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chemically reactive systems using density of states and the concept of hypoequilibrium state
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This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using
steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the
accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-
ensemble approach, which does not require detailed information about the particle mechanics involved (e.g.,
the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on
the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained
gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy
and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal
and spatial scales. However, to make this not just theoretically but computationally possible, the concept of
density of states is introduced to simplify the application of the relaxation model, which in effect extends the
application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of
the reactive system considered here consists of an extremely large number of such levels (on the order of 10'3)
and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system
thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To
describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and
used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather
than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to
deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density
of states and a set of associated degeneracies. Their significance for the nonequilibrium evolution of system state
is discussed. For the application presented, the numerical method used is described and is based on the density
of states, which is specifically developed to solve the SEAQT equation of motion. Results for different kinds of
initial nonequilibrium conditions, i.e., those for gamma and Maxwellian distributions, are studied. The advantage

of the concept of hypoequilibrium state in studying nonequilibrium trajectories is discussed.
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I. INTRODUCTION

There are many modeling approaches in nonequilibrium
thermodynamics. From a practical standpoint, models devel-
oped from any one of these is typically applicable to a given
set of spatial and temporal scales so that in the vein of Grmela
and Ottinger [1,2], each model can be classified as being either
more macroscopic or less microscopic (or vice versa). Thus,
when the nonequilibrium phenomena studied cross different
spatial and temporal scales, some form of multiscale model
must be employed. This is typically done via multiscale
computational techniques, which are able to pass system
properties from one scale to another [3-5]. For example,
parameters or phenomenological coefficients used in a more
macroscopic model are calculated via a more microscopic
model, and feedback is used to update them after a time (or
distance) interval that is between the characteristic time (or
distance) length of the two different models. Such multiscale
approaches, nonetheless, present a number of significant
drawbacks, not the least of which are computational.

Of course, a general rigorous theoretical framework that
permits the study of irreversible phenomena across spatial and
temporal scales is of great significance. Two such frameworks
exist. The first developed by Grmela and Ottinger [1,2]
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provides a general equation for nonequilibrium reversible-
irreversible coupling (GENERIC) able to couple models from
two different scales or levels, i.e., one more microscopic (a
level 1 model) and the other more macroscopic (a level 2
model). In general, level 2 models are simpler and rely more on
observation and phenomenological descriptions, while those
at level 1 are more fundamental and require a significantly
higher level of complexity. Grmela and Ottinger suggest that
a specific GENERIC equation of motion, which is based on
models from two different levels of description, should take
the form that satisfies the compatibility of the two models. The
analysis of this compatibility, i.e., the passing from a more to a
less detailed level, involves a pattern recognition process [1,2],
which corresponds to a kind of coarse graining [6,7] that results
in what looks like dissipation even if the level 1 dynamics is
reversible as in fact they are in mechanics. In this way, the two
models and levels are linked via a single equation of motion.
Clearly, this approach is more rigorous and fundamental than
the multiscale computational technique described earlier. It
allows the study of the far-from-equilibrium realm where near-
equilibrium parameters no longer hold and the link between
two different scale models ensures the compatibility of the two
levels in a way that simple parameter delivery cannot.

The second general, rigorous, theoretical framework is
that developed by Beretta [6,8—11], which provides a general
nonequilibrium dynamics for relaxation crossing different
scales. Unlike GENERIC, which bases its approach on
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the linking of models across scales into a single equation
of motion, Beretta explains irreversible phenomena at
different scales using a single thermodynamic model and
a single equation of motion, doing so on the basis of the
general principle of steepest-entropy ascent (SEA) [8,9,12]
or equivalently maximum-entropy production (MEP) (e.g.,
[13]). In this framework, the irreversible part of the equation
of motion is built on a geometrical explanation of relaxation,
which results in a gradient dynamics of entropy in state
space constrained by the energy, particle number, etc. Since
thermodynamic rules and the properties used (specifically,
extensive thermodynamic properties such as the energy and
the entropy) are applicable across all spatial and temporal
scales [14,15], the equation of motion of SEA is well
defined and rigorous at all scales. In addition, in Ref. [6],
Beretta demonstrates that all of the well-known classical
and quantum nonequilibrium frameworks can be formulated
within his more general nonequilibrium thermodynamic SEA
framework, which is applicable even far from equilibrium.

Although the GENERIC and SEA frameworks approach
nonequilibrium thermodynamics from different viewpoints,
Montefusco, Consonni, and Beretta [16] show that the dissi-
pative components of the two theories are closely related and
in some cases essentially mathematically equivalent, provided
that the choice of kinematics is the same, i.e., that both
have a common starting point. Furthermore, both provide a
geometrical foundation for their dynamics [6,17]. However,
differences exist since the SEA framework is a local theory,
which starts from local balance equations and implements the
principle of maximum local entropy generation compatible
with the local conservation constraints, while the GENERIC
framework is global, implementing an entropy gradient dy-
namics compatible with the global conservation constraints.

To date, the SEA framework, which extends a first prin-
ciples thermodynamic and ensemble representation into the
nonequilibrium realm, even that far from equilibrium, has
successfully been applied to very microscopic systems such as
the state evolution of quantum systems (e.g., [18-23]) as well
as to a single-particle classical system [24] whose available
microstates are uniformly distributed in phase space. However,
its application to high-dimensional state spaces and, thus, to
infinite energy eigenlevel (i.e., more macroscopic) systems has
necessarily been limited.

