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a b s t r a c t

Conventional first principle approaches for studying nonequilibrium or far-from-equilibrium processes
depend on the mechanics of individual particles or quantum states. They also require many details of the
mechanical features of a system to arrive at a macroscopic property. In contrast, thermodynamics pro-
vides an approach for determining macroscopic property values without going into these details, because
the overall effect of particle dynamics results, for example, at stable equilibrium in an invariant pattern of
the “Maxwellian distribution”, which in turn leads to macroscopic properties. However, such an
approach is not generally applicable to a nonequilibrium process except in the near-equilibrium realm. To
adequately address these drawbacks, steepest-entropy-ascent quantum thermodynamics (SEAQT) pro-
vides a first principle, thermodynamic-ensemble approach applicable to the entire nonequilibrium
realm. Based on prior developments by the authors, this paper applies the SEAQT framework to modeling
the nonquasi-equilibrium cycle, which a system with variable volume undergoes. Using the concept of
hypoequilibrium state and nonequilibrium intensive properties, this framework provides a complete
description of the nonequilibrium evolution in state of the system. Results presented here reveal how
nonequilibrium effects influence the performance of the cycle.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Numerous methods for modeling nonequilibrium phenomena
exist with each restricted to its own applicable set of spatial and
temporal scales. At the macroscopic level, continuum nonequilib-
rium thermodynamics with the local equilibrium assumption is
used but cannot generally be applied at atomistic/mesoscopic
levels since the small dimensions of a system result in quantum and
for that matter classical effects that the continuum assumption
cannot address. Furthermore, nonequilibrium processes in the far-
from-equilibrium realm make the application of the continuum
formulation of nonequilibrium thermodynamics, i.e., the so-called
Onsager formulation (e.g., [1]) questionable due to its underlying
assumption of linearity or near-equilibrium behavior. In addition,
each method uses a different kinematic and dynamic description of
, 460 Old Turner Street, Me-
ksburg, VA 24061, USA.
onspako@vt.edu (M.R. von
system state and its motion. Thus, a general approach that provides
a thermodynamic analysis of nonequilibrium evolution, especially
that far-from-equilibrium, across different spatial and temporal
scales has been lacking even though general systemproperties such
as the energy and entropy are well defined [2] and their evolutions
observable. Steepest-entropy-ascent quantum thermodynamics
(SEAQT) [3e11] addresses these issues providing a mathematical
framework with a single kinematics and dynamics that crosses all
temporal and spatial scales and accounts for both non-continuum
quantum and classical effects. At the same time, it is able to pro-
vide system property information based on a fundamental as
opposed to phenomenological description and thermodynamic
system features resulting from nonequilibrium relaxation patterns
(in the sense of GENERIC [12,13]), which capture the dynamic bal-
ance of detailed and complex microscopic single particle or quan-
tum state evolutions. These patterns represent a reduction of a
system's microscopic kinematics, appear to be general, and are
independent of the microscopic dynamics, i.e., of the exact form of
the micro-mechanical interactions. One of the benefits of this is
that the SEAQT framework is able to avoid the computational
burdens inherent to existing methods based onmechanics (e.g., the
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Boltzmann equation [14e16] and molecular dynamics [17]) or
quantummechanics (e.g., ‘open-system’ quantum thermodynamics
[18e23], ‘closed quantum systems’ [24], heat reservoirs mediated
by quantum systems [25], quantum nonequilibrium Green's func-
tion equations of motion [26e28], and the quantum Boltzmann
equation, i.e., the Uehling-Uhlenbeck-Boltzmann equation
[29e31]) that require detailed interaction information of the par-
ticles or quantum states.

To date, SEAQT has successfully been used to model nonequi-
librium processes (even those far-from equilibrium) from the
atomistic to the macroscopic level [9e11,32e37] and bases its
framework on properties such as energy, particle number, and
entropy, which as mentioned before, are well-defined at all scales
for equilibrium as well as nonequilibrium states [2]. The non-linear
dynamics of state evolution are characterized by the entropy gen-
eration, which results from the principle of steepest entropy ascent
(or maximum entropy production [38]). This principle forms the
basis of the equation of motion that tracks the evolution of energy
and entropy in state space. Using the concept of hypoequilibrium
state [9] (i.e., a nonequilibrium relaxation pattern), the nonequi-
librium trajectory of system state evolution can be fully described
across a wide range of initial conditions. In this way, the thermo-
dynamic analysis of nonequilibrium phenomena at different scales,
whether classical or quantum, can be studied using a single
framework, i.e., a single kinematics and dynamics.

Since an important part of thermodynamics is to study systems
for which volume is the only parameter (in the sense of Gyftopo-
lous and Beretta [39,40]), a description of such a system undergoing
a cyclic process in the nonequilibrium realm using SEAQT is pre-
sented here. Clearly, an important application of thermodynamics
is to the study of such processes independent of the exact nature of
the microscopic interactions, which take place inside the system.
Cyclic processes have been modeled both at the macroscopic level
using equilibrium thermodynamics as well as at the quantum level
using quantum mechanics [41e43]. The limitation with respect to
the former is that the study of a cycle for such a system necessarily
assumes that the system (e.g., that of a gas in a piston/cylinder
device) is in a stable equilibrium state at any given instant of time
and undergoes a quasi-equilibrium process, i.e., the state evolution
of the system is very, very slow and the process is reversible. To
move the analysis into the practical realm requires the introduction
of phenomenological parameters (e.g., experimental polytropic
exponents, isentropic efficiencies) to help account for the effects of
irreversibilities and, thus, model real engine cycles and guide de-
vice design. The limitationwith respect to the latter, i.e., approaches
based solely on quantum mechanics (e.g., ‘open quantum systems’
[41,42]), is that the thermodynamic laws appear only to emerge
from the results of the quantum master equation of a given
approach but are not fundamental to it and are, thus, only used to
validate the model set-up [44,8]. Such approaches can provide
insight into the mechanical basis of thermodynamics for a limited
set of very specific conditions (e.g., weak system-environment in-
teractions or steady state) but predicting all the general effects,
which result directly from the laws of thermodynamics is very
difficult and may in fact be impossible when, the mechanical
interaction details are too complex or simply not available. Thus,
the application of such approaches focuses on quantum systems in
nonequilibrium but in general cannot be extended to the modeling
of classical meso/macroscopic systems in nonequilibrium states,
especially those in the far-from-equilibrium realm. In contrast, the
SEAQT framework provides a single theoretical model of irrevers-
ibility at all temporal and spatial scales based on the laws of ther-
modynamics, i.e., they are fundamental to the description. The use
of the concept of density of states [32,9] with this framework
permits tracking the time evolution of all the energy eigenlevels of
a system and does so at a relatively small computational expense,
enabling the application of this framework to a wide range of
systems at the micro/meso/macro levels using energy eigenlevel
information developed from experimental measurements or the
computational results of quantum chemistry or density functional
theory. In addition, using the concept of hypoequilibrium state and
rigorous definitions of nonequilibrium intensive properties [9,10],
greater physical insight into the influence of nonequilibrium effects
on system performance can be revealed.

In the following, unique thermodynamic trajectories for system
state evolutions from some initial transient state to steady state are
predicted for cyclic processes using the SEAQT equation of motion.
This equation is derived from the conservation laws and the prin-
ciple of steepest-entropy-ascent (or maximum-entropy-
production), i.e., from the first and second laws of thermody-
namics, and is introduced and discussed in Sections 2.1e2.3 along
with the system and state space considered and the quantum and
classical system descriptions used. The concepts of hypoequili-
brium state, temperature, and pressure for nonequilibrium states
are introduced in Section 2.4 and are shown to be closely related to
the isothermal-isobaric ensemble of stable equilibrium [45e49].
The definitions of temperature and pressure proposed for
nonequilibrium states are fundamental rather than phenomeno-
logical and a generalization of these properties from those at stable
equilibrium. The SEAQT equation of motion for two interacting
systems and for a system interacting with a reservoir are then
presented in Section 3 followed in Section 4 by a description of a
system undergoing a nonquasi-equilibrium evolution in state.
These examples illustrate the inputs and outputs of the model.
Finally, in Section 5, results are given for the state time evolution of
a system undergoing a transient cyclic process. How nonequilib-
rium phenomena influence the performance of the cycle is dis-
cussed, and a simple case of optimizing the power of the cyclic
system relative to the nonequilibrium effects is illustrated.

