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This paper carefully explores the relations among the statistical ensembles, systems, and
states (pure and mixed) of quantum theory. By systematically contrasting the classical
and quantal realizations of a general paradigm for a probabilistic physics, important dis-
tinctions are exposed both in statics and dynamics. Included are observations concerning
the intrinsic ambiguity of the quantum-state concept and the peculiarly quantum property
of dynamic indivisibility. It is concluded that the conceptual gulf between classical states
and quantum “states” is wider than commonly assumed.

INTRODUCTION

THE dominant theme of the quantum theory
—though many textbooks do not emphasize
it sufficiently—is that all its causal statements
are probabilistic. In other words, the epistemic
rule of correspondence! which provides the em-
pirical meaning of quantum-theoretical states
involves probabilistic concepts in an essential
way. This hallmark of quantum theory must be
borne in mind constantly, if the physical sig-
nificance of the theory is to be understood at all.
Moreover, it is of fundamental importance to
recognize that the probabilistic rule alone is in-
sufficient to link abstract states with empirical
experience. Indeed pure probability theory is
itself a formidable collection of abstruse com-
structs requiring further rules of correspondence
of its own. The situation is wholly analogous to
that prevailing in geometry, where pure geom-
etry is converted to physical geometry by ap-
pending familiar operational definitions involv-
ing straightedge and compasses. In the case of
probability theory, the required connections are
implicit in established practices of experimental
science. Especially to be noted is the well-known
identification of physical probability as relative
frequency in a statistical ensemble. The appro-
priateness of the frequency definition of prob-
ability is an old philosophic problem, but we are
not concerned with it here. We simply accept
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uncritically the fact that in all scientific applica-
tions of probability theory, the construct prob-
ability is epistemically linked to statistics.? Ac-
cordingly, if quantum theory is to be understood
as a physical science, it is absolutely essential
to remember that its primary connection to the
empirical world is through statistical ensembles.
To ignore the statistical aspect of quantum
theory is to dismiss much of its relevance to
actual physical experience.

Nevertheless, it has proved intuitively useful
in ordinary quantum-theoretical applications to
think of the state vector (or its wavefunction
representative) as belonging to a single system
at a single time in the same way that states be-
long to individual systems in classical mechanics.
Thus the jargon of modern physics easily induces
one to regard the phrase “an electron in state ¢~
as merely the quantum analog to the classical
expression “an electron in state (q,, p,),” in spite
of the fact that the former refers physically to
statistics of measurement results upon an en-
semble of identically prepared electrons® whereas
the latter just means that a single (classical)
electron has position ¢, and momentum Po.
Superficially, this common phraseology seems
innocent enough; indeed one might be disposed
to think that a theoretician could use it unre-
servedly without contradiction so long as he
remembered to switch to the correct statistical

2R. von Mises, Mathematical Theory of Probability
and Statistics (Academic Press Inc., New York, 1964),
pp. 43-49; cf. also H. Margenau, op. cit., Chap. 13.
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measured and reprepared, or any combination of these
two extremes, Cf. H. Margenau, Phil. Sci. 4, 352 (1937).
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meaning of y at the conclusion of his arguments
and calculations.

It is the purpose of the present study to expose
certain logical weaknesses inherent in the draw-
ing of structural parallels between classical and
quantum physics and hence to demonstrate that
a quantum theorist may not in every context
relate state vectors to single systems in the classi-
cal manner described above. The linguistic ex-
tension of ¢ from its role in describing ensem-
bles to its further function as the state of a
single system has given birth to monumental
barriers to the understanding of quantum theory
as a rational branch of natural philosophy. Prob-
lems connected with the general theory of mea-
surement*—the nature of quantum measurement,
wave-packet reduction, concepts of compati-
bility and simultaneous measurement—are es-
pecially aggravated by this popular convention
that the state of an individual system is repre-
sented by .

Thus, in our opinion the material to be sur-
veyed below forms the essential prelude to any
serious study of the basic philosophic issues as-
sociated with quantum theory. We have at-
tempted to show elsewhere®® that problems
concerning measurement in quantum physics can
be sharpened, and sometimes resolved, by ac-
cording proper attention to those basic physical
characteristics of quantum states with which the
present essay deals.

I. MINIMAL AXIOMATIC STRUCTURE OF
A PROBABILISTIC PHYSICS

Rather than devising, in the customary way,
artificial verbal analogies between the constructs
of classical and quantal physics (e.g., the afore-
mentioned state (g, p,) and “state” y), we
contrast the two kinds of theories in a manner
which reveals formal differences as readily as
the standard comparisons indicate formal simi-

4The extensive literature of quantum measurement
theory includes these papers published in this JournaL:
E. P. Wigner, Am. J. Phys. 31, 6 (1963); A. Shimony,
Am. J. Phys. 31, 755 (1963).

571. L. Park, “Quantum Theoretical Concepts of Mea-
surement,” Part II, Thesis, Yale University (1967),

8]. L. Park and H. Margenau, “Simultaneous Mea-
surability in Quantum Theory” (to be published).
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larities. To facilitate such a comparison of classi-
cal and quantal statistical physics, it is useful to
consider an abstract paradigm theory represen-
tative of a probabilistic physical theory in gen-
eral. As in all physical theories, the primitive
idea of this prototype theory is the study of the
numerical results {a,}, {b;}, -+ - of measurements
of observables a, b, - - - performed on a physical
system S. It is the goal of the theory to in-
corporate these measurement results into a
causal framework, i.e., information about present
measurement results should determine similar
information about future measurement results.
The defining property of the present model
theory is the fact that this information has a form
related to the probabilities of the measurement
results. Hence what is actually studied is the
statistics of the results of measurements on the
member systems of ensembles of identically pre-
pared replicas of the physical system of interest
S. In the theory, an ensemble is characterized at
a given time by the arithmetical mean values
(expectation values) of measurement results for
the various observables, i.e., by the “functional”
< a> whose “domain” is the set of observables.
In such a theory the causal nexus links the values
of <a> at different times for every a.

The essential axioms which typify a statistical
physical theory may be summarized as follows:

P1: Mathematical objects A, B, - - - correspond
to observables a, b, « -

P2: For every ensemble of identically pre-
pared systems there exists a functional
m.(A) such that for every pair (A, a),

mt(A) = <a>,,
the arithmetic mean of the results of «a
measurements performed at time t rela-
tive to the preparation of each member
system.

P3: For every kind of physical system (ie.,
system of interest plus its relevant en-
vironment) there exists a causal law re-
lating the forms of the mean value func-
tional at different times.

