3.9 and 3.10 are necessary for the 
discussion of the property "available energy" that is disclosed by 
Theorem 3. l 1. 

3.9. Mutual Stable Equilibrium 

Two independent separable systems A and B are said to be in mutual 
stable equilibrium if the combined system AB is in a stable equilibrium state. 

It is evident that if two systems are in mutual stable equilibrium, each 
must be in a stable equilibrium state; but two systems each in a stable equi- 
librium state need not be in mutual stable equilibrium. 

3.10. Reservoir 

A reservoir is a special kind of a system that provides useful reference 
states for the definition of properties to be introduced later. It satisfies the 
following conditions: (1) It is an independent separable grand system with a 
set of energy eigenvalues {%} that have no upper bound; (2) its parameters 
are time invariant; (3) initially, it is in a stable equilibrium state; and (4) it 
consists of a large number of identical systems. 

3.11. Theorem 

The statement of Theorem 3.11 requires the following terminology. In 
process cq2 involving system A, reservoir R, and other systems designated by 
3;, the state of A changes from A1 to A2 without net changes in the parameters 
of A, the state of R from R1 to R2, and each system J( undergoes a unitary 
process which may or may not be cyclic. Because X undergoes a unitary 
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process, ~a~ is adiabatic for the combined system AR (Section 3.4), although 
it need not be adiabatic for A and R considered individually. 

The work done by AR in process c~2 , namely the energy decrease of AR, 
will be denoted by Wf2 in general, and by (PV~2)rev if the process is reversible. 
In terms of this terminology, the theorem is as follows: 

The work (Wf0)rev done in any reversible adiabatic process of AR in 
which A starts from A1 and ends in a state A 0 in mutual stable equilibrium 
with the reservoir is : (1) The same for all such reversible processes; (2) greater 
than any Wf2 for which either state A2 is not in mutual stable equilibrium 
with the reservoir, or the process ~1~ is not reversible, or both; (3) for a finite 
range of values of energy, independent of the initial energy of the reservoir; 
and (4) the same for all reservoirs in mutual stable equilibrium. 

The proofs of parts 1 and 2 of the theorem follow directly from 
Theorem 3.7 applied to the combined system AR. The proofs of parts 3 
and 4 follow directly from the lemma presented in Appendix F. 

The theorem implies that (Wf0)rev is a property of system A and 
reservoir R. We shall call this property the available energy with respect 
to a fixed reservoir and denote it by D. Thus, D~ of state A~ is given by the 
relation 

.Qx : (W~0)rev (15) 

Because it is an energy, the value of ~2 is given by an arithmetic mean of 
measurement results. 

In general, the available energy ~2~ of state A~ differs from the adiabatic 
availability 7Ja. For  example, if state Aa is a stable equilibrium state, T 1 
is equal to zero, whereas, in general, ~ is different from zero. Moreover, 
whereas T is always smaller than or equal to the energy of the system with 
respect to the ground state, ~ may in some cases be greater than the energy 
of the system. For  example, it is shown in Section 3.25, Part IIb, that for a 
pure state the available energy is always greater than the energy. Of course, 

can never exceed the sum of  the energies of system and reservoir. 

3.12. Theorem 

In any process of system A starting from state Aa and ending in state A~, 
the work Wf2 done by A in combination with reservoir R cannot exceed the 
negative of the change of the available energy of the system, namely 

W~2 ~< D1 -- D~ (16) 

The proof of this theorem follows directly from Theorem 3.11 and the 
definition of available energy. 
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3.13. Theorem 

In an adiabatic process of system A starting from state A~ and ending in 
state A2, the energy change (/71 --/?2) ~ cannot exceed the change s'21 -- 22 
of the available energy. 

Proof'. This process is a special case of that described in Theorem 3.12. 
Consequently, the work (W~2) a done in the process must satisfy the relation 

(W~2) ° ~< ~71 -- S?2 (17) 

Since, on the other hand, in an adiabatic process (Wlz) ~ satisfies also the 
relation 

( w l ~ )  o = ( E l  - E~)~ ( i s )  

it follows that 

( E l  - -  E2)  ~ ~< f21 - -  ~2~ (19) 

it  can be readily shown that the inequality sign in Eq. (19) applies only to 
irreversible processes. 