To address this limitation, the GENERIC concept of pat-
terns is used here. To begin with, one may view the irreversible
term in the SEA framework as resulting from a pattern in a
more microscopic model. In a manner similar to the way at
stable equilibrium one can view the “Maxwellian distribution”
as an invariant pattern even though the mechanical details
of the individual particle states constantly change, steepest-
entropy ascent can also be viewed as a changing global pattern
or effect of the details of the mechanics in relaxation. Thus,
without including all of the details of the more microscopic
model (i.e., of the mechanics), the pattern of this model
serves as a modification of the more macroscopic model
(i.e., of the nonequilibrium thermodynamics). This, of course,
greatly simplifies the computational complexity, while the
clear physical meaning and geometrical description of the
SEA landscape facilitates the discovery of general but unique
patterns of relaxation in the nonequilibrium realm at any scale.
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In view of this, two nonequilibrium relaxation patterns
present themselves, which offer two methods for practi-
cally (i.e., computationally) extending the application of the
steepest-entropy-ascent quantum thermodynamics (SEAQT)
framework to infinite-dimensional state spaces, even those in
the macroscopic continuous spectrum, and for extending an
equilibrium-type description to nonequilibrium states. This ex-
tension focuses on the irreversible process of thermodynamic
mixture states in which the Hamiltonian dynamics vanishes
and the state evolution is due only to thermodynamic irre-
versibilities. Both methods originate from physical concepts.
The discussion begins in Sec. II with a brief description of the
SEAQT framework and focuses on the trajectory of system
thermodynamic state evolution and not its time evolution
since it is the trajectory which reveals the geometric features
of interest. The concept of hypoequilibrium state is then
introduced, which permits temperature to be defined for all
nonequilibrium states and implies that the energy eigenlevels
in mutual equilibrium evolve as a group. This is followed in
Sec. Il by a description of our density of state method, which
allows the macroscopic-level SEAQT equation of motion to
be solved. It is based on the idea that similar eigenlevels with
similar initial conditions evolve similarly. Finally, in Sec. IV,
the thermodynamic-ensemble based approach developed and
presented in the previous sections is applied within the SEAQT
framework to the study of an isolated, chemically reactive,
macroscopic system undergoing a nonequilibrium evolution
in state. This approach, in fact, represents a computationally
simpler, alternative global method for predicting the chemical
kinetics of systems, even those far from equilibrium, and
does so without the need for the detailed particle mechanics
(e.g., that of particle collisions) of conventional approaches or
for such limiting assumptions as local or global equilibrium.
Topics illustrated and discussed include the features of the
nonequilibrium trajectories predicted, the density of states of
the chemical reaction process, and the influence of the initial
nonequilibrium states on the trajectories. Two generalizations
to the nonequilibrium realm of stable equilibrium concepts are
also physically illustrated and discussed, i.e., that of hypoe-
quilibrium state and that of nonequilibrium temperature. The
former leads to the definition of the latter and to the possibility
of representing a very large class of nonequilibrium states and
of approximating an even larger class of other nonequilibrium
states in the study of nonequilibrium trajectories.

II. THEORY: STEEPEST-ENTROPY-ASCENT
EQUATION OF MOTION

A. Nonequilibrium evolution framework

Based on the discussion by Grmela [1,2,17] and Beretta
[6,16], the general form of a nonequilibrium framework is
a combination of both irreversible relaxation and reversible
symplectic dynamics. If written in a generalized form of
the Ginzburg-Landau equation [1,16], the equation of motion
takes the following form:

d
Ea(t) = X({;I(t) + Y(}fzt)’ (1)

where «(t) represents the state evolution trajectory, X, 5(:) and
YH

«(n are functions of the system state «(f) and represent
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the reversible symplectic dynamics and irreversible relaxation
process, respectively. In the SEAQT framework, the system
state is represented by the density operator g, X Zt) follows
the Schrodinger equation, and YDZ) is derived from the SEA
principle. Thus,
dp 1 A 1
i %[p,H] + )

D(p). 2)

D is the dissipation operator determined via a constrained
gradient in Hilbert space. A metric tensor must be specified
in the derivation of this dissipation term since it describes
the geometric features of the Hilbert space [6]. T is the
relaxation time, which represents the speed of system evolution
in Hilbert space. A general discussion of the SEA formulation
of dissipation, using other forms of metric and symplectic
terms, is given in Ref. [6] with examples of five nonequilibrium
thermodynamic frameworks. Furthermore, a version of Eq. (2)
for a general quantum system is used in Ref. [21] to predict
and compare with experimental results the decorrelation and
decoherence of a system in which the Schrodinger dynamics
and relaxation process are coupled. In this paper, the version
of Eq. (2) considered is for the case when the symplectic part
vanishes and only the relaxation part remains. For this case, the
SEA equation of motion exhibits useful mathematical features
(e.g., hypoequilibrium states) that enable a clear physical
representation of nonequilibrium state evolution and lead to
a fast and accurate computational solution.

An example of such an evolution, i.e., that of a pure relax-
ation process, is the application here of the SEAQT framework
to the modeling of an isolated chemically reactive system. The
system is restricted to the class of dilute-Boltzmann-gas states
in which the particles are independently distributed [10]. Such
states can be represented by a single-particle density operator
that is diagonal in the basis of the single-particle eigenstates.
In addition, the Hilbert space metric chosen is the Fisher-Rao
metric, which is uniform in different dimensions of Hilbert
space. Under these conditions, the symplectic Schrodinger
term in the equation of motion vanishes, and the study is able
to focus on the irreversible relaxation process only.

B. System and state

Sections IIB and IIC provide a brief introduction to
the SEA equation of motion for dilute Boltzmann gases.
More details can be found in Refs. [10,25]. The system studied
has the Hamiltonian H, and the eigenvalues and eigenvectors
of the corresponding operator H take the form

Higo) = &lp), k=1.2,... 3)

where k is the index for the energy eigenlevels. Degeneracy
in which an energy eigenlevel can have the same eigenvalue
with different eigenvectors is allowed. Equivalently, the system
can also be defined by a group of energy eigenlevels and
eigenvectors such that

A=Y elbi) (grl. )
k

The thermodynamic state of the system can be defined via
a probability distribution {p;} among the energy eigenlevels
{ex}, which accounts for the diagonal term of the density
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operator. An element of {€;} can share the same value in case
of degeneracy. As an example, the stable equilibrium state
of the system has the following canonical distribution, which
provides the maximum entropy:

1 _«

pie=—e o, &)

where Z is the partition function Z =) e " and the
equilibrium temperature is 7. Any other state, represented by
a probability distribution other than the canonical distribution,
is a nonequilibrium state since the entropy is not a maximum.