Later more definite content is ascribed to these
rather vague statements. First, however, we must
review an important scheme for the classification
of statistical ensembles especially emphasized by
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von Neumann.” This classification hinges on the
concept of ensemble homogeneity, a property
which ultimately depends on the mathematical
character of measurement statistics associated
with the ensemble. In particular, it is always
possible to conceive of many subdivisions of a
given ensemble into subensembles; these sub-
ensembles must themselves be bona fide statistical
ensembles, i.e., they must each contain an “effec-
tively infinite” number of systems so that the
frequency definition of probability may still be
used. The homogeneity of the original ensemble
is determined by comparing the statistical char-
acteristics of such subensembles. This process of
subdivision is of course a mental operation based
on statistics of measurement results; indeed it
should always be remembered that the ensemble
concept includes even the case of a single system
in a temporal sequence of measurements and
repreparations. Most ensembles are mixed, in the
sense that the subensembles into which they may
be grouped are statistically distinct; there exist,
however, completely homogeneous, or pure,
ensembles for which every subdivision yields
subensembles all statistically identical to the
original. Mathematically, a mixed ensemble is
characterized by a mean value functional m(A)
such that there exist distinct functionals m(A),
my(A) in terms of which m(A) may be ex-
pressed as follows:

m(A)ﬁ: wymy (A) + wymy(A),wy,w, > 0,

where w;,w, denote the respective fractions of
the systems in the original ensemble present in
subensembles 1 and 2. (Clearly, w; -+ w, = 1.)
If, on the other hand, for a given m(A) there do
not exist distinct m;(A),my(A) such that m(A)
= wym(A) + wymy(A), the ensemble char-
acterized by that m(A) is of the pure, or homo-
geneous type. As we see later, it is the latter
type of ensemble which, due to its maximal order
and uniformity, may in some cases provide a
means to extract from an initially probabilistic
theory (one dealing basically with ensembles
and statistics) a plausible state concept appli-
cable to single systems in the classical sense, i.e.,

7]. von Neumann, Mathematical Foundations of
Quantum Mechanics, Eng. transl. by R. T. Beyer (Prince-
ton University Press, Princeton, N.J., 1955), pp. 295-313.
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a state concept such that any physical system
considered at a given instant may be regarded
without contradiction as having a definite state
at that instant.

To exhibit a simple realization of the general
paradigm above and to exemplify the concept of
ensemble homogeneity, it is instructive to ex-
amine classical statistical mechanics from an
unusual perspective which disregards the origi-
nal purpose of that classical theory as a mechan-
ical explanation of thermodynamics. That is, we
are not interested in the Gibbsian imaginary
ensemble of replicas and do not adopt the usual
postulate which connects averages over that
ensemble with thermodynamic parameters as-
sociated with the single system of interest. In-
stead, we consider a real ensemble (either an
aggregate of identically prepared systems upon
which measurements are performed or an alter-
nating temporal sequence of preparations and
measurements upon a single system, or a com-
bination of both) and the collectives of measure-
ment results obtained by real measurement op-
erations upon its member systems. Moreover,
assume that nothing is known about Newtonian
properties or states of single systems. From this
point of view, the sole purpose of classical statis-
tical mechanics is to regularize within a causal
framework purely probabilistic information
about measurement results; hence the theory is
a realization of the above paradigm and may be
summarized as follows:

P1C: Functions A(q,p), B(q,p), -++ whose
domain is phase space correspond to
observables a, b, --- [phase space has
for coordinates the position (q), and
momentum (p) components of the sys-
tem of interest.]

P2C: For every ensemble of identically pre-
pared systems there exists a mean value
tunctional m,[A(q, p)]. Every m; may
be expressed in terms of a corresponding

function p:(q, p) (the density-of-phase)

as follows:

m(A) = [ dq [ dpplq.p)A(qp).

(It can be shown that p = 0, p 5= 0,
and [ dq fdpp = 1.)
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P3C: For every kind of physical system,
there exists a function H(q,p) (the
Hamiltonian) which determines the
causal evolution of m, via the following
law (Liouville’s equation):

Ot _ 0 (OH Op  OH Op ) _
?{""2 <8q op op oq ) {H, p,

where 3 denotes summation over all
conjugate pairs (g, p).

The pure and mixed ensembles of this theory
are easily identified by combining P2C with the
general definitions of pure and mixed. In terms
of the density-of-phase function, an ensemble
characterized by p(g, p) is pure if there do not
exist distinct (monzero) functions p™(q, p),
p®(q, p) such that

p(q.p) =wip® (q,p) 4wz p® (q.p)
1wy, ws, > 0.

Now, it is obvious from analytic geometry con-
siderations that any function p(q, p) whose sup-
port (ie., that part of the domain for which the
function is nonzero) may be divided into two
regions R, and R, can indeed be written as a
linear combination of distinct functions p®, p®
by letting p©(p®) be proportional to p for
points (g, p) in R;(R,) and zero for points in
Ry (R,). Thus the support of a pure p(q, p) must
be indivisible, i.e., a single point of phase space,
say (o, Po). The generalized function which sat-
isfies this requirement plus the normalization
condition f dq f dp p(q, p) = L1 is just the Dirac
delta:

p(q,p) =8(q — qo)d(p — po)-

This is therefore the general form of p for the
pure ensembles of classical statistical mechanics;
particularly to be noted is the correspondence
between these pure ensembles and the points
(4o, po) of phase space, a correspondence which
will play a central role in subsequent develop-
ment of a state concept applicable to a single
system at a single time. Finally, the mixed en-
sembles of classical statistical mechanics are
simply those represented by density functions
not in the above pure form.
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II. AUGMENTATION OF THE MODEL THEORY
TO INCLUDE A STATE CONCEPT

The minimal axiomatic structure (P1, P2, P3)
outlined above for an intrinsically probabilistic
physical theory does not mention the concept of
state. The omission was deliberate, for the use-
tulness of the state concept in physics lies in its
reference to individual systems and its participa-
tion in the scheme of general causality (initial
state of a system implies final state of that system
via physical laws). Within the purely statistical
model alone, such states play no role. There is,
however, the possibility that they might be
added somehow to that paradigm, provided the
supplementation yields a consistent logical struc-
ture. It is demonstrated below that the concept
of ensemble homogeneity provides both a suit-
able means for generating such a supplemental
postulate and a touchstone to check for ambigui-
ties or inconsistencies within a theory thus modi-
fied.

To motivate this general supplementation pro-
cedure, let us first reconsider classical statistical
mechanics in the special form given above,
where the axiomatic structure (P1, P2, P3) does
not involve a priori any state concept for single
systems. It is, however, well known that such a
concept can indeed be consistently appended to
this structure, In fact, the usual theoretical de-
velopment of statistical mechanics begins with
the classical states (q,, p,) and the Newtonian
laws which govern their causal evolution;
p(g, p) is then defined so that & dgq f*2 dp
p(q, p) equals that fraction of an ensemble
whose systems have classical states (g, p) in the
phase space region {(q, p)|qe(qy, q2), pe(p1, P2) )
and Liouville’s equation (P3C) is derived by ap-
plying classical mechanics to each member sys-
tem of the ensemble.

In the present context, we are interested in
the opposite procedure, viz., extracting from an
originally statistical theory a consistent state con-
cept for single systems. Thus in statistical me-
chanics the p(q, p) is to be thought of initially
only as characterizing an ensemble in toto and
not as being formed by counting numbers of
elements “really in” various -classical states
(q, p). The latter interpretation is what we
want to “discover” from an analysis of measure-
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ment statistics associated with the ensembles.
The fundamental question to be posed, then, is
the following: Can an ensemble, described by
p(g, p), be construed unambiguously as con-
sisting of clements to which some meaningful
state specification may be assigned individually?