2. SEAQT equation of motion

2.1. SEAQT equation of motion using a quantum mechanical
description

In this section, the system and state description in SEAQT used
here is given, and the equation of motion presented. Based on the
discussion by Grmela and €Ottinger [12,13,50] and Beretta et al.
[7,51] the general form of a nonequilibrium framework is a com-
bination of both irreversible relaxation and reversible symplectic
dynamics. If written in the generalized form of the Ginzburg-
Landau equation [12,51], the equation of motion takes the
following form:

d
dt

gðtÞ ¼ XH
gðtÞ þ YH

gðtÞ (1)

where g(t) represents the state evolution trajectory and XH
gðtÞ and

YH
gðtÞ are functions of the system state g(t) and represent the

reversible symplectic and irreversible relaxation dynamics,
respectively. In the SEAQT framework, the system is defined by the
Hamiltonian operator bH, system state is represented by the density
operator br, XH

gðtÞ follows the Schr€odinger equation, and YH
gðtÞ is

derived from the SEA principle. To describe the evolutionary pro-
cess, conservation laws are explicitly required in order to construct
the equation of motion, which is given in Ref. [52] as

dbr
dt

¼ 1
iZ

hbr; bHiþ 1
t
bD (2)
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where the first term is the Schr€odinger term and the second the
dissipation term. Two types of initial conditions can cause one term
on the right hand side of the equation of motion to vanish. The first
is that if the system is in a pure (zero-entropy) state initially, i.e.,brbr ¼ br, the equation of motion reverts back to the Schr€odinger
equation of quantum mechanics. The second is that if the system is
in a so-called mixed (nonzero-entropy) state initially and br is di-
agonal in the energy eigenstate basis, bH commutes with br and the
Schr€odinger term goes to zero even though br may not be a Max-
wellian distribution among the energy eigenlevels. The state evo-
lution of such a mixed-state operator cannot be captured by the
Schr€odinger term and is instead given by the second term to the
right of the equals, the dissipation term, which captures the
probability redistribution towards theMaxwellian distribution. The
dissipation term is constructed using a set of operators called the
‘generators of themotion’. Each generator corresponds to one of the
conservation laws to which the system is subjected. For example,
an isolated, non-reacting system is subject to two conservation
laws, probability normalization and energy conservation, so that
the generators of the motion are fbI; bHg, which are the identity
operator (TrfbI; rg ¼ 1) and the Hamiltonian (TrfbH; rg ¼ energy). For
the case when br is diagonal in the energy eigenstate basis, i.e., only
the dissipation term is active, the equation of motion takes the form
[5]

dpj
dt

¼ 1
t

������
�pjln pj pj εjpj

〈s〉 1 〈e〉
〈es〉 〈e〉

�
e2
E
���������� 1 〈e〉

〈e〉
�
e2
E ����

¼ 1
t
DjðpÞ (3)

where pj is the diagonal term of br in the energy eigenstates basis
and represents the probability of the system being in the eigenstate
associated with the jth energy eigenlevel. Furthermore, p repre-
sents the vector fpjg, 〈,〉 is the expectation value of the property
given br, and t is the relaxation time. This equation is a first order
ordinary differential equation of infinite variables fpjg. At any
instance of time, the expectation value of the property can be
calculated via the current fpjg and the energy eigenlevels fεjg. This
equation can be solved using the concept of hypoequilibrium state
and/or the density of states method both of which were developed
by the authors [9]. A brief introduction to the concept of hypo-
equilibrium state is given in Section 2.4.

2.2. System description in phase space

Based on the discipline of statistical mechanics, determining
changes in an extensive property such as the energy requires
constructing a canonical ensemble composed of microstates with
different energy values. Its corresponding intensive properties (e.g.,
the temperature) can then be calculated via the Maxwellian dis-
tribution of the canonical ensemble, and all other thermodynamic
properties of the system evaluated using the canonical partition
function. To determine changes of both energy and particle num-
ber, a grand canonical ensemblemust be constructed of microstates
with different energy and particle number values. For the study
presented here, an isothermal-isobaric ensemble is used to deter-
mine changes in volume, and is constructed of microstates with
different energy and volume values. A rigorous description of the
system using an isothermal-isobaric ensemble [45e49] is pre-
sented below using phase space, which is a requirement for the
‘density of volume state’ calculation for the partition function.
Within the SEAQT framework, state space is most generally
assumed to be a Hilbert space as in Section 2.1. However, the SEA
principle is applicable to many different types of state spaces [7,51].
Thus, to be consistent with the representation of the isothermal-
isobaric ensemble found in the literature for classical/semi-
classical systems, the state space representation used here is that
of phase space.

Now, consider that a system contains N particles with spin de-
grees of freedom. The microstate of the system is decided by the
position, momentum, and spin of every particle so that the system
microstate is a function of 7N properties {px,i,qx,i,py,i,qy,i,pz,i,qz,i,si}
where i¼1,2,…,N. By defining a map from the microstate to the
systemmacroscopic property (i.e., a bundle structure [12,51]), each
microstate gives a quartet of macroscopic properties, which defines
a macrostate. The four properties are particle number (N), energy
(e), volume (v) and magnetization (m). The number of microstates
with the macroscopic property in the range e<e

0
<eþde,

v<v
0
<<vþdv andm<m

0
<<mþdm is represented by U(N,e

0
<,v

0
<,m

0
<)

dedvdm, which is the density of states (i.e., the density of micro-
states per macrostate). In defining the bundle projection from the
space of the microstates to that of the macrostate, there should be a
unique macroscopic property (N,e,v,m) defined for any microstate
to ensure the correct evaluation of density of state in the partition
function of the ensemble used (e.g., the isothermal-isobaric
ensemble in the present paper). The total particle number N is
constant . The total energy (which is only the kinetic energy here)
and the total magnetization can be defined by

e ¼
X
i¼1

N
 
p2x;i
2mi

þ
p2y;i
2mi

þ
p2z;i
2mi

!
(4)

m ¼
X
i¼1

N

si (5)

where the mi are the particle masses, the px,i, py,i, pz,i are the
momentum components of each particle i, and the si the particle
spins. A unique specification of the exact volume for any given
microstate is of great significance to the calculation of the ‘density
of volume state’, which is further needed for the accurate calcu-
lation of the partition function of the isobaric-isothermal
ensemble (Eq. (49) below). Classically, the volume for a given
microstate is given through the concept of a ‘shell particle’, which
can prevent redundancy in the counting of the configurations (i.e.,
of microstates) for one macrostate and provide the correct ‘den-
sity of volume state’ [53]. However, the ‘shell particle’ concept
fails in quantum mechanics, and, thus, the calculation of the
‘density of volume’ state is still an open question at the quantum
level.