The probability space { p;} is the state space for the system.
The statistical distance dl between py(6) and pi(0 + d6) can
be defined by the Fisher-Rao metric such that

1 dln pi\*
dl = - de. 6
> ;m<w) 6)

More discussion on choosing a metric can be found in Ref. [6].
The parameter 6 is continuous and can be chosen as the time ¢.
Now, in order to simplify the representation of the development
of the equation of motion in the next two sections (Secs. II B
and I1 C), the square root of the probability x; = ,/p; is defined
so that the probability space can be represented by x = {x;}.
The statistical distance then takes the form

i(dﬂ>2de= Z(dx )2 (7)
pi\ do P o

where the distance between any two distributions x¢ and x? is
the angle

d(x®,x") = cos™! (Z x,fx,f) =cos”'(x%-x?). (8
k

According to the discussion in Ref. [26], this statistical
distance is equivalent to an angle in Hilbert space and has
a precise physical meaning in quantum mechanics. Thus, the
state of the system as well as the distance in state space can be
represented by x and dI* = Y, (dx;)* = dx - dx.

Now, if time ¢ is chosen as the parameter, from Eq. (7) one
can arrive at

al
dr —

Zcmy ©)
- dt
which is the speed of the motion in probability or state space.

C. Property and the equation of motion

A property of the system can be defined as a function of
state {x;} such that

I=> x. (10)
k
E =)= Zekx,f, an
k

S=(s)=>_ —xiIn(x}). (12)

k
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where (...) means the ensemble average. The von Neumann
formula for entropy is used because, as shown in Ref. [14], it
has all the characteristics required by thermodynamics.

The gradient of a given property in state space is then
expressed by

gr = Z —ek ZZxkek, (13)
gr = —ek ZZekxkek, (14)
k
g5 = ﬁé‘k = Z [—2x; — 2x¢In (x )ée. (15
X 8xk % ¢ ’

where ¢, is the unit vector for each dimension. Furthermore,
for an isolated system, the system satisfies the conservation
laws for probability and energy, i.e.,

1:2x,§:1, (16)
k

E = Zekx,f = constant (17)
k

and the principle of SEA upon which the equation of motion
is based is defined as the system state evolving along the
direction that at any instant of time has the largest entropy
gradient consistent with the conservation constraints. Since
the reversible term vanishes for dilute Boltzmann gases in an
isolated system, the equation of motion for the irreversible
relaxation process is given by

dx 1

At G SSibenen (18)
where t, which is a function of system state, is the relaxation
time that describes the speed at which the state evolves in state
space in the direction of steepest-entropy ascent. L(gy,gE) is
the manifold spanned by g; and gg, and g5 /(g ¢), Which
lies parallel to the hypersurface that conserves the probability
and the energy, is the perpendicular component of the gradient
of the entropy to the manifold L(gy,gg). It takes the form of
a ratio of Gram determinants such that

8s 81 8E
(gs.gr) (gr.g1) (ge.&1)
(gs.g86) (g1.8¢) (8E.8E) (19
8S1L(gr.gp) = s
sree (g1.81) (gE.81)
(g1.88) (8E.8E)
where (..., ...) denotes the scalar product of two vectors in

state space. The explicit form of Eq. (18) for {x;} is, thus,

—xfInx}  x}  ex?
(s) 1 e
dxp 1] fes) {e) ()

- 1 (e
2

dt T 0)
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and for {p;} [10]

—pcIlnpe  pe epx
(s) 1 (e)

d 1 es e e’
dpe 1] fe)  te @] on
dt T 1 (e)
(e) (e
D. Equation of motion with degeneracy
The energy eigenlevels {e;, k = 1,2, ...} and {|¢¢), k =

1,2,...} can be reordered and grouped into {e;;,1 =
1,2,. j=1,....n;} and {l¢;;), i=12,..., j=
1, ,n,}, where {6,‘]‘ =¢, j=1,...,n;} are degenerate
energy eigenlevels with degeneracy n;. For the equation of
motion (21), the degenerate eigenstates for a given eigenvalue
with the same initial probability are equivalent, and have the
same occupation probabilities at all times, which means p;; =
pix for any j,k. For example, the initial distribution among
these eigenlevels is proportional to the canonical distribution
that gives equal initial probabilities for each degenerate
eigenstate. This is the case when these eigenlevels come from
the same subsystem of a system in a hypoequilibrium state
(see Sec. I F). Thus, without loss of generality, the degenerate
energy eigenlevels with the same initial probabilities can
be combined, and the energy eigenlevels represented by the
monotonically nondecreasing energy eigenvalue series {¢;}
with degeneracy {n;}. The probability { p; } at energy eigenlevel
{&;} is given by

3 L)

pi=x = x, (22)
j=1
1 1
n; n;

The system state can, therefore, be represented by a new
vector {X;} or {p;} in a new probability space formed by the
probability distribution among the energy eigenlevels {€;}. The
equality of statistical distance in the original probability space
with that in the new probability space is shown by the following
development:

n; n; 2
= Z Zl(dx,»j)z = Z 21 (%dx) = Z(dx,-)z,
i j= i Jj= i
(24)

n;

a by __ -1 a b
d(x“,x”) = cos E E XiiX;;
i j=1

n
~ 1 1

-1 ~a ~b

= COS E — X, ——X;

i i

P N N2

i

= cos~ <Z 7 ~b> =dE*zY. (25

In this new vector space, system properties such as I, E, and

S are expressed as
I = Zx?, (26)
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E=(e)=) &}, (27)

<2
S=(s)=Y —%n (x—) (28)

n:
i 1

while the equation of motion changes to the following forms
for {X;} and {p;}:

iz , (29)

.
ey
_

dap;
dt

(30)

Q| =

This new equation of motion for degenerate energy eigenlevels
is a simplification of the equation of motion of Sec. II C for the
assumption that p;; = pj for any j,k. Equations (24)—(30) are
acquired by substituting Eq. (22) into Egs. (7), (8), (10)—(12),
(20), and (21). Since the discussions in the next sections are
based on Eq. (30), the tilde used to designate the probabilities
of the new probability space are dropped for simplicity.