For classical statistical mechanics, the affirma-
tive reply comes about as follows. Consider first
the pure ensemble. Since, by definition, every
division, or selection, produces subensembles
statistically identical to each other and to the
original, the pure ensemble provides the natural
starting point for any additional postulate about
individual states. Indeed, the homogeneity under
division exhibited by the pure ensemble p(g, p)
= 3(qg — qo)d(p — p,) strongly suggests a
supplemental postulate which assigns to each
member system of such an ensemble a state
(g Po), which may be thought of as possessed
by the individual system. In classical statistical
mechanics, the fact that observables are repre-
sented by functions A(q, p) strengthens this sug-
gestion; for thoughtful analysis clearly indicates
that if for every A(q, p), m(A) = A(q,, p.) [as
is the case when p = 3(q — ¢,)d(p — p.)1, the
only reasonable definition for the possessed state
of an individual system is the traditional phase
space point (g., p,) (or an equivalent specifica-
tion in terms of the associated values of other
phase functions).

This observation is, however, not yet sufficient
to warrant inclusion of the proposed supple-
mental postulate; mixed ensembles have yet to
be considered. Since mixed ensembles are char-
acterized by reducibility to distinct subensem-
bles and pure ensembles permit the unambigu-
ous assignment of individual states, the funda-
mental question posed earlier may be replaced
by another: Is the reduction of a mixed ensem-
ble to a set of pure subensembles unique? If so,
any ensemble may be consistently interpreted as
a collection of systems individually described by
definite states; if not, the proposed assignment
of states to single systems is ambiguous and
therefore physically meaningless.

In classical statistical mechanics, this reduc-
tion to pure subensembles is represented mathe-
matically by expressing a general p(g, p) as a
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“sum” of 8(q — ¢,)8(p — Po):

p(q,p)
= quof Ape ¢(qo Po)d(q — G0)d(p — Po)-

Necessarily, ¢(q, Po) = p(qo» Po), a unique
solution. Therefore, every member of a classical
ensemble may be unambiguously assigned a
classical state (q,, p,) at any given time.

As noted above, the present discussion of
statistical mechanics has proceeded retrograde to
the traditional development. The ensemble and
measurement statistics have been regarded as
primitive, while the notion of state has been
sought through an analysis of the over-all theo-
retical structure of the ensemble, in contrast to
the standard procedure of forming ensembles
from systems in mechanical states defined from
the beginning, What has been done might be
described rather crudely as the extraction of
classical mechanics from statistical mechanics,
instead of vice versa. More accurately, a study
of the structure of classical statistics has shown
that the state concept of classical mechanics may
be “derived” by supplementing statistical me-
chanics with an additional state specification
postulate, as opposed to the historic procedure
of constructing statistical mechanics as the union
of classical mechanics and statistics. To justify
fully the identification of phase space points
(9o po) as states, it is of course also necessary
to prove that pure ensembles evolve into pure
ensembles through Liouville’s equation. This
proof is not difficult; one simply demonstrates,
by direct substitution, that p(#) = 8[q — Q(%)]
d[p — P(t)] satisfies the Liouville equation,
where Q(t), P(t) are the values of the canonical
variables which evolve from their initial counter-
parts Q(0) = ¢q,, P(0) = p, via Hamilton’s
equations. To summarize, the concept state (of
a single system at a single time) may be un-
ambiguously attached to statistical mechanics as
a fourth postulate:

P4C: Every system is always in a state repre-
sented by some point (g, p,) of phase

space.

The preceding discussion of classical statistical
physics was given to illustrate the possibility of
and the method for extracting the individual
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state concept from a theory initially concerned
only with ensembles. As explained at the outset,
the motivation for such an analysis comes from
quantum theory, a discipline for which any sensi-
ble discussion of the state concept must proceed
from the root notion of statistical ensemble owing
to the intrinsic probabilistic nature of the theory.
Thus the proper approach to the meaning of
states in quantum theory is along the lines of the
foregoing “reverse” development of statistical
mechanics,

To study critically the nature of quantum
states, we must therefore ascertain whether or
not quantum theory, like statistical mechanics,
is a realization of the general model given earlier
(P1, P2, P3) augmented by a fourth postulate
of the following form:

P4: Every system is always in a state repre-
sented by an element belonging to a set
of mathematical objects which correspond
to the pure ensembles of the theory.

The logical admissibility of P4 to any given
theory always depends on the exact content of
P1-P3. In particular, the state concept will be
unambiguous if and only if the resolution of a
general mixed ensemble into pure subensembles
is unique. Moreover, if the state identification is
to be physically meaningful, initially pure en-
sembles must retain their homogeneity under
causal evolution.

III. IS QUANTUM THEORY A REALIZATION
OF THE AUGMENTED PARADIGM?

At first glance, the augmented model seems
tailor made for quantum theory; this should be
no surprise, since it was obviously inspired by
the standard axiomatic pattern of quantum-
mechanics texts. However, to avoid jumping to
conclusions, a stepwise analysis of the strictness
of analogy between quantum theory and the
general paradigm is in order. Accordingly, the
postulates of quantum theory are scrutinized one
by one and with an alertness to their consistency
and interdependence.

P1Q: The linear Hermitian operators A, B,
- on Hilbert space which have com-

plete orthonormal sets of eigenvectors
correspond to physical observables
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a, b, ---. If operator A corresponds to
observable a, then the operator F(A)
corresponds to observable F(a), where
F is a function.

For every ensemble of identically pre-
pared systems there exists a real linear
mean value functional m.(A) defined
on the Hermitian operators.

Superficially, P1Q and P2Q seem almost too
vague to have significant consequences. The
vagueness is an illusion. In fact, P1Q and P2Q
imply many well known features of quantum
theory. In particular, it follows that every m,(A)
may be expressed in terms of a corresponding
operator p, (the density operator) as follows:
my(A) = Tr(p:A). (It can be shown that p is
Hermitian, positive semidefinite, and that Trp
= 1.) Moreover, P1Q and P2Q imply that the
probability for an @ measurement to yield a re-
sult other than an A eigenvalue is zero. For a full
discussion of this and other theorems, see Ref. 6.

There are several ways to express the dynam-
ical postulate of quantum theory; perhaps the
tollowing version is best in the present context
since we are specifically interested in contrasting
quantum theory with classical statistical me-
chanics.

P2Q:

PQ3: For every kind of physical system, there
exists an Hermitian operator H (the
Hamiltonian) which determines the
causal evolution of m, via the following
law:

ih (0ps/0t) = Hp — pH = [H, p].

P1Q, P2Q, and P3Q make up the axiomatic
core of quantum theory; all the statistical results
of quantum physics are derivable within this
framework. Thus while a rather Procrustean re-
versal of foundations and consequences was re-
quired to force classical statistical mechanics into
our model, quantum theory fits naturally. What
seemed to be a “reverse” development in the
classical case is the only sensible one in quantum
physics, for there is no nonprobabilistic “mechan-
ics” applicable to individual quantum systems.
Since probabilities are present in quantum me-
chanics from the very outset, statistical ensem-
bles are the physical objects of study from the
very beginning.
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Nevertheless, it is conceivable that some ab-
stract object related to the pure ensemble might
be theoretically attached to every quantum sys-
tem as its state by an analysis parallel to that
which led to P4C in the classical case. In short,
quantum theory might be a realization of the
augmented model (P1, P2, P3, and P4). To
investigate this possibility, the pure ensembles
of the theory must be found. In terms of the
density operator p, an ensemble characterized
by p is pure if there do not exist distinct (non-
zero) positive semidefinite Hermitian operators
oV, p@ such that

p=wip" 4 wep®, wy, wy, >0

The desired identification of the pure ensem-
bles of quantum theory is accomplished by the
following theorem due to von Neumann:

(H) p is pure if and only if p = P,, where

P, is a projection operator onto the Hilbert

vector ¢.