As shown in Fig 1, for a given microstate of a collection of N
particles, r0 is the location of the center of mass. The volume uses
a spherical shape and the boundary is decided by the ‘shell
particle’. All the N particles (the shaded particles) of the system
are in the volume vþdv and at least one particle is within the
shell volume dv, which describes the outer boundary of the vol-
ume v. In this way, the boundary of the systems volume is the
solid line, which is a unique choice among all the possible other
boundary choices (dashed lines) that could be made that contain
the N particles. For further discussion, the reader is refereed to
[53e56].
2.3. SEAQT equation of motion

The SEAQTequation of motion inmicrostate space (phase space)
takes the form



Fig. 1. Definition of volume for a microstate in configuration space using a “shell
particle”. Reprinted with permission from David S. Corti, Physical Review E, 64(1),
016128, 2001 ©Copyright 2001 by the American Physical Society. 53.
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drðp; q; sÞ
dt

¼ frðp; q; sÞ;Hg þ 1
t
Dðp; q; sÞ (6)

where p, q, and s represents all the 7N momentum, position, and
spin variables in phase space and H is the free particle kinetic en-
ergy given by

H ¼ e ¼
XN
i¼1

 
p2x;i
2mi

þ
p2y;i
2mi

þ
p2z;i
2mi

!
(7)

The first term on the right in Eq. (6) is the symplectic term
(Louisville's equation), while the second is the irreversible relaxa-
tion term. The former expressed in terms of the Poisson bracket is
written as

frðp; q; sÞ;Hg ¼ P
i¼1

3N
�
vr

vqi

vH
vpi

� vr

vpi

vH
vqi

�
¼
X
i¼1

3N vr

vqi

vH
vpi

¼ P
i¼1

N
 
px;i
mi

vr

vqx;i
þ py;i

mi

vr

vqy;i
þ pz;i

mi

vr

vqz;i

! (8)

In order to arrive at the equation of motion in macrostate space
from which macroscopic properties can directly be obtained, the
probability distribution ~r in terms of macroscopic properties (i.e.,
energy (e), volume (v) and magnetization (m) where the particle
number (N) is omitted), as opposed to the probability distribution r

in phase space, is defined as

~rðe;v;mÞdedvdm¼
Z

e<e0<eþde;v<v0<vþdv;m<m0<mþdm
rðp;q;sÞdpdqds

(9)

For the specific class of initial conditions studied here in which a
generalization of the equal-probability condition for the micro-
ensemble holds, the following reasonable approximation for an
isotropic nonequilibrium state is valid since there is no favored
direction or region of the volume in the system, which can be
regarded as the classical one corresponding to the mixed states
introduced in the discussion of Eq. (2). Thus,

rðp; q; sÞ ¼ ~rðe; v;mÞ
Uðe; v;mÞ; for all ðp; q; sÞ gives the same ðe; v;mÞ

(10)

where
Uðe; v;mÞdedvdm ¼
Z

e< e0 < eþde;v< v0 < vþdv;;m<m0 <mþdm
dpdqds

(11)

is the density of states, i.e., the number of microstates whose
macroscopic properties (e',v',m') satisfy the conditions e<e

0
<<eþde,

v<v
0
<vþdv andm<m

0
<mþdm. As a result, the equation of motion of

the probability distribution in macroscopic properties takes the
form

d~rðe; v;mÞ
dt

¼ 1
dedvdm

Z
frðp; q; sÞ;Hgdpdqds

þ 1
tdedvdm

Z
Dðp; q; sÞdpdqds (12)

for which the integral limits are the same as those for Eqs. (9) and
(11), i.e, they include all the microstates providing the same
macroscopic properties (e,v,m). Under the equal-probability con-
dition (Eq. (10))

rðp; q; sÞ ¼ rð � p; q; sÞ (13)

the relationZ
frðp; q; sÞ;Hgdpdqds ¼ �

Z
frð�p; q; sÞ;Hgdpdqds

¼ �
Z

frðp; q; sÞ;Hgdpdqds ¼ 0 (14)

holds. Clearly, Eq. (14) is only satisfied when the Poisson bracket
term vanishes. Furthermore, since the Poisson bracket term in Eq.
(12) vanishes at the initial condition, the equal-probability condi-
tion holds during the time evolution of the equation of motion, Eq.
(6). Thus, Eq. (12) reduces to

d~rðe; v;mÞ
dt

¼ 1
tdedvdm

Z
Dðp; q; sÞdpdqds (15)

due to the symmetry of this equation. The evolution in macrostate
space reveals the irreversible process without the influence of the
symplectic term, since it does not affect the system entropy under
the conditions specified.
2.4. Nonequilibrium state and evolution description:
hypoequilibrium

The thermodynamic features of the nonequilibrium relaxation
process generated by the SEAQT framework have a number of
useful characteristics, which allow a unique and complete
description of each nonequilibrium state via a set of extensive and
intensive properties (opposed to via a distribution function only)
for the state yielding to Eq. (10). Moreover, the definition of each
nonequilibrium intensive property is fundamental relative to the
laws of thermodynamics rather than phenomenological. Such a
description is based on the key concept of hypoequilibrium state
developed by the authors [9,33], which is a direct result of SEA. The
physical meaning of hypoequilibrium state is that for a system in a
nonequilibrium state, if a subset of its energy eigenlevels are in
mutual equilibrium (i.e., the probability distribution for those levels
is a Maxwellian distribution), that subset of levels will remain in
mutual equilibrium throughout the entire state evolution of the
system (i.e., the probability distribution of that subset remains
Maxwellian). Thus, a process of relaxation can be described as
follows. For any initial state (a distribution of probabilities among
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the energy eigenlevels), the eigenlevels can always be regrouped
into many subsets such that in every subset the probability distri-
bution is a Maxwellian distribution with a given intensive property
(e.g., temperature). However, the different subsets are not neces-
sarily inmutual equilibriumwith each other. The number of subsets
can be infinite, which is the extreme case when every eigenlevel is
by itself a subset. During the system relaxation process, the energy
eigenlevels in one subset evolve together to reach mutual equilib-
rium with the other subsets. The concept of hypoequilibrium state
is, thus, well defined for any state of the system and is, fundamental
and, therefore, much more general than the local equilibrium
assumption. The latter discretizes a global system into many small
local systems, each of which is assumed at a phenomenological
level to be in a state of equilibrium. In contrast, the hypoequili-
brium concept permits each local system to be represented by a
nonequilibrium state (even one far-from-equilibrium) for which
the probability distribution is a non-Maxwellian distribution.1 In
this section, themathematical representation of hypoequilibrium is
given using a system whose state can be characterized by energy
and volume and a Maxwellian distribution with the intensive
properties of temperature and pressure. For proofs and a more
detailed discussion on the hypoequilibrium state concept, the
reader is referred to [9,33].

A probability distribution r(p,q,s) among all of the accessible
microstates in phase space (represented by K ) is used to represent
the thermodynamic state of a system (e.g., system A or B in Section
3). If an initial state satisfies the equal-probability condition of Eq.
(10), the system state can be represented by a probability distri-
bution ~rðe; v;mÞ among the accessible set of macrostates (repre-
sented by H and the density of states U(e,v,m)), where the number
of particles N is a constant for a closed system. By doing so, the
microstates (p,q,s) can be studied using the corresponding macro-
states (e,v,m) with the result that the number of the dimensions of
the state space reduces from 7N to 3. Given an initial thermody-
namic state ~rðe; v;mÞ, it is proven that the macrostate set H can be
separated into M sets (subsystems),2 such that the probability
distribution in each subsystem yields to a canonical distribution for
e and v, i.e.,
1 The mixing of two rarefied gases flowing in opposite directions can be used as
an example. If the gas is sufficiently rare such that particle collisions are unlikely,
the assumption that the gas in each location of the mixing region is in equilibrium
is a poor one. At each location, two types of particles can always be observed, each
with a different temperature based on the direction (þor -) of its velocity. A better
approach would be to describe the non-equilibrium (in fact, far-from-equilibrium)
state of each local system by a second order hypoequilibrium state, which captures
the far-from-equilibrium characteristics of the state based on two temperatures
using the fundamental definitions the authors have developed. In this way the state
of each local system is characterized by two temperatures that are not geometri-
cally constrained by a particular point within the local system. For the mixing of
more than two rarefied gases, a hypoequilibrium state with an order greater than
two would be used. Another example would be a system consisting of a chemically
reactive gas far from stable chemical equilibrium for which no location in the
system can be assumed to be in equilibrium locally. Describing the properties of
two or more reactive components individually via the hypoequilibrium concept
permits a fundamental characterization of these components via a set of intensive
properties (e.g, temperature, chemical potential, etc.). Both examples can be of a
homogeneous system for which each local system is in a nonequilibrium state.