E. Nonequilibrium evolution trajectory:
Kinetics versus dynamics

In this section, the kinetics and dynamics of nonequilibrium
state evolution are introduced. The result of this section applies
to a system with a relaxation process only (i.e., without a
symplectic term in the equation of motion) but is not limited
to a Fisher-Rao metric system. The equation of motion for a
degenerate system [Eq. (30)] is first simplified by defining A,
A,, and A3 such that

1 {e)
(e) (&%)

(s)  (e)
(es) (€

(s) 1
(es) (e)|
(31

A= , A= , Ay =

The equation of motion then becomes

dpj 1 Pj A Az
2 —pin 2 .2, 32
p T( pJ nnj pj 1+Ejpj : ( )

The solution of this equation is

pj = pj), (33)

where the time evolution of the probability can be regarded as
a parametric equation with parameter ¢. If ¢ is the real time,
the solution of Eq. (32) provides both the trajectory in state
space and the system state at any instant of time.

In general, the relaxation time T can be a function of system
state such that

T =1[p®)] 34

since for a given initial state of the system, the nonequilibrium
path of state evolution is uniquely obtained from the equation
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of motion (32). This path can be used to define a new parameter
T given by

! dt or f:/ ;dﬂzf(t), (35)
T[p®)] path TLPE)]

where T is called the dimensionless time. With this time, the
independent variable for the equation of motion can be changed
so that

dt =

dp; 4
A’

dt (36)

Pj Az
==Dj ln# ~Pig e
J

The solution for this equation is written as

pj = p;(D). 37

No matter how the relaxation time t depends on the real
time ¢ and the state, the equation of motion can always be
transformed into Eq. (36) with the parameter change defined
by Eq. (35). Furthermore, the evolution of system state follows
the same function [Eq. (37)] in . Physically, this means
that the system follows the same trajectory in state space,
while 7 decides the speed with which the system’s state
moves along the trajectory. If the relaxation time is chosen
to be a constant, Eq. (33) gives the same parametric equation
[Eq. (37)] with a parametric scaling in the relaxation time .
Thus, the kinetics and dynamics of the system are separated.
The former are found via Eqgs. (36) and (37) and result in the
trajectory in state space based on the parameter ¥ or a constant
relaxation time r. The dynamics is found via Eq. (32) and
the functional dependence t = t(p) [Eq. (34)] and result in
the trajectory in state space based on the real time ¢. Recent
numerical results show that a uniform (Fisher-Rao) metric
may for some systems provide poor performance relative to
the time evolution [24] at least in the near-equilibrium limit.
In such cases, the time evolution needs more information on
the dynamics or the function t. For this reason, the results
presented here are restricted to the kinetic evolution trajectory
and the intermediate states of the relaxation process, and, thus,
to the purely geometrical features of the relaxation process.

F. Description of the trajectory: Subsystem hypoequilibrium
state and temperature

In this section, the concepts of subsystem hypoequilibrium
state and temperature for a system in a nonequilibrium state are
defined. These two concepts support the physical description of
the evolution trajectory in state space rather than just its math-
ematical description. However, this description is restricted
to systems with irreversible relaxations only. These concepts
originate from a generalization of the canonical distribution to
a nonequilibrium distribution in Hilbert space with a uniform
metric (Fisher-Rao metric). However, such a generalization
under any metric is an open question. Furthermore, to be
general, the relaxation time in this section can be constant or
a function of system state, which means that the conclusions
drawn apply to both the kinetic and dynamic characteristics of
the state space trajectory.

For a given system represented by an energy eigenlevel
set 2 = {e;}, the system can be divided into M subsystems
(i.e., subspaces in state space) 2; = {€;}, 2 = U Q;,and 2; N
Qj=@foranyi,j =1,...,M.If the probability distribution
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in each subsystem yields to a canonical distribution, the system
is designated as being in an Mth-order hypoequilibrium state.
Based on this definition, any state of the system (strictly
speaking, a diagonal density operator in an eigenstate basis) is
a hypoequilibrium state with order M, where M is less than or
equal to the number of system eigenlevels. A hypoequilibrium
state of order 1 corresponds to a state in stable equilibrium.
The probability distribution of the Mth-order hypoequilibrium
state takes the form

Vi=12,....M, pyg=omnge " k=12 w
(38)
where «; and B; are parameters, and n;; is the degeneracy of
€;r. To be complete, 8; = 0 if w; = 1, and w; can be infinite.
a; Z;(fB;) has the physical meaning of particle number where
Z; is the partition function of the subsystem. The inverse of
the temperature of each subsystem €2; is B; with a scale of
the Boltzmann constant. This temperature is defined for each
subsystem when the system is in a state of nonequilibrium. It
is proven in the following that if a system begins in an Mth-
order hypoequilibrium state, it will remain in an Mth-order
hypoequilibrium state throughout the time evolution as will
the subsystem division. To show this, Eq. (32) is reformulated
such that

d ; 1
—ln&=—<—ln

pj A As
= - — ) 39
dt n; t ) (39)

€ —
n; A1+ ]Al

where it is noted that d(Inn;)/dt is zero and that A{, A;, and
Aj are the same for all chosen energy eigenlevels p; and only a
function of the entire probability distribution at a given instant
of time. Subtracting the equations of motion for the ith and
kth energy eigenlevels results in

d j 1 j
—(ln& - nﬁ> = ——<ln& —ln&>
dt n; n T n; ny
3
+-2(e — e, (40)
T Ay
Defining a new variable

1 .
(1nﬂ —In ﬂ), (41)
€; — €k n; ng

the time evolution of W yields to the ordinary differential
equation

Wi =

dx 1

1 A;
— =——x+—-——".
dt T TA
If p; and p; are in the same subsystem for which the initial
probability distribution is a canonical one, i.e., if

(42)

pit =0)=ayne P, p(t =0) = apne P, (43)

then

Wit = 0) = (mﬁ —In ﬂ) =B, (44
n; ng

€; — €k
For V p;, pi in the same subsystem €2, the time evolution of
Wi yields to the same ordinary differential equation (ODE)
with the same initial value, namely,

dx 1 1 A;
‘L'Al’

E = —;x x=Wpy@t=0=-8, (45)
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so that the solution of W is the same W (t) = B,(t). There-
fore, the probability distribution in this subsystem maintains
the canonical distribution with the parameter 8,(¢) given by

pit) = ap([)nje_ejﬁp([). 46)

In addition, the temperature of the subsystem at time ¢ is
defined by

Tp(1) (47)

1

ki Bp (1)

Thus, for a system in a nonequilibrium state, the hypoe-
quilibrium temperature for each subsystem is defined. This
temperature can be the same or different from that of any other
subsystem. If a system is in an Mth-order hypoequilibrium
state, it remains at least of order M throughout as well
as after the evolution, and the probability distribution of
each subsystem remains canonical. More discussion on the
evolution of temperature is given in Sec. V. In addition, the
ODE for §, [Eq. (45)] is independent of ¢, so that different
subsystems with the same initial B, also keep the same §,(¢) in
the evolution. This phenomenon is consistent with the idea that
energy via a heat interaction cannot transfer between systems
with the same temperature to produce a temperature difference.
Equal temperature subsystems maintain equal temperatures.