The available energy g? is an experimentally observable property of any 
system with few or many degrees of freedom in any state t~, which may be 
nonequilibrium, equilibrium, or stable equilibrium. An explicit expression 
for ~O in terms of other, more familiar quantities is given in Section 3.25, 
Part ilb. 

3.14. Theorem 

With respect to a reservoir R, if A and B are two independent separable 
systems in states with available energies f2A and DB, respectively, the available 
energy ~2~ of the combined system AB is equal to the sum of ~A and ~2~, 
namely 

X2AB = g2A + ~B (20) 

In other words, for independent separable systems available energy is an 
additive (extensive) property. 

Proof'. We shall assume, contrary to the theorem, that the available 
energy of the combined system AB differs from the sum of the available 
energies of A and B. Since available energy is the work done during a 
reversible process, a cycle may be devised in which given changes of state 
of the two systems are carried out in one direction while the systems are 
separated and in the other direction while they are combined. The direction 
of the cycle which restores the states of A and B may be selected so that net 



134 Hatsopoulos and Gyflopoulos 

positive work is done by the reservoir R, which is in a stable equilibrium state. 
Because this conclusion violates Theorem 3.6, Theorem 3.14 is justified by 
the absurdity of our assumption. 

The proof  of the theorem is not valid if A and B are not independent 
separable systems. To show this, we suppose that changes of state from A1 
and B1 to Az and B~ are carried out while A and B are combined, and from 
Az and B2 back to A1 and B1 while A and B are separated. If states A1 and B~ 
are correlated while A and B are combined, no assurance exists that the corre- 
lations would be completely reestablished by the two independent processes 
that restore state A2 to A1 and state B2 to B~, respectively. Hence, the mere 
fact that each system has been restored to its corresponding initial state 
does not imply that the combined system has also been restored to its initial 
state unless A and B are independent separable systems. 

3.15. Theorem 

For any system in any state, a property S exists that remains invariant 
in any reversible adiabatic process, that increases in any irreversible adiabatic 
process, and that is additive for independent separable systems. 

Proof'. The energies of two independent separable systems are additive 
because for separable systems the Hamiltonian operators are additive and 
for independent systems the density operator of the combined system is 
given by the direct product of the density operators of the two systems 
(Theorem 2.12, Part I). Since available energies are also additive for inde- 
pendent separable systems (Theorem 3.14), so is the difference between 
energy E and available energy D. In any process that does not alter the degrees 
of freedom of the system, it follows that an additive property S can be defined 
such that its infinitesimal or finite change D S  between any two states is 
given by the relation 

D S  = cRD(E -- 9 )  (21) 

where cR is an arbitrary positive constant whose value will be selected once 
and for all, 

E = Tr(/3/~) 

and if2 is defined with respect to a standard reservoir which, along with the 
value of cR, fixes the units for measuring S. Since both E and f2 are expec- 
tation values, S is also an expectation value. 

For  a reversible adiabatic process the conservation of E and 
Theorem 3.13 require that the work done be equal to both the change ( - - D E )  
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in energy and the change (--DO) in available energy. Hence, by virtue of 
Eq. (21) the corresponding change (DS)rev satisfies the relation 

~Z 

(DS)rev = 0 (22) 

On the other hand, for an adiabatic process that is not reversible the 
work done is again equal to the change ( - - D E )  in energy but smaller than 
the change (--DO) in available energy. Hence, by virtue of Eq. (21)it follows 
that in such a process S increases, namely 

(DS)~r > 0  (23) 

The derivation of Eqs. (21)-(23) constitutes the proof  of Theorem 3.15. 
We shall now show that D S  must be of the form 

D S  = cD Tr(t3 In fi) (24) 

Contrary to this proposition, let D S  be of a form different than that of 
Eq. (24). Then by virtue of Theorem 2.16, Part I, either D S  is not invariant 
in some unitary processes (for both fixed and time-dependent parameters), 
or it is not additive for independent separable systems, or both. But all 
unitary processes are reversible adiabatic and, by virtue of  Eq. (22), involve 
no change in DS. Moreover, by virtue of Eq. (21), S is additive for inde- 
pendent separable systems. It follows that D S  could not be of a form other 
than that given by Eq. (24). 