The proof, seldom repeated and perhaps un-
familiar to the reader, may be found in von
Neumann’s treatise.®

The theorem (H) establishes a correspond-
ence between the pure ensembles of quantum
theory and the points (vectors) of Hilbert space,
a correspondence strikingly reminiscent of that
between classical pure ensembles and the points
of phase space. Thus once again it seems natural
to take advantage of the full homogeneity of the
pure ensemble—the defining characteristic that
every subensemble is indistinguishable from the
original by any measurement statistics—and as-
sign a state to each individual system. In the
present case, the vector y is clearly the appropri-
ate representative for such a state. The stage is
thus set for the seemingly harmless and perhaps
intuitively useful jargon which makes statements
of this type: “Suppose an electron is in the state
y.” Formally speaking, it seems reasonable to sup-
plement P1Q, P2Q, P3Q by a P4Q which would
assert that every quantum system is always in
some state.

It would, however, be premature at this point
to make such an addition to the quantal frame-
work; first we must determine whether or not

8 Ref. 7, pp. 321-323.
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the proposed state specification scheme makes
sense, i.e., whether or not it is ambiguous. As
explained earlier, unambiguous individual state
specification via the pure ensemble is possible
only if the resolution of a general ensemble into
pure subensembles is unique. Just as in classical
statistical mechanics, this is a mathematical
question strongly dependent on the precise con-
tent of P1, P2, P3. Since the pure form of the
density operator has been identified as the pro-
jection Py, what is in question is the uniqueness
of the sum,

p= Zkawk.

k

The surprising answer, which quantum theo-
rists must face with all its ramifications, is the
negative one. A general quantum ensemble can
be subdivided in an infinite variety of ways into
pure subensembles. As a result, the analogy be-
tween classical and quantal statistics breaks
down. Quantum physics is not a realization of
the foregoing augmented paradigm. There can
be no “P4Q.” Especially noteworthy is the con-
sequence that it is generally improper to assign
quantum-state vectors to individual systems. To
do so ultimately leads only to paradoxes, as is
illustrated below.

If all theoretical considerations in quantum
theory could be carried out using only pure en-
sembles, the rather natural assignment of state
vectors to single systems would be quite incon-
sequential. Thus, for instance, no bewildering
paradoxes arise in the traditional applications of
quantum mechanics wherein individual state
specification is a commonplace notion. However,
mixtures cannot always be circumvented; in par-
ticular, even if a set of given systems constitute
a pure ensemble, the ensemble formed from
specified subsystems of these is in general mixed.
Hence the most general quantum ensembles—
the mixtures—cannot be ignored.

To demonstrate that the assignment of state
vectors to single quantum systems is essentially
ambiguous and therefore improper, it suffices to
give a simple illustrative counterexample.

Consider an ensemble of “spins,” i.e., the as-
sociated Hilbert space is the familiar two-
dimensional spinor space. Let a, 8, 8, y denote
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eigenvectors of Pauli spin operators as follows:
Uzazayazﬁ:_ﬁz%ﬁ‘—"ﬁaaﬂz -

Let the statistical operator describing the en-
semble at some given time be p® = 34 P, +
Vs Pg. It is obvious from the structure of p®
that a proper selection will yield two suben-
sembles divided as follows: one consisting of 34
of the original systems and characterized by «,
another made up of the remaining % and char-
acterized by 8. One is inclined to describe this
character of the ensemble by the statement that
% of the original systems are “in state o,” 14
“in state B.” It is now shown that such an ex-
trapolation from ensemble to single system leads
to a paradox.

Consider a second ensemble of “spins” char-
acterized by the statistical operator p@ = 3 P:
-+ % P,, where n = [1/(5)*%] (8 + 2y). This
ensemble may be partitioned by selection into
two pure subensembles: one made up of 3 of
the original systems and characterized by 9, the
second consisting of % of the initial ensemble
and characterized by ». Following the natural
procedure for state specification, the ensemble
might then be described as a collection of sys-
tems 3% of which are “in the state 3,” 35 “in the
state 4.7 '

It is useful at this stage to exhibit the matrix
representative of the operator p® in the {a, 8}-
representation. The matrix elements are easily

calculated: using & = (1//2) (e + B), y =
(1/V/2 (o — B), it follows that
(P,) = <a, Pa> <o, PS>

T <B Pra> <B, PS>

_[ v0-310) 0 (kY%
—|—3/10 y1op T 1/21/2}
and
3 9/10 — 3/10 1 %
(p) =% [_3/10 1/10} + % [1/2 1/2}
_ (%0
= 01/4}.

Hence,
00
(P(Z))"::;A1 [ég] +% [01}’

or
p® = 3 Py -+ V4 P,
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Comparison now shows that p™ = p®; ie,
the statistical operators characterizing the two
spin ensembles considered are equal. Since the
statistical operator completely describes all mea-
surement results for an ensemble, the equality
of pPand p® implies the physical identity of
the ensembles they represent. Such an occur-
rence is by no means exceptional; this example is
not a mathematical freak, or, as physicists some-
times say, a “pathological” case. Rather it illus-
trates a typical property® of quantum-mechanical
ensembles, viz., that they are generally resolvable
into pure subensembles in many ways, a property
which was given above as the fundamental
reason why quantum theory is not a realization
of the augmented paradigm.

The basis for that conclusion may perhaps be
clarified by further scrutinizing the present ex-
ample: p = 34 P, + Y4 Py = 3% Ps + % P,
From the structure of these resolutions of p into
pure subensembles, it follows that there exist
member systems which may belong either to a
P, ensemble or a P; ensemble. The following
picturization of the ensembles involved is help-
ful in understanding this. Let each member
system be denoted by a box so that the ensemble
may be pictured as a row of boxes.

The resolution p = 34 P, + % Pg means that
the boxes may be rearranged and partitioned into
two rows, one containing % of the original boxes
and physically describable by P,, the second
containing the remaining % and physically de-
scribable by Pg.

Rearrangement must not be confused with
physical interaction processes; what is considered
here is the theoretical and conceptual structure
of the p ensemble.

Similarly, the resolution p = % P, 4+ % P,
means that the boxes may also be re-arranged
and partitioned into two different rows, one con-
taining 3 of the original boxes and physically
describable by P, the second containing the re-
maining % and physically describable by P.,.

A comparative examination of the two ar-
rangements makes intuitively clear the above
assertion that there are systems in the p ensemble
which, without physical change, may belong to

9E. Schrédinger, Proc. Cambridge Phil. Soc. 32, 446
(1936).
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either a P« ensemble or a Ps ensemble. Now sup-
pose for a moment the language of individual
states is applied to these ensembles. Immediately
a quantum monster is born: a single system
concurrently “in” two states a and 8. To be ex-
plicit, the “state” of the system would have to be
simultaneously an eigenvector of ¢, and o, which
is simply a mathematical impossibility. Thus the
concept of individual quantum state is fraught
with ambiguity and should therefore be avoided
in serious philosophic inquiries concerning the
nature of quantum theory.