Moreover, if two subsystems A and B are in mutual
equilibrium at time fye [@p(me)® = op(tme)®, Bpltme)* =
B p(tme)B ], the combination of these two subsystems yields a
subsystem with a canonical distribution. This new subsystem
maintains a canonical distribution throughout its state evolu-
tion, which means that the two original subsystems maintain
their hypoequilibrium states as well as a state of mutual
equilibrium with each other.

The results just demonstrated are summarized as follows:
(i) the manner of subdividing the system is invariant with
respect to the irreversible relaxation trajectory; (ii) the proba-
bility distribution in each subsystem remains canonical along
the trajectory so that temperature can be defined based on a
parameter of the canonical distribution; and (iii) equal temper-
ature subsystems maintain equal temperatures, and subsystems
in mutual equilibrium remain in mutual equilibrium. With the
concept of subsystem hypoequilibrium state, the trajectory
for system state evolution in state space is described by two
functions «,(¢) and B, (¢). Physically, each instantaneous value
of a,(1)Z,[B,(1)] is the total probability (particle number) of
a given subsystem, while each instantaneous value of B,(¢) is
the parameter of the canonical distribution and the inverse of
the subsystem temperature. Z,[8(¢)] is the partition function,
which is a function of 8. Thus, o, (¢) describes the probability
transfer between subsystems, while 8,(#) describes the tem-
perature evolution and heat diffusion between subsystems. No
longer is the canonical distribution simply a characteristic of
stable equilibrium but instead a characteristic of subsystem
hypoequilibrium and maximum-entropy generation as well.
This feature provides a convenient pattern for studying the
evolution of a system’s state distribution during an irreversible
relaxation process.

For a complete discussion on subspace temperature and
a set of general nonequilibrium intensive properties, the
reader is referred to [27-29]. Some conclusions from these
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references are given in Appendix B, including a clear physical
picture, based on the concepts of hypoequilibrium state and
nonequilibrium intensive property, of the generalization of
the Onsager relations and the dissipation potential to the
nonequilibrium realm. In addition, for a discussion of the rela-
tionship of the general Onsager framework of nonequilibrium
thermodynamics [30] to SEAQT and GENERIC, the reader is
referred to [6,25] for the SEAQT framework and to [31] for
the GENERIC.

III. MODEL: DENSITY OF STATE METHOD

In this section, the numerical method for solving the
SEAQT equation of motion is introduced. Called the density
of state method, its purpose is to solve this equation for an
extremely large number of energy eigenlevels, a number, in
fact, so large that even the state evolution of macroscopic
systems can be determined. This numerical method follows
the same idea as the derivation of the equation of motion
for a degenerate system, namely, that similar eigenlevels with
similar initial states evolve similarly. An example of a system
with a very large number of levels is that of an ideal gas at
a temperature higher than the characteristic temperature for
translation. A practical illustration is given in Sec. I'V.

A. Probability cut

For an isolated system with unbounded energy, the proba-
bility distribution is assumed to be limited to a bounded range
of energy eigenlevels. This means that in the limg_, o, p(e >
€x) =0, and the energy eigenlevels in the bounded range
can be used to approximate the unbounded range of the
system. For a given system {¢;, i = 1,2,...} and initial
state {p;, i = 1,2, ...}, K is chosen such that ) ,_, px <&
resulting in €., = €x and the set of system bounded energy
eigenvalues €; < €qyy.

B. Evolution of probability in energy intervals

For a system with bounded energy eigenvalues, a subset of
the energy eigenlevels can be chosen to be a subsystem or an
entire system. The range of energy eigenlevels of this subset
is then separated into finite intervals such that

i
€ = €ground T+ E(cht - 6ground)v

Interval: [¢;_1,¢;], i=1,...,R

Interval length: AE =¢; —e;—;, i=1,...,R 48)

where R is the number of intervals. Integrating the equation of
motion (32) over the ith interval [e;_1,e;] yields the equation
of motion for the probability in the ith interval, namely,

I T S (49)
=\ i eli— |
dt T Ay Ay

—

where P; =) . .1 Pk is the probability distributed
over the energy levels in the interval [e;,e;—1], (s); =
- Zék cleir.e:] Pk IN(pr/ny) is the contribution of this energy
interval t.o the total .entropy, a.nd (e); = kae[ei—lqei] € Pk 18
the contribution of this energy interval to the total energy. By
summing the property of every energy interval, the property
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of the whole system (e.g., the total entropy and total energy)
can be determined.

C. Energy spectrum agglomeration

For a given initial state, the energy eigenlevels of the
system can be separated into M groups. Each group forms
a subsystem, and the probability distribution of each sub-
system is assumed to be a gamma distribution or its linear
combination, which can cover quite a large range of initial
conditions. A subsystem K is chosen, and its range of energy
eigenvalues divided into R intervals. Itis assumed that there are
m; energy eigenvalues {ej-, j =1,...,m;} with degeneracies
{ng, j=1,...,m;} in the interval [e;_;,e;] of subsystem K
where m; can be infinity.