Because the processes considered in the definition of D S  [Eq. (21)] do 
not alter the degrees of freedom of the system and S is an additive property, 
the value o r S  can be at most the sum of c Tr(t3 In t3) plus a linear form of the 
numbers of particles of constituent species of the system. The constant 
coefficients of the linear form can be determined as follows. If  no reversible 
adiabatic process exists which interconnects any two states of the system 
with differing numbers of degrees of freedom, then we are at liberty to assign 
to each coefficient any value, including zero. On the other hand, if reversible 
adiabatic processes (unitary or nonunitary) exist which interconnect any 
two states of the system with differing numbers of degrees of freedom, then 
each coefficient should be determined experimentally. But by virtue of the 
third law 3 of classical thermodynamics it can be readily verified that each 
coefficient must be equal to zero. 

As a result of these considerations we conclude that S must be of the 
form 

S = c Tr(t3 in fi) (25) 

a For brevity the third law will not be discussed in this paper. 



136 Hatsopoulos and Gyftopoulos 

The fixed constant c can be determined experimentally from measurements 
of available energy. Its value proves to be --k, the negative of the Boltzmann 
constant (Section 3.26, Part Ilb). 

It can be shown that the property S is equal to zero for any pure state 
and is greater than zero for any state that is not pure, namely for any mixed 
state. No state has a negative value of S. 

3.16. Theorem 

For any process experienced by an independent separable system having 
fixed values of energy, numbers of particles, and parameters (namely a 
process of an isolated system) the quantity S must either increase or remain 
invariant. 

Proof'. Equations (22) and (23) apply to all adiabatic processes, 
including those for which the change in energy and, therefore, the work are 
equal to zero. It  follows that they apply to spontaneous changes in state of 
an isolated system. In terms of symbols we may write 

(DS)isol > 0 (26) 

Relation (26) represents the principle of nondecrease of S. 
Additional theorems related to the stable-equilibrium postulate with 

special emphasis on stable equilibrium states are presented in Part IIb. 

A P P E N D I X  B: P R O O F  OF T H E O R E M  3.2 

Given a petit separable system A in state At', let the complete sets of 
eigenvalues and orthonormal eigenvectors of the density operator t3 be 
{ y~} and {v~}, respectively, and the energy 

where 

El' = Tr(~ / t )  = ~ ykH;~ (B.1) 
k 

H;~ = (v~, Hv~) and Yt > Y2 > "'" > Yk > "'" (B.2) 

State At' can be connected by means of a unitary CCP process to state 
A1 in which the diagonal elements Hkk of the Hamiltonian matrix [H] have 
the same values as the elements H~k of the initial matrix [H'] but are numbered 
in order opposite to that of the y~'s, namely 

H n  < H22 < "'" < H ~  < "" (B.3) 
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Such a process changes the set of eigenvectors {vk} to the set {w1~} but does not 
alter the set of eigenvalues {Yk}. The matrix of the unitary operator that 
relates {w~} and {vk} is given by the identity matrix with its columns rearranged 
in the same manner as the rearrangements that must be performed in the 
sequence H~I, H£~ ,..., H£~ .... in order to achieve the ordering given by 
relations (B.3). 

As a result of the process just described, the energy E~ in state A1 will 
be given by the relations 

E~ = ~ ykHk~ ~ E~' (B.4) 

The proof  of the inequality between E1 and E~' is given by Hardy et al. (9) 
State A, can be connected by means of a unitary CCP process to stationary 

state A~ in which the energy eigenvalues ek are numbered in ascending order, 
namely 

el • ~'2 < "'" < 6/a < "'" (B.5) 

Such a process changes the set of eigenvectors {wl~} to the set of energy 
eigenvectors {u~} but does not alter the set of eigenvalues {Yk}. Hence, upon 
denoting the eigenvalues of the density operator for stationary state A~ 
by x t ,  x2 .... , x~ ..... it follows that 

and 

xl = Y l ,  x2 = y ~  ..... xk =Y k  .... (B.6) 

xl > x2 ~> "'" > xk > "'" (B.7) 

The matrix elements Um~ of the unitary transformation that relates {wk} 
and {uk} are given by the relations 

Um~ -: ( w ~ ,  Un) for all m and n (B.8) 