2 This division satisfies H ¼ ∪i2I H i and H i∩H j ¼ ∅, where I is a set of indices,
which can be infinite or an uncountable set. M is the number of elements in I . For
the extreme case in which every eigenlevel of a continuous spectrum of energy is
itself a set, I is an uncountable set composed of any real number above the ground
state and M is infinite. For simplicity, the presentation here is limited to results for a
countable set, which means that i¼1,…,M, although results can also be developed
for an uncountable I .
ci ¼ 1;…;M; ~r
�
ei; vi;mi

�
¼ ~pi

Li
�
bi; qi

�e�b
iei�q

i
vi ;
�
ei; vi;mi

�
2H i (16)

In this way, each equilibrium state of the system is designated as
being in an Mth-order e-v hypoequilibrium state. Based on this
definition, any thermodynamic state of the system is a hypo-
equilibrium state in H with some order M where M is less than or
equal to the number of accessible system macrostates [9,33]. A
hypoequilibrium state of order 1 corresponds to a state in stable
equilibrium. In Eq. (16), (ei,vi,mi) is one of the macrostates in H i, b

i

and qi are intensive properties of H i, which are the parameters that
correspond to the Lagrange multipliers of the energy and volume
constraints, ~pi is the total probability in subsystem i, andLiðbi; qiÞ is
the partition function of the subsystem with parameters bi and qi.
Note that since spin is not conserved, there is no corresponding
Lagrange multiplier and, thus, no parameter associated with the
magnetization mi. Furthermore, to be complete, bi¼0 and qi¼0 if
#ðH iÞ ¼ 1 (i.e., there is a single macrostate in the ith subsystem)
and qi¼0 if #ðH iÞ ¼ 2. Thus, any nonequilibrium state yielding to
Eq. (10) can be regarded as a specific M th-order e-v hypoequili-
brium state.

Now, the partition function of the ith subspace is written as

Li
�
bi; qi

�
¼
Z
H i

U
�
ei; vi;mi

�
e�b

iei�q
i
vi deidvidmi

¼
Z
K i

e�b
iei�q

i
vi dpdqds

(17)

where the integral to the right of the first equal sign is over the
macrostate setH i, while that to the right of the second equal sign is
over the microstate set K i, which contains all of the microstates
leading to the macrostates in H i.

For a given Mth-order e-v hypoequilibrium state, the intensive
properties of the subsystems can be represented by bi and qi or
equivalently using temperature and pressure by

Ti ¼ 1

kbb
i
; Pi ¼ qiTi (18)

A Mth-order e-v hypoequilibrium state can then be represented by
a division fH iðK iÞ; i ¼ 1;…;Mg of a system's accessible macro-
state (microstate) set and a corresponding triplet set
fð~pi; bi; qiÞ; i ¼ 1;…;Mg. The intensive property set
fðTi; PiÞ; i ¼ 1;…;Mg is a generalization of the definition of inten-
sive property at stable equilibrium (Teq,Peq) to nonequilibrium. Li
and von Spakovsky [9,33] prove that if a system begins in an Mth-
order hypoequilibrium state, it will remain in an Mth-order hypo-
equilibrium state throughout the state evolution as long as the
same subsystem division is maintained. Thus, the time evolution of
the distribution takes the form

ci ¼ 1;…;M;
�
ei; vi;mi

�
2H i

~r
�
ei; vi;mi; t

�
¼ ~pi tð Þ

Li
�
bi tð Þ; qi tð Þ

�e�b
i tð Þei�q

i tð Þvi (19)

Both the intensive property set fðTiðtÞ; PiðtÞÞ; i ¼ 1;…;Mg as well
as the triplet set fð~piðtÞ; biðtÞ; qiðtÞÞ, i¼1,…,M} are well defined
throughout the entire evolution.



3 However, this assumption does not mean that the energy flow is reversible,
since the heat flow out of system B goes through a temperature gradient that is not
infinitesimal. There is no entropy change in system B (i.e., the properties of a
reservoir remain unchanged) due to the heat flow, but there is entropy generation
in the composite system of systems A and B and the process is irreversible.
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3. SEAQT for interacting systems

3.1. SEAQT for interacting systems

The equation of motion is designed to study the nonequilibrium
relaxation process of an isolated system. However, since interacting
systems can be viewed as a composite isolated nonequilibrium
system of subsystems whose interactions cause the relaxation
process of the composite, the SEAQT equation of motion can be
used to determine the evolution of these interacting systems as
well.

Now, consider two interacting systems (system A and system B)
undergoing a heat as well as a work interaction. The composite
system is not in stable equilibrium, and its state is represented by
the probability distributions for system A fraðpa; qa; saÞg and for
system B frbðpb; qb; sbÞg together. There are four conservation laws,
which must be satisfied: probability normalization of system A,
probability normalization of system B, energy conservation of the
composite system, and total volume conservation of the composite
system. Based on SEA and the conservation laws, {Ia,Ib,H,V} serve as
the generators of the motion and the equation of motion for system
A takes the form [33,52,57]

draðpa; qa; saÞ
dt

¼ fraðp; q; sÞ;Hg þ 1
t
Daðp; q; sÞ (20)

where

H ¼ Ha þ Hb

¼ PNa

i¼1

h�pax;i�2
2ma

i
þ
�
pay;i
�2

2ma
i

þ
�
paz;i
�2

2ma
i

i

þPNb

i¼1

h�pbx;i�2
2mb

i

þ
�
pby;i
�2

2mb
i

þ
�
pbz;i
�2

2mb
i

i
(21)

and

Daðp; q; sÞ ¼

����������

�raln ra ra 0 eara vara

〈s〉a 1 0 〈e〉a 〈v〉a

〈s〉b 0 1 〈e〉b 〈v〉b

〈es〉 〈e〉a 〈e〉b
�
e2
E

〈ev〉

〈vs〉 〈v〉a 〈v〉b 〈ev〉
�
v2
E

����������
��������

1 0 〈e〉a 〈v〉a

0 1 〈e〉b 〈v〉b

〈e〉a 〈e〉b
�
e2
E

〈ev〉

〈v〉a 〈v〉b 〈ev〉
�
v2
E
��������

(22)

Here ra(b) is the probability distribution in phase space of system
A(B), (pa(b),qa(b),sa(b)) are the variables in system A(B), and
(p,q,s)¼(pa,qa,sa,pb,qb,sb) are all the variables in the composite sys-
tem. The macroscopic properties ea¼ea(pa,qa,sa) and va¼va(pa,qa,sa)
are both functions of the microstate (pa,qa,sa) and are calculated
according to the bundle structure given by Eq. (4) and the “shell
particle” as described in Section 2.2. 〈,〉aðbÞ is the expectation value
of a property in systemA(B), and h,i ¼ 〈,〉a þ 〈,〉b is the expectation
value of the total property of the composite system. The numerator
of the fraction to the right of the equals can be expanded by the
elements of the first row and their cofactors such that

det ¼ �raln raC1 þ raCa
2 þ earaC3 þ varaC4 (23)

where C1, Ca
2, C

b
2, C3, and C4 are the determinants of the cofactors of
the first line of the numerator's determinant. By defining

Ca
2

C1
¼ �aa;

Cb
2

C1
¼ �ab;

C3
C1

¼ �b;
C4
C1

¼ �q (24)

the equation of motion of systems A takes the form

dra

dt
¼ fra;Hg þ 1

t
ð � raln ra � raaa � earab� varaqÞ (25)

and similarly for system B

drb

dt
¼ fra;Hg þ 1

t

�
� rbln rb � rbab � ebrbb� vbrbq

�
(26)

where b and q are the same in the equations of motion for ra and rb,
aa is specific to the equation of motion for ra, and ab is specific to
the equation of motion for rb.