Iv. INDIVISIBILITY OF QUANTUM SYSTEMS

“A new epoch in physical science was inaugu-
rated . . . by PlancK’s discovery of the elementary
quantum of action, which revealed a feature of
wholeness inberent in atomic processes, . . ."10

Niels Bohr

These words of the pioneer quantum philoso-
pher from Copenhagen concisely express, by his
own italics, the germinal idea from which the
famous thesis of complementarity was born. In-
trinsic wholeness—the indivisibility of quantum
systems—is the essential ingredient of Bohr’s
philosophy. For almost 35 years he repeated the
elements of his doctrine, at least part of which
has come to be called the “orthodox” interpre-
tation of quantum theory. However, Bohr was
always . content to philosophize in an almost
wholly qualitative vein; even his illustrations
from physics itself largely avoided the mathe-
matics of quantum theory. Thus, in particular,
the notion that quantum systems exhibit a
peculiar indivisibility was always pleaded by
deft application of uncertainty relations to primi-
tive gedankenexperiments. Moreover, Bohr’s
depiction of quantum interaction depended
strongly on an intuitive understanding of the be-
havior of “quanta” from the semiclassical per-
spective of what is often called the “Old
Quantum Theory.” It seems desirable therefore
to provide the physical aspect of this indivisi-
bility with a mathematical meaning in abstract
quantum dynamics. First, however, in order to
establish the origin of Bohr’s idea of “wholeness,”

10N. Bohr, Essays 1958-1962 on Atomic Physics and
Human Knowledge (Interscience Publishers, Inc., New
York, 1963), p. 2.
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we review briefly some relevant points on the
philosophic side of the indivisibility concept.

As we have seen, the laws of quantum theory
do not and cannot refer to anything like classical
states; quantum physics is in fact characterized
by an extreme nonpicturability. Put simply,
quantal laws govern the statistics of measure-
ment results, and that is all. Obviously, such a
theory is not immediately reconcilable with
classic aspirations of natural philosophers for
an exhaustive understanding of nature with
“Cartesian clarity.” Prominent among the dis-
senters was Einstein, who regarded the irreduci-
ble probabilities of quantum theory as an intoler-
able weakness, a glaring sign of incompleteness.
Bohr combated this feeling for decades, often in
specific encounters with Einstein; again and
again he argued that quantum theory, under-
stood in terms of his complementarist philosophy,
is indeed exhaustive.

Bohr’s elaborations of that claim typically
depart from the simple philosophic observation
that science is concerned with intersubjective
data. Thus, however bizarre the laws of micro-
physics may seem, experimental contrivances
must themselves be described ultimately in some
communicable manner. In actual practice, classi-
cal physics provides this language in which lab-
oratory information is phrased in objective,
unambiguous, communicable facts. It is a moot
point whether this use of classical constructs is
necessary or conventional; Bohr seemed to favor
the first alternative. In any case, the requirement
of intersubjectivity is in itself not peculiar to
quantum theory.

What Bohr saw as an essentially quantum fea-
ture was rather “the introduction of a funda-
mental distinction between the measuring ap-
paratus and the objects under investigation,”
a property which he regarded as a consequence
of describing the apparatus in a language ap-
plicable to ordinary perceptions. As for the
objects of study, quantum theory, the language
suited to their description, defies visualization, as
remarked earlier. Hence, says Bohr, the interac-
tion between apparatus and object in quantum

1N. Bohr, Atomic Physics and Human Knowledge
(Jobn Wiley & Sons, Inc., New York, 1958), p. 32.
12 Ref. 10, p. 3.
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physics is an “inseparable part of the phe-
nomenon. Accordingly, the unambiguous account
of proper quantum phenomena must, in princi-
ple, include a description of all relevant features
of the experimental arrangement.”® No longer
does physical theory either permit the neglect
of or offer the means to compensate for interac-
tions with the objects; yet all knowledge of
quantum objects is obtained through interactions.
From this concept of indivisibility, Bobr created
the principle of complementarity, according to
which the totality of results of different kinds of
measurements on a quantum object exhausts all
conceivable knowledge about such an object,
even though these results cannot be combined
to form a consistent picture of that object. Fur-
ther elucidation of this principle would take us
too far afield, since our present subject is not
complementarity itself but the related conceptual
indivisibility of interacting quantum systems.

The foregoing synopsis of Bohr’s idea of the
“wholeness” of quantum phenomena was effec-
tively a paraphrasing of his views with no inten-
tional distortion. Surveying his argument, one
wonders whether Bohr has outlined a description
or a derivation. Indeed a first impression might
suggest the latter, as though the general require-
ment of communicability of data in conjunction
with the quantal property of nonpicturability,
ie., the failure of classical microphysics, could
imply a conceptual indivisibility of interacting
systems. If such an implication were truly in-
tended, then those critics of the Copenhagen
interpretation who think of Bohr and Bishop
Berkeley as two of a kind are correct, for such
a “derivation” of indivisibility would indeed re-
flect the idealist dogma, esse est percipi. There
is, however, a more favorable appraisal of Bohr’s
conception of wholeness in quantum theory. It is
the understanding of his indivisibility notion as
a philosophic description of the nature of quan-
tum interactions, and not as a derivation of their
nature from vague generalities.

To defend this proposal, let us consider the
aforementioned gedankenexperiments which are
typically used to enrich Copenhagen arguments
by providing physical examples. Most famous

13 Ref. 10, p. 4.
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of these thought experiments is Heisenberg’s
scheme for measuring electron position with a
y-ray microscope,’* a token discussion of which
is given in most elementary quantum mechanics
textbooks. The electron position is to be observed
microscopically under minimal illumination, i.e.,
by providing just one photon for the electron to
scatter into the objective lens of the microscope.
Physical optics requires short wavelength illumi-
nation, if a decent image of the electron is de-
sired; but short wavelength means high fre-
quency, hence a highly energetic photon. Upon
collision, such a photon would of course transfer
considerable momentum to the electron; thus it
is said that the position measurement affects the
electron momentum in an unpredictable and
uncontrollable manner, limited only by the un-
certainty relation AxAp ~ (A/sind) (hsin /1)
= h, where Ax signifies the width of the image,
Ap the unknowable momentum transfer, and 6
is the angle with vertex at the electron which the
scattered photon’s path makes with the perpen-
dicular from the electron to the lens.

Now, it is precisely this type of demonstration
that Bohr takes as physical counterpart to his
philosophical argument summarized above. The
unpredictable effect of a position measurement
on momentum suggests that the very concept of
electron momentum should not even be contem-
plated for an electron interacting with a position-
measuring device. Electron plus apparatus con-
stitute a conceptual whole; to think of the elec-
tron independently is to divide the indivisible.
So goes the complementarity argument.