They satisfy the expressions 

* = U,~kU,~k = S ~  (B.9) UnzU~7~ S~ and ~ * 

As a result of the unitary CCP process from A1 to A~, the energy E~ in 
stationary state A~ will be given by the relation 

k 
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Moreover, the diagonal elements H~k and the energy E1 in state A1 can be 
expressed in the forms 

H ~  = ~ e~ I U~ [ ~ (B.I1) 
l 

k k 

E1 = Z x~ Z ~ I U~;~ I ~ (B.13)  
k 

where use has been made of relations (B.6). 
Karamata (~°) has shown that relations (B.7), (B.9), and (BAD are the 

necessary and sufficient conditions for the quantities E~ and E~ [Eqs. (B.10) 
and (B.13)] to satisfy the inequality 

E. ~< E1 (B.14) 

For a grand system, the preceding sequence of unitary processes and 
conclusions can be repeated, except that now the rearrangements will be 
performed within each Hilbert space o~ of the overall sum Hilbert space. 

These results prove that in any class of states of a separable system that 
are interconnected by unitary CCP processes, the state of least energy is that 
stationary state for which the eigenvalues x~ of t3 are numbered in order 
opposite to that of the energy eigenvalues e~ [conditions (B.5) and (B.7)], 
namely that Theorem 3.2 is valid. 

APPENDIX C: WORK ELEMENT 

The concept of a weight in a gravity field, which was introduced by 
Gibbs, plays an important role in the definition of work interactions of 
classical thermodynamics, m) Its essential feature is that it is a system for 
which level in the gravity field is the only independent property. 

It plays an important role in the present theory as well, but here it 
must be expressed in quantum mechanical language. To this end, we shall 
define a work element as a system that satisfies the following conditions: 
(1) It is an independent, separable, petit system having one (external) param- 
eter only; (2) at any instant it is in a stationary state (Section 2.17, Part I); 
(3) it has a set of energy eigenvalues {e~} without upper bound; and (4) each 
e~ is proportional to a single-valued function f ( f i )  of the parameter fi, which 
function is common for all e~'s, namely 

~ = a~f(fi) for all m (C.1) 
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where am is a constant. Examples are a perfect gas in a stationary state 
(stable or nonstable) in a container with volume as the only parameter, and 
an electron in a stationary state (stable or nonstable) in a one-parameter 
potential well. Given the set {x~} of the eigenvalues of its state, the energy E 
of a work element becomes a sole function of the value of the parameter 
because 

E = .~, Xm%, = (~Xma~ro)f(fi) (C .2 )  
77~ 

Given the eigenvalues of the initial state Ct and a unitary process between 
states Ct and C~ brought about by a gradual change in the parameter from 
fit to/32 , the final state C~ of a work element is determined solely by the value 
/32 for the following reasons: (1) By virtue of Eqs. (4) and (6) it can be shown (12) 
that the final density operator has the same eigenvalues as the initial density 
operator, and has eigenvectors that are the energy eigenvectors corresponding 
to the value /32 ; (2) the energy eigenvectors are determined solely by/32 ; 
and (3) by virtue of Eq. (C.1) the energy eigenvalues are determined solely 
by [32. Conversely, under the same conditions and by virtue of Eq. (C.2) 
the state of a work element is a sole function of the value of the parameter/3. 
Finally, it is evident that as a result of cyclic gradual changes of its parameter, 
a work element is restored to its initial state, namely it undergoes a cycle. 

Work elements are used in the proofs of Theorems 3.3 and 3.6 that are 
given below. 

A P P E N D I X  D:  P R O O F  O F  T H E O R E M  3.3 

Given a separable system A in a stable equilibrium state Ao, let the 
complete sets of eigenvalues and orthonormal eigenvectors of the density 
operator fi0 be {xk °} and {u~}, respectively, and let the energy be E 0 . 

Suppose that E0 is not the smallest of the energies of all the states that 
are interconnected with Ao by unitary CCP processes. By virtue of 
Theorem 3.2 [Eqs. (B.5)-(B.14)] a unitary CCP process c~o~ can connect Ao 
to a stationary state A, for which xl °, x2°,..., xk°,..., the eigenvalues of the 
density operator #go in the energy representation, are numbered in order 
opposite to that of the energy eigenvalues q ,  E2 .... , es~,..., and for which the 
energy E~ is less than Eo [Eq. (B.15)]. The energy E~ -- E0 can be transferred 
to work element C (Appendix C), which undergoes a gradual unitary process 
Ylz and changes its state from C1 to C~. 