Under the equal-probability condition

raðpa; qa; saÞ ¼ ~raðea; va;maÞ
Uaðea; va;maÞ; or ~raðea; va;maÞ

¼ Uaðea; va;maÞraðpa; qa; saÞ (27)

rb
�
pb; qb; sb

�
¼

~rb
�
eb; vb;mb

�
Ub�eb; vb;mb

	; or ~rb
�
eb; vb;mb

�
¼ Ub

�
eb; vb;mb

�
rb
�
pb; qb; sb

�
(28)

the Poisson bracket vanishes by integrating over all the microstates
of the energy e, the volume v, and the magnetization m, and the
equation of motion in e-v distribution is written for systems A and
B as

d~ra

dt
¼ 1

t

�
� ~raln

~ra

Ua � ~raaa � ea~rab� va~raq

�
(29)

d~rb

dt
¼ 1

t

 
� ~rbln

~rb

Ub
� ~rbab � eb~rbb� vb~rbq

!
(30)

In the application to a thermodynamic cycle, system B is
assumed to be a temperature reservoir whose properties remain
unchanged during its interactions with system A.3 The following
discussion, thus, focuses on the time evolution of system A.
3.2. Equation of motion for two systems in a Mth-order e-v
hypoequilibrium state

In order to study howa system in a nonequilibrium state evolves
in a thermodynamic cycle, one of two interacting systems, namely,
system A, is initialized in a Mth-order e-v hypoequilibrium state.
The distribution function among the macrostates of
ðea;i; va;i;ma;iÞ2H a

i for the ith subsystem (i¼1,…,M) of system A is
given by



4 For example, for a counterflow of rarefied gas, two subsystem with different
temperatures and pressures (ba,i and qa,i in Eq. (31)) can be used, and the total
probabilities (~pa;i in Eq. (31)) in each subsystem can be determined from the
relative value of the flow rate.
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~ra;i
�
ea;i; va;i;ma;i

�
¼ ~pa;i

La;i
�
ba;i; qa;i

�e�b
a;iea;i�q

a;i
va;i (31)

where the probability in the ith subsystem of system A ð~pa;iÞ and
the two intensive properties (ba,i and qa,i) define the state of this
subsystem and La;i, which is the partition function for the ith
subsystem, is expressed as

La;i
�
ba;i; qa;i

�
¼

Z
H a;i

U
�
ea;i; va;i;ma;i

�
e�b

a;iea;i�q
a;i
va;i dea;idva;idma;i

¼
Z

K a;i

e�b
a;iea;i�q

a;i
va;i dpdqds

(32)

Defining

aa;i ¼ ln La;i
�
ba;i; qa;i

�
� ln ~pa;i (33)

the ith subsystem state can be represented by

~ra;i
�
ea;i; va;i;ma;i

�
¼ e�aa;i

e�ea;iba;i

e�va;iq
a;i

(34)

The equation of motion (Eq. (29)) takes the form

d~ra;i

dt
¼ 1

t

 
� ~ra;iln

~ra;i

Ua;i
� ~ra;iaa � ea;i~ra;ib� va;i~ra;iq

!
(35)

where the superscript ‘i’ indicates the ith subsystem. As is proven in
Refs. [9,33], if the initial state is a hypoequilibrium state, the system
remains in a hypoequilibrium state provided the same subsystem
division is maintained. As a consequence, the time evolution of the
distribution of the ith subsystem of A takes the form

~ra;iðtÞ ¼ e�aa;iðtÞe�ea;iba;iðtÞe�va;iq
a;iðtÞ (36)

where aa;iðtÞ; ba;iðtÞ; qa;iðtÞ are the solution of

daa;i

dt
¼ �1

t

�
aa;i � aa

�
(37)

dba;i

dt
¼ �1

t

�
ba;i � b

�
(38)

dqa;i

dt
¼ �1

t

�
qa;i � q

�
(39)

By solving these three equations of motions for each ith sub-
system, the time evolution of system A is obtained (3M equations in
total). The parameters b and q, which are determined by Eq. (24),
are expressed using the intensive and extensive properties of both
system A and system B, namely 〈e〉aðbÞ, 〈v〉aðbÞ, aa(b),i, ba(b),i and qa(b),i.

3.3. Interacting with a reservoir

Assuming system B, which is in a stable equilibrium state with
parameters br and qr, to have a volume and energymuch larger than
that of system A, Ref. [33] proves that the parameters in Eqs. (38)
and (39) take the form

b ¼ br; q ¼ qr (40)
so that the equations of motion of the ith subsystem of system A are
rewritten as

daa;i

dt
¼ �1

t

�
aa;i � aa

�
(41)

dba;i

dt
¼ �1

t

�
ba;i � br

�
(42)

dqa;i

dt
¼ �1

t

�
qa;i � qr

�
(43)

where aa is determined from an expansion of the determinants that
define the numerator and denominator of Eq. (24). The result using
Eq. (40) reduces to the following:

aa ¼
X
i

aa;i~pi
X
i

〈e〉a;iba;i þ
X
i

〈v〉a;iqa;i � br〈e〉
a � qr〈v〉

a

(44)

where 〈,〉a;i is the contribution of the ith subspace to the extensive
properties of system A. Thus, only the intensive properties of the
reservoir (system B) appear in the equation of motion of system A
in the form of the reservoir parameters br and qr , and this equation
is independent of the type of component (represented by the
extensive properties (〈e〉b, 〈v〉b)) present in the reservoir.

4. Cycle of the system undergoing a nonquasi-equilibrium
process

This section provides an example of the use of SEAQT in the
modeling of a thermodynamic cycle going through nonquasi-
equilibrium process. SEAQT model development requires a defini-
tion of the system [39], which contains the particles and the
Hamiltonian, which defines the energy eigenlevels or accessible
microstates in phase space. The density of states (U from Eq. (11))
and partition function (L from Eq. (17)) can then be determined. All
the extensive properties (e.g., 〈e〉 and 〈v〉) at a given thermody-
namics state (i.e., probability distribution) can be found. The
relaxation time in the equation of motion is chosen based on the
interactions or phenomena studied. It can be calculated from me-
chanics (e.g., kinetic theory) or directly from the experimental data
of phenomenological coefficients (e.g., the diffusion coefficient or
reaction rate constant) [10,32], which allows a comparison with
experiment [36,58,59]. However, the results presented here, which
show the general thermodynamic features of system nonequilib-
rium behavior, do not change when the relaxation time changes,
i.e., the kinetic behavior of the system is independent of its dynamic
behavior. The latter simply places the kinetic behavior in the correct
timescale.