Once again we ask whether this demonstration
purports to derive or to describe. More quanti-
tatively, does the microscope experiment explain
on general grounds “why” AxAp ~ h or is it only
a picturesque illustration of the uncertainty rela-
tions for which quantum theory is assumed at
the outset? The key to this question is the term
unpredictable, which supposedly characterized
the momentum transferred to the recoiling elec-
tron. Why is this quantity unpredictable, hence
uncontrollable? Indeed Ap is calculable from the
expression Ap ~ h sin §/A. The answer is simply

14'W. Heisenberg, The Physical Principles of the
Quantum Theory (The University of Chicago Press,
Chicago, IIL, 1930), p. 21
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that the quantum-theoretical approach has al-
ready been assumed; a quantal analysis of the
pertinent collision problem could not predict 6.
Therefore a logical textbook of quantum me-
chanics would not place the Copenhagen
gedankenexperiments in their traditional first
chapter home, but include them rather under
applications of the theory (or perhaps in an
appendix on the history of quantum mechanics. )
Fock' is correct in pointing out that the mysteri-
ous term wunconirollable which is common in
Copenhagen writings means nothing except that
classical physics is inapplicable.

Thus it seems to us that what is really con-
veyed by Bohr’s conception of indivisibility is a
property of interaction in quantum theory, a
property which can be clarified by proper identi-
fication of certain more abstract mathematical
features of the theory and thereby compre-
hended in a manner more precise than crude
inductions from gedankenexperiments. The fol-
lowing sections undertake such a program. First,
classical statistical dynamics of interacting sys-
tems is formulated in a manner suitable for
comparison with its quantum analog, which is
developed subsequently. Finally, from the con-
trast between the classical and quantal cases,
there emerges a mathematical meaning for quan-
tum indivisibility.

V. CAUSAL EVOLUTION OF
INTERACTING SYSTEMS
A. Classical Statistical Mechanics

The basic structure of classical statistical
mechanics was reviewed in Secs. I and II.
There the delta-function density of phase,
p=93(qg — q,)3(p — p,), was identified as de-
scribing the pure ensemble of that theory. In the
following analysis of interaction, we consider
ensembles of composite systems, each consisting
of two interacting subsystems. The dynamical
evolution from two types of initial conditions is
examined: (1) both systems initially in pure
ensembles, (2) one system initially pure, the
other mixed. The fundamental problem here
posed is to determine the character (pure or
mixed) of the ensembles to which the two sys-

15V, Fock, Czech. J. Phys. 7, 642 (1957).
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tems belong after interacting for a time. Mathe-
matically, interaction means that the Hamil-
tonian function H(qy, p1, 9> p2) is not additive,
i.e., there do not exist V;(q1, p1), V2(q, ps) such
that H =V, -+ V,.

1. Ensembles of Systems Sy and S
Both Initially Pure:

S11P1(q1, pit= 0) = d(q, — q10)6(p1 — Pm)’
S2192(CI2> P2t = 0) = 3(q> — %0)5(772 — on)-
81+ Sa:p(t=0) = ps(£ = 0)pe(t = 0).

It will be intuitively obvious to anyone familiar

with statistical mechanics that, under the trans-
formation generated by the Liouville equation,

p(t=10) = p(t) =8[q; — Q1(%)]
8[p:r — Py(£)18[gs — Q2(2)13[p. — Po(2)1,

where Q,(f), Py(t), Qs(t), P,(¢) are the values
of the canonical variables which evolve from
their initial counterparts via Hamilton’s equa-
tions. [This may be proved by direct substitution
of p(t) into the Liouville equation.]

Density functions p; and p, for the S;- and S,-
ensembles are easily determined by integration:

Pl(qb P1; t) =3d[q; — Q1(t)]5[P1 — Pl(t)],
Pz(qz, P2; t) = 6[qz — Qz(t)]ﬁ[Pz — Pz(t)]-

Both represent pure ensembles; therefore two
initially pure ensembles remain pure regardless
of mutual interaction, as expected.

2. S; Ensemble Initially Pure,
Se Ensemble Initially Mixed
S1:p1(q1 Pt =0) = 8(q1 — G10)3(p1 — P10)
Szipz(‘h: P2 t = 0)
= f w(a, b)d(q, — a)d(p, — b)dadb,
where w(a, b) = py(a, b; t = 0) is the initial

probability density that an S, is in classical state
(q27 p2) = (a’ b)’

81+ S:p(t =0) =3(q1 — G10)3(p1 — P1o)
fdadb w(a,b)3(q, — a)d(p, — b)
:fdadbw(a,b)ﬁ(q1—~qlo)
3(p1~— P10)d(g: — a)d(p, — b),



which is just a superposition of pure suben-
sembles.

Using the linearity of Liouville’s equation, we
immediately obtain p(t) for the present case by
superposition. From case (1) we have

3(q1 — G10)0(P1 — P10)d(gs — a)d(py — D)
= 3(q, — Q1)d(pr — P1)d(qs — ©Q5)d(p, — Py).

Now, each of the functions, Q,, Py, Q,, P,, de-
pends in general on the initial parameters
¢10> P1o> @, b. Therefore, none of the &s can be
removed from the integral over a, b which super-
poses these pure densities. Hence

p(t) = fcladbw(a,b)ﬁ(ql—Ql)
3(p1— P1)3(g2 — Q2)8(p2 — P2),

which, as’is evident from its structure, represents
a mixture. Moreover, both S, and S, ensembles
are now mixtures:

pl(t)’__‘.fd(l(lb w(a, b)d(q, — Qi)
3(py— Py,

Of special interest, the initially pure S, ensem-
bles has been converted to a mixture by inter-
action with the initially mixed S, ensemble. This
property of interaction, to be discussed later, is
called classical entanglement.

B. Quantum Mechanics

We next consider the quantum-theoretical
treatment of an ensemble each member of which
is a composite of two interacting systems, S;
and S,. Mathematically, Hilbert spaces #{;, 1,
are associated with these systems and #; ® #f,
is the total Hilbert space for S; 4 S,. The state-
ment that §; and S, are interacting here means
that there do not exist operators V; ® 1 and
1 ® V, such that H, the total Hamiltonian opera-
tor for §; - S, may be written as H =V, ® 1
+1Q® V.,

From P3Q, the basic dynamical law of quan-
tum mechanics is i (dp/0t) = [H, pl. The
temporal transformation induced by this differ-
ential equation may always be succinctly ex-
pressed by a unitary operator T(t) such that
p(t) = T(t) p(o) T'(t). Formally, T(t) = exp
(— (i/h) f Hdt) or when H is independent of
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t, T(t) = exp [— (it/h) H]. In terms of the
evolution operator T(t), the statement that S,
and S, are interacting means that there do not
exist T) ® 1,1 ® Tysuch that T =T, ® T.,.

For the present problem, p is of course defined
on 1 = #; ® #,. To obtain p;, py, the density
operators for subsystems S, S,, a “partial” trace
operation is required. For example, p1 = Tryp,
which simply indicates a sum over those matrix
elements of p whose two indices corresponding
to 71, are identical.

A detailed exposition of the theory of com-
posite systems may be found in von Neumann’s
work.'® There, in addition to a fuller discussion
of “partial” tracing, the following theorems, the
first two of which are used below, are proved:

() If p; and py are both pure, p = p; ® py
uniquely.

(b) If either p; or py is pure, p = p; ® py
uniquely.

(c) If p; and p, are both mixed, p is not
uniquely determined.