A pseudosubsystem with energy eigenvalues {E;, i =
1,...,R} and degeneracies {N;, i = 1,...,R} is then con-
structed such that

Ny =) nh, (50)
j=1
1 “ i i
E; = N n'e;. (@28
14 ]:1

For any distribution, P; is the distribution of the ith interval of
the K'th subsystem expressed by

Pi=Y p} (52)
j=1
If the subsystem has a distribution given by
i i i) ,—€
pl=Cnli(€) e ", (53)

where C is a constant, n’j is the degeneracy of energy eigenlevel

e; The pseudosubsystem distribution at the same temperature
is expressed as

P, = CN;(E;))e EiP, (54)

where C is the same as in Eq. (53). In Appendix A, P; is
proven to be equal to P; for most energy intervals under the
quasicontinuous condition expressed as

%>>|E,»+1—Ei|> €} — Ei. (55)
Note that P; becomes a probability distribution with normal-
ization condition when the system as a whole is considered. It
is assumed that the quasicontinuous condition holds both for
the pseudosubsystem as well as the original subsystem. Now,
for the original subsystem,

()i =Y _ plet, (56)
J

i P;
() == piin—, (57)
j J

(e)k =Y Y phel, (58)
J

i
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(s)k = — ZZp,ln /, (59)
J

ZZ[)G ln—
KZZZPJ )’ (61)
i

while for the pseudosubsystem,

(60)

() = E; P, (62)
. 5. P

(8)i = —F;1n N (63)
@)k =) PE, (64)

. 5. P
Sk =—>_b In . (65)

5 P,

(s)k = — Y _ PE; In—, (66)
@)k =Y PE. (67)

Here, (...); stands for the contribution of the ith interval
of the pseudosubsystem or original subsystem to the system
property, while (. ..) ¢ stands for the contribution of the entire
Kth subsystem to the system property. The system properties
are then found as is done in Appendix A by summing the
subsystem properties over the index K. In Appendix A,
it is proven that under the quasicontinuous condition, a
pseudosubsystem property in a given energy interval is in most
cases equal to that of the original subsystem, and the associated
subsystem and system property as well as A, A,, Az, Ay, As,
and A5 are equal to those of the original subsystem. The latter
are written as

ol e @, e
A=y (@ 2T sy @] BT es) (o)

68)
@ . e @ . @ 1
A=le @ 2T e @ BT e @

The combination of M pseudosubsystems can then be used
as a numerical approximation of the original system for each
energy interval [Eq. (49)], i.e.,

Original system: % = L (((s); — P22 4 (o), 22
riginal system: — = — S)i — i— e)i— 191,
ginat sy dr 1 A A

P(t=0)=C) nie "’ (70)
J

dp; 1/ . A, A
Pseudosystem: — = — [ (§); — Pi—= + (&); —= ),
dt T A Ay

Pi(t =0) = CN;e EiP. (71)
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Using the time evolution of the pseudosystem, the property
evolution of the system, such as that for temperature and
entropy, can be determined.

IV. APPLICATION TO AN ISOLATED CHEMICALLY
REACTIVE IDEAL GAS MIXTURE

A. System definition and state representation
1. Microstate

The state space of a chemically reactive system is composed
of two subspaces, reactant and product. The energy eigenlevels
of the reactants and those of the products together form the
energy eigenlevels for the system as a whole. Denoting the
state space of the reactants by H"*"™ and that of the products
by P4t the system state space H takes the form

H = Hreactant oy Hproduct‘ (72)

The simple yet well-studied chemical reaction mechanism
considered here is

F+H & FH+H (73)

since it is well adapted to illustrating our general approach. Re-
action mechanisms in the vein of the general Guldberg-Waage
chemical relaxation equation are considered in Ref. [32]
where the SEAQT framework is used to model coupled
reaction mechanisms while in Refs. [33,34] complex, coupled
reaction-diffusion pathways are used to predict the effects of
microstructural degradation and chromium oxide poisoning
on the performance of a solid oxide fuel cell cathode.
Predictions made are compared with experimental data. A
study of chemical reaction rate is also given in Ref. [18].
In addition, Grmela provides a study using GENERIC [35]
of the entropy production that occurs in chemically reactive
systems represented by the general Guldberg-Waage chemical
relaxation equation.

Now, the available energy eigenvalues for one subspace (re-
actant or product) are constructed from the energy eigenvalues
of each degree of freedom, i.e.,

reactant

€ =é&.m +€.1, + €+ r, (74)

N = € py + € r1 + €0 FH + €00 (75)
The translational energy eigenvalue ¢, uses the form of the
infinite potential well, the rotational energy eigenvalue €, the
form of the rigid motor, and the vibrational energy eigenvalue
€, the form of the harmonic oscillator, i.e.,

K2 2 2 2
(ny,ny,n;) = — A + el + %
€Ny Ny, N, Sm Lx Ly LZ )

(76)

o JG4DR G+ DR
Gljm = T = )
(V) = <v + %)hw + Eg, (78)

where n,, ny,, and n; are the quantum numbers for the
translational degrees of freedom; j and m are the quantum
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numbers for the rotational degrees of freedom; and v is the
quantum number for the vibrational degrees of freedom. €, is
the disassociation energy of a given molecule (e.g., H, and
FH). Each combination of quantum numbers corresponds
to one energy eigenlevel of reactant or product without
degeneracy (provided the rotational state is distinguished
by the magnetic quantum number m). The system energy
eigenlevels are formed by all the available energy eigenlevels
of reactants and products. The separation of the two subspaces
{ereactanty and {eProduct) jg kept to maintain their clear physical
meaning. In the modeling, these two subspaces serve as two
subsystems in the discussion of system nonequilibrium state.

2. Density of state

For temperatures higher than the characteristic temper-
atures of translation and rotation, the energy eigenlevels

J

D(E)IE = /
Ziﬁil e=E

E E—e| E-Y M7 M-1
= dEf del/g dez.../ deM_lDl(el)Dz(eg)...DM_l(eM_l)DM E — Ze,- s
Ef 5 E i=1

14
M

where E? is the ground state for the ith density of states.