To model a specific process, an initial condition is chosen, i.e., a
hypoequilibrium state and the initial intensive properties for each
subsystem.4 The equation of motion provides the time evolution
from a nonequilibrium state to a stable equilibrium state for an
isolated system or the time evolution from a transient to a steady
cycle for a cyclic process as shown below. The intermediate states in
the evolution can be calculated without the relaxation time, while
the relaxation time can map the intermediate states onto the cor-
rect time scale. For the study below, the time-related parameter is



G. Li, M.R. von Spakovsky / Energy 115 (2016) 498e512 505
the ratio of the characteristic time of the reservoir (tr, i.e., the
period of the piston) to the characteristic time of system relaxation
(t, determined by a phenomenological transport coefficient, e.g.,
the diffusion coefficient [10]). The result is general for systems of
different constituents but the same tr/t.
4.1. System description and initial state

The cyclic process is studied using a nonequilibrium system
(system A) interacting with a series of reservoirs (systems B) as
shown in Fig. 2. System A consists of approximately 1mole Helium-
3 in a piston-cylinder with variable energy and volume interacting
with a different temperature reservoir at each instant of time t. The
reservoir at a given t has the intensive properties (T(t),P(t)) where T
is the temperature and P the pressure. At any given instant of time,
the interaction between system A and system B keeps the total
energy and volume of the composite system of A and B conserved.
When the temperature is not too low, Helium-3 performs as a
Maxwellian particle.

In order to simplify the discussion, a special nonequilibrium
initial condition, whose analytical solution is available, is used. For
other initial nonequilibrium states in a more general application,
the evolution can be solved with Eq. (3) or (15) using the density of
states method [9]. The number of particles in system A is assumed
to be odd, and the initial state of system A is chosen to be a second-
order e-v hypoequilibrium state. The corresponding two subspaces
are chosen to be the set of all macrostates with the magnetization
m>0 so that fðe[; v[;[Þg and the set of all macrostates withm<0 so
that fðeY; vY;YÞg. For this division of the system, the partition
functions for the two subspaces are the same as are the extensive
property functions, which facilitates comparison of the two sub-
systems, especially of the extensive properties like energy and
volume. Higher order e-v hypoequilibrium states can also be
studied and for more details, the reader is referred to [33]. The
initial state can be represented by the macrostate probability dis-
tributions of each of the subspaces, i.e., by f~r[g and f~rYg, where

~r[ ¼ ~p[

L[
�
b[; q[

�e�e[b[

e�v[q
[

(45)

~rY ¼ ~pY

LY
�
bY; qY

�e�eYbY

e�vYq
Y

(46)

Here ð~p[; b[; q[Þ is the parameter triplet for the m>0 subspace and
ð~pY; bY; qYÞ for the m<0 subspace defined in Section 3.2. Both the
partition function for the m>0 subspace and that for the m<0
subspace share the same functional form L0 so that
Fig. 2. System model.
L[ðYÞ
�
b[ðYÞ; q[ðYÞ

�
¼ L0

�
b[ðYÞ; q[ðYÞ

�
(47)

while the partition function for the total system is given by

Ltotalðb; qÞ ¼ L[ðb; qÞ þLYðb; qÞ ¼ 2L0ðb; qÞ (48)

where

Ltotalðb; qÞ ¼
Z
H

Uðe; v;mÞe�be�qvdedvdm

¼
Z
K

e�be�qvdpdqds
(49)

Note that the evaluation of the partition function is based on the
concept of the density of volume state U(e,v,m)[60] for an
isothermal-isobaric ensemble partition function [53e56]. Thus,
using the formulation provided in [54]

Ltotalðb; qÞ ¼
Z
v

�
v ln Q
vv

�
T ;N

Qe�qvdv

¼
Z
v

�
vQ
vv

�
T ;N

e�qvdv ¼
Z
v

e�qvdQ

(50)

where Q is the canonical ensemble partition function for a system
containing N particles in a volume v at temperature T. For Max-
wellian particles with a spin degeneracy of 2, Q takes the following
formwhen the non-degenerate form given in Ref. [53] is modified:

Q ¼ 2N

N!

 ffiffiffiffiffiffiffiffiffiffi
2pm

p

h

!3N

vNb�
3
2N (51)

Ltotal then takes the form

Ltotalðb; qÞ ¼ 2N

ðN � 1Þ!

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmHe�3

p
h

!3N

b�
3
2N
Z∞
0

vN�1e�qvdv

¼ 2N
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmHe�3
p

h

!3N

b�
3
2Nq�N

(52)

where mHe�3 is the mass of a Helium-3 particle. Furthermore, the
extensive properties of one subsystem of system A and those of the
entire system A are written as

〈e〉[ðYÞ ¼ p[ðYÞ
 

� 1
L[ðYÞ

vL[ðYÞ

vb

!
¼ 3N~p[ðYÞ

2b[ðYÞ
(53)

〈V〉[ðYÞ ¼ ~p[ðYÞ
 

� 1
L[ðYÞ

vL[ðYÞ

vq

!
¼ N~p[ðYÞ

q[ðYÞ
(54)

�
e
� ¼ 〈e〉[ þ 〈e〉Y (55)

�
v
� ¼ 〈v〉[ þ 〈v〉Y (56)

Since the time evolution of a reservoir due to its interactionwith
system A is negligible, the study focuses on the evolution of system
A provided by the equation of motion for system A (Eqs. (41) to
(43)).
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4.2. Relaxation time t

Depending on which type of interaction is being modeled, the
relaxation time t can be estimated using fundamental transport
information such as a diffusion coefficient, a chemical reaction rate
constant [10,61], or a viscosity. The self-diffusion coefficient is used
here as an example. If it is assumed that diffusion dominates the
relaxation of the system, the relation between the system relaxa-
tion time and its self-diffusion coefficient Dself as derived in Ref. [10]
is given by

t ¼ ðdxÞ2
2Dself

(57)

where dx is the distance between the center of the interacting
systems (approximated by the dimension of system A here) and
Dself¼Dself(P,T) is a function of the pressure P and the temperature T.
The dependence of the diffusion coefficient on temperature for
gases is based on the Chapman-Enskog theory. For the binary
diffusion of A and B, the diffusion coefficient is

DAB ¼ 0:0018583T3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=MA þ 1=MB

p
Ps2ABU

(58)

where MA and MB are the standard atomic weight, P [atm] is the
pressure, T [K] is the temperature, sAB½�A� is the average collision
diameter, and U is a temperature-dependent collision integral. In
the case of the self-diffusion of Helium-3, the parameters of A
and B are both chosen to be that of the Helium-3 molecule,
while sAB½�A� and U are both tabulated [62]. For simplicity, the
average self-diffusion coefficient for Helium-3 at the end-cycle is
used to get the order of magnitude for a constant t. For Helium-
3 at 4atm and 1500 K, t~70 s. The SEAQT model can accom-
modate a state-dependent t (e.g., via Eqs. (57) and (58) and
instantaneous pressures and temperatures) to provide a more
complete time evolution for a specific system. However, the
focus here is on the general thermodynamic features and, thus,
using the relative order of magnitude of the relaxation time and
cycle period is sufficient. Furthermore, the ratio of the cycle
period tr (defined later) to the relaxation time is a non dimen-
sional number describing the relative speed of the reservoir's
operation to the characteristic time scale of a specific interaction.
It takes the form

t

tr
¼ ðdxÞ2

2Dself tr
(59)
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4.3. Reservoir

The reservoir series (T(t),P(t)) is defined to be a periodic function
of time with period tr, where tr is the periodic of system B
changing, i.e., the characteristic time of system B. Thus,

TðtÞ ¼ Tðt � trÞ if t � tr (60)

PðtÞ ¼ Pðt � trÞ if t � tr (61)

In one period tr, (T(t),P(t)) are expressed as
PðtÞ ¼

8>>>>>>>><>>>>>>>>:

P1 if 0 � t <0:25tr

P1 þ ðP2 � P1Þ
t � 0:25tr
0:25tr

if 0:25tr � t <0:5tr

P2 if 0:5tr � t <0:75tr

P2 þ ðP1 � P2Þ
t � 0:75tr
0:25tr

if 0:75tr � t < tr

(62)

TðtÞ ¼

8>>>>>>>><>>>>>>>>:

T1 þ ðT2 � T1Þ
t

0:25tr
if 0 � t <0:25

PðtÞT2=P1 if 0:25tr � t <0:5tr

T3 þ ðT4 � T3Þ
t � 0:5tr
0:25tr

if 0:5tr � t <0:75tr

PðtÞT4=P2 if 0:75tr � t < tr

(63)