Subsequently, the energy E~ -- E0 can be transferred back from C to A 
by means of a gradual unitary process y2t, the inverse of ?'t2, for the work 
element C and a unitary process ~ f  for system A that connects A~ to another 
state A s . By virtue of  Eqs. (B.8), (B.9), and (B.13) a large number of states 
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exist that have energy E o and that are connected to state At by unitary CCP 
processes. It follows that ~ i  can be selected so that Af v a Ao. 

As a result of  the combined processes c~0~ -5 C~e~ for A and Y~2 + ~'21 
for C, stable equilibrium state A 0 has been altered to state As while the work 
element has undergone a cycle. This result, since it contradicts the definition 
of a stable equilibrium state, is absurd. Therefore, any stable equilibrium 
state has the least energy of all the states that are interconnected with it by 
unitary CCP processes. 

A PPENDIX E: P R O O F  OF T H E O R E M  3.6 

Given a separable system A in a stable equilibrium state A0 having 
energy E0, let an adiabatic CCP process aos for A exist in which the system 
changes to state As as it does work Eo -- Es .  The work is received by a work 
element C (Appendix C), which undergoes a gradual unitary process ~'lz 
and changes its state from C1 to Ca • Since by virtue of Theorem 3.3 process 
c~0~ cannot be unitary, it alters the eigenvalues of the density operator for A0 • 
On the other hand, the energy Eo -- E~ can be used in a unitary CCP process 
c%~ for A to change that state from As to Ab while the work element C under- 
goes a gradual unitary process ~'2~, the inverse of ~'~2 • The eigenvalues of the 
density operator for Ab are the same as those for As and, therefore, different 
than those for A0 • 

As a result of the combined processes c%s + ~b for A and 712 ÷ 721 
for C, stable equilibrium state A0 has been altered to state A~ while the work 
element has undergone a cycle. Since this result contradicts the definition of 
a stable equilibrium state, it is absurd. 

We conclude that starting from a stable equilibrium state, a separable 
system cannot do work in any adiabatic CCP process. 

A PPENDIX F: L E M M A  A B O U T  ADIABATIC AVAILABILITY OF 
RESERVOIRS 

Given two reservoirs R and R' in states R1 and RI' in mutual stable 
equilibrium and having energies ER and ER,, respectively, the minimum 
amount of work required to change states R1 and RI' to stable equilibrium 
states R2 and R~' having energies ER + AER and ER, -- AE~,  respectively, 
is equal to zero. 

Proof. Consider systems X and Y in states X1 and I11 in mutual stable 
equilibrium and having energies Ex and E r ,  respectively. By virtue of the 
stable-equilibrium postulate and Theorem 3.7, a change of states from X1 and 
Y1, without net changes in both parameters and degrees of freedom of both 
X and Y, to stable equilibrium states X2 and Y2 having energies Ex + AE 
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and Er -- AE, respectively, results in a change A~Jxr of adiabatic availability 
given by the relation 

zJ~xr  = (aT"x~/aE)AE + O[(~E) 2] (F.1) 

where O[(AE) ~] is of  order (zJE) ~. 
Let reservoirs R and R' consist of  N systems X and Y, respectively, and 

the states of R and R' be altered in a manner analogous to that of X and Y 
above so that the energy transfer AER from R'  to R is given by the relation 

AER = N AE (F.2) 

Then, the change A WRe' of  adiabatic availability, and, therefore, the minimum 
amount  of  work required for this change of states, is given by the relation 

A~RR, : NZJ~xr  -- @~x~/~E) AER + O[(AER)2/NJ (F.3) 

or, since for a reservoir N is very large (Section 3.10), 

AgJRR " ~ (a~xr/aE) AER (F.4) 

On the other hand, by virtue of  Theorem 3.7, AtPRR , > 0 for both  AER > 0 
and AER < 0 and, therefore, Eq. (F.4) requires that 

e~xr /~E - - 0  and AWRR, = 0 (F.5) 

Equation (F.5) is the formal proof  of  the lemma. 
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