Now, working in parallel with the preceding
section we determine the character (pure or
mixed) of ensembles of interacting quantum
systems S; and S..

1. Ensembles of Systems S, and S,
Both Initially Pure:

S1:p1(t =0) = Py,
Sg:pz(t: 0) = PXO
81 + Sz:p(t: 0) = Pd;o X Pxo = P¢0®X0-

The evolution T(t)
p(t = 0) into

p(t) = T(t)Pd,O X x0 Tf(t)
= [T($0 ® 70)><T($o ® 70)| = Press@no)-

Thus, as in the classical case, the over-all homo-
geneity of the ensemble is not altered by causal
evolution. The density operators for the S; and
S, ensembles are now determined by the partial
trace equations. For this calculation, let {¢,},
{xm} be complete orthonormal sets in #,, H,,
respectively, and consider the expansion

T(¢0 @ XO) - zcnm ¢n ® XmEll/.

operator transforms

6 von Neumann, Ref. 7, pp. 422-437.
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Now,
Pl(t) = T"Z Pw

= 2< Xk
k

< 2 Csl q»”s ® Xl
s

Ecnm ¢n ® Xm>

nm

k>

— 2 6lk 6km Cﬁsl Ca:rnl¢rt> <¢s[

knamnls
= zcﬁsk an!(ibn> <¢sl:
nks
a mixture (since this is not in general a projec-
tion operator).
If S, and S, did not interact, i.e,
H=V,®1+18V,,
then

exp [— (ét/0) HI (o ® %)
puam eXP [——' (it/h) Vl] ¢0 exp [_ (lt/h) V2] XO)

since exp (A -+ B) = exp Aexp Bif [A, B] = 0.
Hence C,,, would have the product form C, C,
and then

pi(£) = 2,C?, C®, G, Cyl$u> <

nks

SChbu>< 2Cy b,

]

where

¢ = 2,C, ¢ = exp [— (it/h) V1 g0,

Similar results hold for p,(%).

To sammarize: unlike the classical case, two
initially pure quantum ensembles are generally
converted to mixtures during interaction; how-
ever, in the absence of interaction, both remain
homogeneous. In the following section, we refer
to this peculiarly quantum mixing as quantum
entanglement.

2. Sy Ensemble Initially Pure,
Sy Ensemble Initially Mixed
Sllpl(t = O) = Pd>0
Sz:pz( t— 0) = ZWIC Py, zwk =1,
k k

S1 + Sgp(t:()) = Pd)O & zka PT)k-
k
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As in the classical case (2), linearity of the
dynamical Jaw enables solution by superposition.
Thus, from

T(t) (Pyo ® Pu) T(t) = pi(t) = Py,
where
l[/k: Ec(nkn)z ¢n® Yoms

it follows that
p(t==0) = p(t) = 2 Wi Py
k

i.e, p, initially a mixture, in general remains in-
homogeneous.

Of great interest here is the effect of inter-
action on the initially pure S; ensemble. Taking
the appropriate trace, we find, using the result
from case (1),

pu(t) = Try p(£) =2, Wy, Try Py
k

rsn

— EWIC {Z\C;f)ﬁ C;};) I ¢n ><¢s! j”
k

which in general represents a mixture.
To clarify the nature of this latter transforma-
tion,
o ik
P> 2 W, [ZCS:’ Cl |6, ><9,] ]
k sn

let. us suppose quantum entanglement did not
exist. Then case (1) would have yielded

Pyo ® Po = Pocooir @ Prcoonir;

superposing these, we obtain

p(t) = sz Pocsonn) ® Pacoomp.
k
Thus

(D) = 2 Wi 2< 1Py ® Pyf10>
k n

= EWk Pycoomi> Try P = E\Vk Pycppint,
k k

which we recognize as analogous to the effect
previously called classical entanglement.
Returning now to the correct result,

p(t) = S (T € o,><0,] |
k TSR

we identify the mixtures in parentheses as a con-
sequence of quantum entanglement, while the
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further mixing by the sum over k corresponds to
classical entanglement.

VI. CLASSICAL DIVISIBILITY AND
QUANTUM INDIVISIBILITY FROM A
DYNAMICAL VIEWPOINT

In a certain sense, the foregoing deductions
(Sec. V-A) concerning classical interactions are
paradoxical. For any Hamiltonian whatsoever,
even one which includes interaction terms, the
homogeneity of an ensemble of systems interact-
ing with members of a second initially pure en-
semble is preserved throughout the motion;
nevertheless, by arranging an interaction be-
tween the members of an initially pure ensemble
and those of a mixture, the initially homogeneous
ensemble in general changes into an inhomo-
geneous ensemble after a time, a process we
called classical entanglement. Therefore we con-
front a strange dilemma, for in classical entangle-
ment mere juxtaposition apparently achieves the
impossible, viz., the destruction of homogeneity,
which no Hamiltonian, hence no force conceiv-
able within this theory, can accomplish. To ex-
plain this seeming discrepancy, consider a simple
problem in classical physics.

Let S; and S, each be a particle of mass m,
interacting via a connecting spring of stiffness k
and equilibrium length I. The Hamiltonian func-
tion is therefore H = (1/2m) (p2 + p.?) +
(k/2) (g2 — g1 — )%, where p;, p, denote linear
momenta and g1, gz are position coordinates for
Si, Ss. From Hamilton’s equations it is easy to
obtain Newton’s law:

mgyr =k(gz—q —1),
mgy=—k(g—q: —1).

When the latter pair of coupled differential
equations are solved subject to the initial condi-
tions q1(0) = 0, ¢:(0) = ¢:(0) = 0, gs(0) =
a0 the result is q,(¢) = % (go — I) [1 — cos
V2 wtl, w = (k/m)*.

Now, a relevant question is whether there
exists some force which, when acting on S; pro-
duces the same motion ¢,(t) as did the above
interaction. Certainly. In fact the Hamiltonian

H; = p2/2m + Y (2k) [q1 — (qo0 — 1) /212

produces the desired motion. [Physically, S,
could be at one end of a spring of stiffness 2k
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and equilibrium length (qy — 1)/2 which is
rigidly mounted at its other end.]

Consider an initial S, ensemble mixed by being
distributed over the values of gs. By classical
entanglement, an initially pure S; ensemble in-
teracting with this mixed one will itself become
inhomogeneous. The reason for this is now easily
explained by the observation that the Hamil-
tonian H; depends on gs. Thus the S; “ensem-
ble,” when considered by itself, is not an ordi-
nary ensemble at all; for it does not consist of
a collection of identical systems but rather of a
distribution of different kinds of systems, char-
acterized by different Hamiltonians H;(gy ).
(Physically, the various S; could be attached to
springs with differing equilibrium lengths.) It is
therefore not alarming that this “ensemble” be-
haves in a manner contradictory to the Liouville
equation.

The paradox of classical entanglement was
illusory; the “impossible” disruption of homo-
geneity in the S; ensemble had a theoretical ex-
planation. Thus, the existence of classical en-
tanglement is no reason to declare interacting
systems S; and S, to be in any sense indivisible.