The trajectory of (T(t),P(t)) on a P-T diagram is shown in Fig. 3. If the
intensive properties of system A were to proceed through a quasi-
equilibrium process, its trajectory on a P-V diagram would be that
shown in Fig. 4.
Fig. 4. Reservoir locations on a P-V diagram.
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5. Results

5.1. Transient process

The SEAQT model is used to study how a system proceeds
through a cycle formed by two constant-pressure and two
constant-volume processes. The traditional way is to assume that
the system is at stable equilibrium at every instant of time so that it
follows the path of a quasi-equilibrium process. Such a path is
represented by the black lines in Figs. 3e7. As shown later, this is
the limiting path that system B (i.e., the reservoirs) follows as it
changes very, very slowly. In the general case, the nonequilibrium
interactions of system Awith the reservoir result in a different path.
Using the SEAQT nonequilibrium model, three cases with different
characteristic times for system B (tr=t ¼ 50;5;0:5) are simulated.
The model predictions clearly illustrate that as system B changes
more quickly, the behavior of system A departs ever further from
the quasi-equilibrium process.

Cycle diagrams for systems A and B are given in Figs. 5e7. Since
the system is in a nonequilibrium state initially and throughout its
state evolution, temperature and pressure are generally not
defined. However, using a second-order e-v hypoequilibrium state
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description as discussed in Section 2, the temperature and pressure
for each subsystem can be found so that a comparison of the
pressure and temperature evolutions for the m>0 subsystem, m<0
subsystem, and reservoir can be made. The contribution to the
volume of system A can be calculated for each subsystem.
Normalizing by the probabilities of each subsystem, the m>0 sub-
system, m<0 subsystem, and system B (reservoirs) evolutions can
also be compared on a P-V diagram.

Two general features can be observed from the P-T and P-V di-
agrams of Figs. 5e7. The first is that the red and blue lines, which
represent the m>0 and m<0 subsystems, respectively, start from
two different locations on the diagrams and converge at the end.
This represents the process of system A evolving from some
nonequilibrium state to stable equilibrium or, equivalently, it is the
process that the two subsystems of system A undergo to come to
mutual stable equilibrium with each other.

The second general feature is that after the two subsystems
arrive at mutual stable equilibrium, the two converged lines (i.e.,
the red and the blue) can be regarded as the nonquasi-equilibrium
path that system A would follow if each of its states were in stable
equilibrium at any instant of time. The terminology “nonquasi-
equilibrium” refers to the fact that system A and system B are not
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always in mutual equilibrium, and that the composite system is not
in stable equilibrium. This path called the end-cycle (i.e., the steady
as opposed to transient cycle) is generally different from the cycle
path that system B takes. This end-cycle or steady cycle can have a
great deal of overlap with the cycle path of system B such as occurs
in Fig. 5 or it can have almost no overlap such as occurs in Figs. 6
and 7. Note that the composite system of A and B is in a nonequi-
librium state, even one far from equilibrium, so that the in-
teractions between system A and B are not restricted to those in the
near-equilibrium region. The difference in the cycles of these two
systems results from the fact that they are not in mutual equilib-
rium and from the fact that the nonequilibrium intensive proper-
ties of system A are very different from the equilibrium properties
of system B. Furthermore, the ratio of tr to t indicates how strong
the interactions between system A and system B are compared to
with how fast system B changes its state. If tr/t is sufficiently large,
the interactions between A and B are strong enough to make sys-
tems A and B come to mutual stable equilibrium before there is a
change in reservoir as seen in Fig. 5. In contrast, when this ratio is
sufficiently small as in Figs. 6 and 7, systems A and B are not able to
reach mutual stable equilibrium before there is a change in
reservoir.

A comparison across Figs. 5e7 shows how the ratio tr/t in-
fluences the end-cycle. When this ratio is small, so is the end-cycle
resulting in less work produced by the cycle (or less heat absorbed
by the cycle when it operates in reverse) as indicated by the cycle
area on the P-V diagram. In other words, as the characteristic time
of the series of reservoirs represented by systemB becomes smaller,
the work done by system A becomes smaller and the loss inwork is
the difference between the area of the end-cycle and that of the
cycle of system B. To achieve a better cyclic device design, the
characteristic time of the series of reservoirs should be consider-
ably larger than the characteristic time for the interactions as is the
case in Fig. 5. Furthermore, for the limiting case when tr/t becomes
very small as in Fig. 7, system A interacts with a fast-changing
system B (i.e., series of reservoirs), which is equivalent to the case
when system A interacts with a single reservoir, whose intensive
properties are the average of the system B cycle. Thus, changes of
the single reservoir only appear as fluctuations.

Finally, in Fig. 8, the pressure, temperature, and entropy evolu-
tions for two cases, tr/t¼50 and tr/t¼5, are compared. As indicated
earlier, the time for the red and blue lines to converge is the time for
the two subsystems of system A to reachmutual stable equilibrium.
This is also the approximate start time for the end-cycle (see Figs. 6
and 7). As seen in Fig. 8, for a ratio of tr/t¼50, system A takes longer
to arrive at the end-cycle (steady cycle) for the reason that them<0
subsystem is driven by the series of reservoirs to approach state B2
(5000 K, 106 Pa), while for the tr/t¼5 case, this same subsystem is
driven to approach state B3 (500 K, 105 Pa) because the constant-
pressure process has already finished by the time that this sub-
system's temperature has reached a peak at a dimensionless time of
approximately 2. It is also observed that, for the steady cycle, the
changing range of temperature and pressure for the tr/t¼5 case is
inside of that for the tr/t¼50 case. This is consistent with the result
from Figs. 5e7 inwhich the end-cycle for the tr/t¼5 case is inside of
that for the tr/t¼50 case.

5.2. Steady cycle

For a steady cycle at a given tr/t, one can determine the
maximum and minimum of the volume and entropy, and then
separate the cycle on P-V and T-S diagrams into upper and lower
parts, i.e., into half-cycles, as is done in Fig. 9. By defining the work
and heat interactions of a half cycle, which correspond to either
inputs (or outputs) depending on the given direction of the cyclic
evolution (clockwise for a heat engine and counter-clockwise for a
heat pump), i.e.,

Wupper ¼
Z

upper�half�cycle
PdV (64)

Wlower ¼
Z

lower�half�cycle
PdV (65)

Wnet ¼ Wupper �Wlower (66)

Qupper ¼
Z

upper�half�cycle
TdS (67)

Qlower ¼
Z

lower�half�cycle
TdS (68)

Qnet ¼ Qupper � Qlower (69)

the efficiency of the cycle can be evaluated by the ratio of work to
heat for a heat engine and heat to work for a heat pump. For the
latter, the efficiency for a cycle consisting of two constant-pressure
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and two constant-volume processes is given by the ratio of the net
heat (Eq. (66)) to the work of the upper cycle (Eq. (61)), i.e., the
work input. This efficiency reaches a maximum when the com-
posite system goes through a quasi-equilibrium cycle, i.e., when tr/
t becomes large, which is an ideal cycle working between two
pressure reservoirs (see the rectangle in Fig. 6a). For a given net
heat, the work input reaches a minimum when the cycle acts as a
heat pump. Thus, the efficiency defined by

εheat pump ¼ Qnet

Winput
¼ Wnet

Winput
(70)
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can be used as an indicator of how strong the nonequilibrium ef-
fects in the system are. The efficiency for the quasi-equilibrium
cycle is given by

ε
quasi
heat pump ¼ Qquasi

net

Wquasi
input

¼ Wquasi
net

Wquasi
input

¼ 1� Pmin

Pmax
(71)

where

Wquasi
input ¼ PmaxDV (72)