PHYSICAL REVIEW E 93, 012137 (2016)

distribute from the ground state to infinity with high density.
These spectrums can be approximated to be continuous. The
densities of states of translational and rotational energy for
species A are given by

2nV 301
D, 4(€)de = 7(2mA)zezde, (79)

D, s(e)de = ZhizAde.
In contrast, that for vibration is assumed to be discrete. To
describe the available energy eigenlevels, density of states
instead of individual energy eigenlevels are used because of
the extremely large number of the latter. Similar to the way of
dealing with individual energy eigenlevels, the density of states
is calculated separately for reactants and products. The joint
density of states from the densities of states of M independent
energy forms can be calculated from

(80)

D](E])DQ(@Q) . DM(eM)dE]dEQ e d@M

(81)

Specifically, the density of states for one subsystem of the system studied can be calculated by

Dreac(E)dE = f

€1, Hy T€r, 1, €0 1y T€ F=E

Dprod(E)dE = /

€. FHt€ FHt€ FH+E6 H=E

D, b, (€, 1,)Dr 1, (€7, 1,) Do 1, (€0, 11,) D1 p (€4, 7 )d€s myder pde, mde F,

Dy ru(€r,ru) Dy ru(€r,ru) Dy, ru(€y, ru) D u(€ n)de, pude, pudey rude; u.

(82)

(83)

The joint distribution of the density of states of translational and rotational energy eigenlevels takes the form

DI(E)dE = /

€1, 1y F€rH, T F=E

32nV

2nV
= (ZmHZ)ZT

h3
DYYUE)IE =
€ . rute Fute n=E
2V 32V

=3 (@2mpn)? e

where B(...,...) is the beta function. Generally, the energy
eigenlevels for a subspace are constructed from ¢ translational
and r rotational degrees of freedom, and the density of states
for the subsystem built from these eigenlevels takes the form

(86)

For temperatures not much greater than or less than or equal
to the characteristic temperature of the vibrational degrees of
freedom, the form of the density of state for each subsystem
is, respectively,

D, (EYdE o« E?""\dE.

D™*(E — €4 1,)dE = D**(E)dE,

t.r

87)

DPYE — ¢, py)dE = D™*(E)dE, (88)

t,r

Dy 1, (€1, 1,) Dy, 1, (€, 1,) Dy p (€, p)d€; myde, p,de; F
321, 1 33

ey 22 g (22 ) g,

@mr)? =573 (2 2) ¢

D, rr(€,ru)Dr ru(er,ra) Dy n(€ n)de; rude, rade, n

gl (33
2t B (2,2 ) de,
@mu)* =53 (2 2) ¢

(84)

(85)

(

where €, p, and €; py are the ground energy of vibrational
degrees of freedom of H, and F H, which are approximated
by the disassociation energies of H, and F H.

For temperatures much greater than the characteristic
temperature of the vibrational degrees of freedom, the form
of the density of state for each subsystem is, respectively,

D*(E)E =dE Y DS(E—e.m), (89)
v,e‘,,H2<E

DY EYE =dE Y DIYNE —e€nrn). (90)
v,€y ra<E

Finally, the energy eigenlevel information for reactant
({efea) and {n!**"}) and product ({e?"*} and {n®"*"*“}) s
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roduct
ireaclant EP }

obtained. The system has energy eigenlevels {e

roduct
reactant nP } .

and density of states {n] T

B. Numerical process
1. Cutoff energy

With the density of states for each subspace, the cutoff
energy for the system at a fixed energy corresponding to
an initial state or that of stable equilibrium can easily be
calculated. Given the density of states n(E) of a subsystem
and a type of probability distribution with parameter 6 which
takes the form that reduces to the canonical distribution when
6 =0,i.e.,

p(E) « D(E)E?e PE, 91)

the cumulative distribution function becomes

E
F(E) oc/
E

eround

D(EE’e PE dE'. 92)

The cutoff energy is then the inverse of the cumulative
distribution function F where § is a very small number, namely,

Eew = F~'(1-9). 93)

As an example, take a system consisting of an ideal gas
mixture that has a temperature lower than the characteristic
temperature of vibration but higher than that of translation and
rotation. This is indicative of the conditions for a very large
number of ideal gas applications (102 K ~ 10° K). The energy
eigenlevels for a subspace are constructed from ¢ translational
and r rotational degrees of freedom, and the density of states
for the subsystem built from these eigenlevels takes the form

D, ,(E) = CoE>'+~", (94)

where the procedure for determining Cy is given in previous
section [e.g., see Eqgs. (84) and (85)]. If the probability
distribution in the subsystem is a gamma function with
parameters § and 6, then

P(E) « D, ,(E)E?e™PE o E*01e™PE o T( + 6, B).
95)
The distribution among the subsystem energy eigenlevels
yields to the gamma distribution I'(« + 6, 8) with the follow-
ing parameter definitions:
lt + B : (96)
= — r, = -_—
72 kT
The distribution and cumulative distribution functions then
take the form

Ea+0—le—ﬁE ’3a+9

E) = — a+60—1 —ﬂE’
p( ) fooo E’“+97187ﬂE’dE/ F(Cl + 9) e
L)
E _ _ ’
Y E/ot+9 1,-BE dE’ 0.8E
F(E) — f~0 e _ V(a + 9/3 )’ (98)

fooo Ea+0—10—BE JE/ - C(a +0)

where ['(« + 6) is the gamma function evaluated at o + 6, and
y(o + 0,BE) is the lower incomplete gamma function. The
energy of the ground state is approximately zero. The cutoff
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energy is found from the inverse of the cumulative distribution
function such that

Ewi=F ' =680 +6,p). (99)

2. Pseudosystem

Since there are two subspaces for the chemically reactive
system considered here, i.e., one for reactants and the other
for products, two cutoff energies are calculated; and the larger
one is used to truncate the open interval of infinite energy
eigenlevels into a closed one. To establish the pseudosystem,
an energy interval AFE is chosen according to the quasicon-
tinuous condition (55). Two pseudosubsystems are then set
up, one for the reactants and the other for the products. The
pseudosystem for the composite system is the combination
of the two pseudosubsystems. The energy eigenvalue and
degeneracy for one pseudosubsystem corresponding to the
ith interval are then determined by integrating Eqs. (50) and
(51) over that interval where the summations are replaced by
integrals using the density of states D(E) so that

ei+AE
N; :/ D(E)dE, (100)
e

1 ‘e,>+AE
E = ﬁ/ D(E)E dE. (101)

Using Eq. (86) and considering only translational and ro-
tational degrees of freedom, the energy eigenvalue and
degeneracy for the ith energy interval is

ei+AE CO
N; = Co/ E“7VE = 2[(e; + AE)* — %], (102)
e o

i

b

e o 1

Ei _ @/ +AE EadE _ o (ei + AE) +1 _e;)l-f-
N; J., a+1 (e +AE)M™ —e¢f

(103)

where Cj and « are defined by Egs. (94) and (96), respectively,

and calculated via Egs. (82) and (83). Once the pseudosystem

has been defined in this way, the evolution of the isolated
chemically reactive system can be determined.