For quantum entanglement, the situation is
quite different. Here no explanation parallel to
that given for the classical case is possible.
Quantal entanglement occurs under conditions
of maximal homogeneity (S, and S, both initially
pure); but it was the inhomogeneity of S, and
its reflection in H; that made classical entangle-
ment “divisible”, hence explicable. In the quan-
tum case there is no way to explain away the
basic paradox of entanglement, viz., that inter-
acting systems S; and S, each from initially pure
ensembles develop temporally into members of
mixed ensembles. Since there does not exist an
evolution operator T such that TP T" = p
where p; is not a projection operator, no physical
environment conceivable within quantum theory
has the same effect on the initially pure S;
ensemble as quantum entanglement with the S,
ensemble. Thus, in an explicit dynamical sense,
interaction in quantum theory exhibits a remark-
able property of “wholeness,” to use Bohr’s word.

If S, is an atomic system and S, the measuring
device through which 8; is studied via interac-
tion, then it is in fact a quantum dynamical prop-
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erty of this interaction that it becomes impossible
—even with quantum theory—to give an inde-
pendent account of the temporal development of
S;. The composite system S; 4 S,, quantally en-
tangled, may. therefore be regarded as dynam-
ically “indivisible.” With this mathematical inter-
pretation, perhaps Bohr’s concept of “wholeness,”
a fundamental attribute of quantum theory and a
pillar of complementarity, obtains a more defini-
tive meaning.

VII. SUMMARY: STATE CONCEPT
IN QUANTUM THEORY

Ever since Born first provided quantum theory
with its fundamental link to nature via statistics,
controversy has raged over the extent to which
this innovation modifies the basic classical struc-
ture of physical science. Since the only quantal
constructs which participate in a causal law re-
late to nature solely through probabilistic-sta-
tistical rules of correspondence, it is obvious that
any “state” concept in quantum theory must
refer empirically to statistical ensembles instead
of individual systems. By this we mean simply
that the “states” of quantum theory are related
to statistical collectives of measurement results
emerging from measurements upon identically
prepared systems. The only sense in which such
“states” might be construed as referring empiric-
ally to a single system is in the case of an en-
semble consisting of one system sequentially
measured and reprepared; however, this is be-
side the point in the present inquiry, which has
sought to ascertain whether or not one may con-
sistently regard quantum “states” as belonging
to physical systems in the classical manner
wherein every system is thought of as always
being in some definite (possibly unknown) state.
The fact that quantum states refer empirically to
ensembles does not preclude the theoretical pos-
sibility of restoring a causal nexus for individual
states, as was demonstrated above for the case
of “retrograde” classical statistical mechanics.
However, that possibility was found to hinge
upon (1) the question of uniqueness in the prob-
lem of resolution of general ensembles into pure
subensembles, since the pure ensemble is the ap-
propriate construct from which to develop an
individual state specification for an initially sta-
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tistical theory; and (2) the question of “conserva-
tion of homogeneity” for an initially pure ensem-
ble under causal evolution, since any meaningful
individual state concept should be applicable to
a system at all times, ie., it should be possible
to follow the temporal development of the state
via the causal law of the theory.

The preceding sections sought the meaning of
quantum states within the minimal logical frame-
work of quantum mechanics; accordingly, the
analysis centered on the ensembles which give
rise to the statistical collectives of measurement
results actually studied in quantum theory. No
quantum state concept was assumed a priori;
instead we began only with the elementary as-
sumption that there are systems upon which
measurements of observables are performed ac-
cording to established rules of correspondence,
and that the statistics of the numerical results
which emerge from such measurements upon an
ensemble of identically prepared systems are
governed by quantum theory, (P1Q, P2Q, P3Q ).
Against this background the logical standing of
the usual theoretical quantum state concept was
assayed using the above criteria (1) and (2).

The results of the analysis, with comparisons
to the analogous classical situation, may be sum-
marized as follows:

(1) Decomposition of the classical density-of-
phase into representatives of pure subensembles
is unique; thus single classical systems may be
assigned states (q,, p,) unambiguously. On the
other hand, resolution of quantum ensembles
into pure subensembles is not unique; hence, as
illustrated earlier, the assignment of a state vec-
tor ¢ to a single system at a single time is an
ambiguous procedure which can lead to theoreti-
cal paradoxes.

(2) A classical pure ensemble, even when in-
teracting with another pure ensemble, remains
at all times pure; it makes sense therefore to as-
sign a temporal sequence of states [g(¢), p(¢)]
to any classical system. On the contrary, al-
though a pure ensemble of closed quantum sys-
tems does conserve its homogeneity, a quantum
pure ensemble interacting with another pure
ensemble becomes entangled and is converted to
a mixture; thus it is in general impossible to
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assign a temporal sequence of state vectors y(1)
to a quantum system. '

In short, quantum theory satisfies neither of
the two criteria necessary to justify the supple-
mentation of an initially statistical theory by a
state concept in the classical sense. Although
classical statistical mechanics admits of an un-
ambiguous assignment of individual states, quan-
tum theory fails to satisfy the necessary criteria.
Hence the simplest, and most natural, conclusion
is that the pure “state” vector ¢ of quantum
theory must not be interpreted—even theoretic-
ally—as referring to the physical state of a single
system at a single time. This does not imply that
the basic meaning of causality is lost in quantum
physics. Although the classical ideal of deter-
minism as applied to single physical events is
not valid in quantum mechanics, the behavior of
quantum ensembles is predictable in the sense
that future measurement statistics are deter-
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mined by past measurement statistics. Thus,
strictly speaking, the state concept in quantum
mechanics belongs to the ensemble instead of the
system. Indeed quantum systems should be re-
garded as never being in any physical state
(except in the aforementioned statistical sense
where the “state” refers to a single system be-
cause the ensemble consists of one system
sequentially measured and reprepared). To use
a terminology sometimes used in statistical
theories, quantum mechanics may be character-
ized as a theory with macrostates ( of ensembles)
for which there are no underlying microstates
(of systems).
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The relationship existing between the Voigt transformation and the Lorentz transformation
is discussed. Some properties of the Voigt transformation are considered, especially its
conformal nature. The mechanical meaning of the Voigt transformation is treated, i.e., the
moving oblate spheroid, and a moving clock. The addition of velocities theorem developed
by application of the special Voigt transformation and the addition of velocities theorem
developed by application of the Lorentz transformation are shown to be identical. Finally,
the mechanical necessity that the special Voigt coordinate transformations be altered in
order to copstruct the Lorentz electron model, and the electrodynamic consequences of the

Voigt kinematics are discussed.

INTRODUCTION

RECENT discussion concerning the Voigt
coordinate transformations, most notable of
which is that by M. Strauss,! has stimulated some
interest in their kinematical and electrodynam-

# Present address: U. S. Naval Ordmance Laboratory
(Code 531), Department of the Navy, White Oak,
Silver Spring, Maryland 20910,

1 M. Strauss, Nuovo Cimento 39, 658 (1965).

ical consequences. Part of what Waldemar Voigt*
did in 1887 was to consider the propagation of
oscillating disturbances through an elastic uni-
form incompressible medium; and in so doing,
derived a set of coordinate transformations
which occupy a unique place in the history of
science. These he applied to the study of the

Doppler principle, in a manner not too unlike

2W. Voigt, K. Ges. Wiss. Gott. 4, 41 (1887) LC AS
182, G 82; reprinted Physik Z. 16, 381 (1915).