Qquasi
net ¼ Wquasi

net ¼ ðPmax � PminÞDV (73)

and DV¼Vmax�Vmin. Note that the efficiency for the heat engine
given by the ratio of the net work to the heat input also has a
maximum but not one that coincides with that of the quasi-
equilibrium cycle involving two constant-pressure and two
constant-volume processes. For themaximum to coincidewith that
of the quasi-equilibrium cycle requires a cycle consisting of two
constant-temperature and two constant-entropy processes, i.e., the
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so-called Carnot cycle, for which the maximum efficiency is
expressed as

ε
quasi
heat engine ¼

Wquasi
net

Qquasi
input

¼ Qquasi
net

Qquasi
input

¼ 1� Tmin

Tmax
(74)

Fig. 10 shows the variation in heat pump efficiency εheatpump
with tr/t. This efficiency changes significantly in the tr/t range of
10�1 to 101, which indicates that the reservoir influences the effi-
ciency the most when the period of the reservoir (or cycle) tr and
the relaxation time t of the rate of the non-equilibrium relaxation
between the subsystems of the cycle (system A) and the reservoir
(system B) are compatible. Furthermore, the net power or rate of
net work of the cycle defined as

_Wnet ¼ Wnet

tr
(75)

can be optimized. As seen in Fig. 10, the efficiency of the heat pump
cycle increases monotonically as the period of the reservoir tr in-
creases, while the net power as given by Eq. (72) decreases.

Fig. 11 shows that the maximum net power is reached at about
101 at which point the heat pump efficiency has not yet reached its
maximum. Further increases of tr/t increase the efficiency to its
maximum; but decreases in the non-equilibrium effects occur at a
continually decreasing rate, which contrasts with the time
consumed per cycle, which increases at a steady rate. The result is
that an optimal balance between the nonequilibrium effects and
the speed of the cycle tr yields a maximum net power point as seen
in Fig. 11 (red dashed line). This peak, of course, is influenced by the
maximum andminimum reservoir pressures; and for a systemwith
a given relaxation time tworking between two pressure reservoirs,
the cycle period can, if desired, be optimized to produce the
maximum net rate of heat transfer for the cycle. Conversely, this
same period can be optimized to maximize cycle efficiency instead
with a consequent reduction in nonequilibrium effects.
5.3. Error analysis

The solver for the ordinary differential equations used here is
ode45 in Matlab with an absolute error of less than 10�100 and a
relative error of less than 10�5. The convergence criteria for the end
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r is referred to the web version of this article.)
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cycle, i.e., for steady state, is given by

Rsteady ¼
����Qa

net �Wa
net

Qa
net

���� (76)

In the end-cycle, the two subsystems come to mutual equilibrium
with the system energy conserved in each complete cycle, i.e.
Qa
net ¼ Wa

net . The system is assumed to be in steady state when
Rsteady<10�3. This ratio is plotted in Fig. 12 for every data point in
Figs. 10 and 11.
6. Conclusions

The SEAQT framework as demonstrated here and elsewhere is a
first-principles, thermodynamic-ensemble based approach appli-
cable to the entire nonequilibrium realm even that far-from-
equilibrium. It furthermore provides a single kinematics and dy-
namics applicable across all temporal and spatial scales. Its appli-
cation here to the modeling of a thermodynamic cycle is unlike that
of traditional approaches based on equilibrium thermodynamics,
which necessarily incorporate phenomenological efficiency pa-
rameters based on, for example, experiment to account for irre-
versibilities, or on so-called ‘open quantum systems’, which for a
number of reasons are limited in their applicability.

Using the concepts of hypoequilibrium state and nonequilib-
rium intensive properties, the SEAQT framework is applied to a
system with variable volume undergoing a cyclic process in which
work is produced and energy in a heat interaction is exchanged
with a series of reservoirs. The predictions made provide a clear
description of the time evolution of the system from an initial
transient cycle to an end-cycle, i.e., a steady cycle. As part of this
description, intensive property evolutions of temperature, pres-
sure, and volume on P-T and P-V diagrams are provided, which
enhance one's general understanding of the system's nonequilib-
rium behavior at a thermodynamic level without the need for
detailed fluid mechanics or heat transfer calculations. Such a
nonequilibrium thermodynamic approach can be used as a first
stage in the design process capturing the effects of irreversibilities
and avoiding the need for costly experimental prototypes or
detailed computational fluid dynamic calculations early on in the
process.

Finally, the relative ratio of cycle period and relaxation time il-
lustrates how strong the non-equilibrium effects are, and a case
study of optimizing the power output of the system relative to the
non-equilibrium effects emphasizes the power of the SEAQT
framework for design. In addition, since this framework is able to
model the kinetics of a chemically reactive system, future work will
make transient and steady cycle predictions of system behavior by
replacing the heat reservoirs used in this study with a set of reac-
tion mechanisms internal to the system.
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Nomenclature

ðei;a; vi;a;mi;aÞ: macrostate properties in the ith subsystem of system A
(N,e,v,m): macrostate particle number, energy, volume, and magnetization of the

system (N is omitted in general)
(p,q,s): microstate momenta, positions and spins of particles in the system
aa(b),b,g: intermediate parameters of the equation of motion in system A(B), defined

by Eq. (24)
bi: intensive properties corresponding to the energy in the ith subsystem
bi,a,qi,a: intensive properties in the ith subsystem of system A
br,gr: intensive properties of the reservoir
dx: dimension of system A
_Wnet : net work rate
εheat pump: efficiency when the cycle acts as a heat pump
g: state evolution trajectory in the Ginzburg-Landau equationbr: density operatorbD: dissipation term in SEAQT equation of motionbH: Hamiltonian
Li: partition function in the ith subsystem and a function of (bi,qi)
Li;a: partition function of the ith subsystem of system A
Ltotal: partition function of system A
〈,〉: expectation value
〈,〉aðbÞ: expectation value in system A(B)
〈,〉i;a: expectation value in the ith subsystem of system A
H : system thermodyanmic state space spanned by (e,v,m)
H i: ith subsystem in the thermodyanmic state space, composed of macrostates

(ei,vi,mi)
K : system phase space spanned by (p,q,s)
K i : ith subsystem in phase space
U: density of states, numbers of microstates at a given macrostate (e,v,m)
r: probability distribution among microstates (in phase space), depending on the

variables (p,q,s)
t: relaxation time in the SEAQT equation of motion
tr: period of the cyclic process (reservoir)
qi: intensive properties corresponding to pressure in the ith subsystem
~r: probability distribution among macrostates, depending on the variables (e,v,m)
~ri;a: probability distribution among macrostates in the ith subsystem of system A
~pi: total probability in the ith subsystem
[ðYÞ: superscript for the spin-up(down) subsystem of system A
quasi: superscript stands for the quasi-equilibrium cycle
Dself: phenomenological self-diffusion coefficient
e: energy of the system in a macrostate
M: order of the hypoequilibrium state, i.e., the number of subsystems
m: magnetization of the system in a macrostate
Pi: pressure of the ith subsystem
px,i: momentum of the ith particle in the x direction for a microstate
Q: canonical ensemble partition function for a system containing N particles in a

volume v at temperature T
Qupper=lower : heat integral of the upper/lower half of the cycle on the T-S diagram
qx,i: position of the ith particle in the x direction for a microstate
Rsteady: relative error in determining the steady cycle
si: spin of ith particle in the x direction for a microstate
Ti: temperature of the ith subsystem
v: volume of the system in a macrostate
Wnet, Qnet: net work and heat in one complete cycle
Wupper=lower : work integral of the upper/lower half of the cycle on the P-V diagram
XH
g : reversible term in the Ginzburg-Landau equation

YH
g : reversible term in the Ginzburg-Landau equation
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