C. Initial condition
We provide the analytical solution for an initial condition
when the vibrational energy is frozen.
1. Initial condition 1: Second-order hypoequilibrium

For a second-order hypoequilibrium state, it is assumed
that the reactant energy eigenlevels and product energy
eigenlevels form subspaces, respectively. In either subspace,
the distribution is proportional to the canonical distribution.
Using Eqgs. (84), (85), (87), and (88),

P(E — €4.1)dE = p[*(E)dE x D;*(E)e P*dE

t,r
x E3¢ PEJE, (104)

PPYE — €0 r)dE = pIYU(E)E o DIV (E)e PPdE
x E3e PEJE. (105)
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Both distributions are I'(4,8) gamma distributions and both
normalization constants are 8*/ I"(4), where I"(4) is calculated
from the gamma function.

2. Initial condition 2: The gamma distribution

If the initial condition for one subspace (reactant or product)
takes the general form of a gamma distribution, then, for
example, the reactant subspace distribution is given by

P(E — €4 ;,)dE o< EXe PEJE (106)

since the product has little probability initially. Equation (106)
is the gamma distribution I'(4 +6,1/8). The mean and
variance of E take the form

440
Mean = % (107)
4+6
Var = + . (108)
B2

By varying 6, the influence of the initial condition can be
studied. For instance, the effusion process can result in a
gamma distribution if the probability distribution of one of
the reactant’s (e.g., F') energy eigenlevels is

pF(E)dE = pF(E)dE = B*Ee PEdE. (109)

This is the energy distribution of an effusion particle, which
can be acquired from the velocity distribution

m1/2
F(v)dv « vfy(v)dv o v x vZe %7 dv, (110)

where f), is the Maxwellian velocity distribution. The other
reactant H, has the Maxwellian probability distribution of its
energy eigenlevels given by

DI2(E)e PE

’35/2
= = E2 e PEQE
Z[,ﬁ(ﬂ)

H, —
P (EYE = = TG/2)

3

(111)

where fo is the density of state for H, with vibrational
degrees of freedom frozen, and Zfﬁ is the partition function.
This results in a gamma distribution for 6 = 0.5 in Eq. (106).
The initial reactant state is then

P(E — €4,m)dE
E
= pIS(E) = f pF(E — en)p™(er)de,
0

,39/2
=L F"?ePEQE.

Fo7) (112)

V. RESULTS AND DISCUSSION

A. Second-order hypoequilibrium initial condition

The fundamental theoretical result for the SEA equation of
motion is composed of two parts: the nonequilibrium kinetic
trajectory in state space and the subsystem temperatures. SEA
predicts a unique trajectory for nonequilibrium state evolution
(Sec. IIE), while the definition of subsystem and subsys-
tem temperature (Sec. IIF) provides a good framework for
studying the trajectory. Unlike phenomenological definitions
of nonequilibrium temperature, the subsystem temperature
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defined here is fundamental and has a clear physical picture:
the temperature is defined via the canonical distribution.
Furthermore, the principle of SEA leads to a set of very
well-defined physical and mathematical features for subsystem
temperature, which allow subsystem hypoequilibrium state
and temperature to be reasonable generalizations of the exist-
ing concepts of state and temperature at stable equilibrium. In
order to illustrate the above ideas, the nonequilibrium behavior
of the isolated chemically reactive system introduced earlier
is modeled using the SEAQT framework. A discussion of
results for the state evolution trajectory in state space and
on an energy-entropy (E-S) diagram is given first followed by
a discussion of results for the total probability and temperature
of the subsystems.

The initial state of the system is chosen to be a second-
order hypoequilibrium state, and the two subsystems are the
reactant and product subspaces. The temperatures of the two
subsystems for the initial nonequilibrium state are selected to
be 300 K and 400 K, respectively. Although it would be more
reasonable to choose the same temperature, the temperatures
chosen here are to better illustrate subsystem temperature
evolution. The total probability in the reactant subsystem
is 0.9999, and that in the product subsystem 0.0001. The
cutoff energy is 5.76 x 10719 J, and the energy interval is
8.84 x 10723 J. As a comparison, the real energy eigenlevel
interval is 2.62 x 10™* J, and the interval calculated with
the initial temperature is 1/8(t = 0) = 6.9 x 1072! J. Thus,
the quasicontinuous condition holds. There are 14 127 energy
eigenlevels in the reactant subspace (or subsystem) and 16 666
energy eigenlevels in the product subspace (or subsystem).
At the initial state, the system has more than a 0.999 999
probability of being distributed in the 3500 energy eigenlevels
below the cutoff energy of 5.76 x 10~!° J. Thus, a total of
30793 levels are used to represent with great accuracy (as
demonstrated below) the estimated 10'3° levels of the actual
system. The relaxation time is chosen to be 1 so that the kinetics
of state evolution is studied using dimensionless time.

Figure 1(a) shows the system state evolution trajectory
on an energy-entropy diagram [36]. For any state of the
system (nonequilibrium or equilibrium), the system state can
be mapped to one point on the energy-entropy diagram. The
bold solid concave curve is the stable equilibrium curve, and
any point on the curve represents a stable equilibrium state.
Because the stable equilibrium state has the maximum entropy
at a given energy, composition, and volume, there is no system
state available to the right of the stable equilibrium curve. Point
Ay is the initial state in the chemically reactive model. If the
system state evolution trajectory is mapped from state space
to the energy-entropy diagram, the trajectory is a horizontal
line (red line) at a given energy. Points A; to A4 are four
intermediate nonequilibrium states on the evolution trajectory,
and point B on the concave curve is the stable equilibrium
state.

Figure 1(b) shows the changes in the entropy and entropy
generation rate values as the system state evolves along
the trajectory. The entropy generation rate is not constant
along the dimensionless time axis. According to SEA, the
entropy generation rate is proportional t0 gs (g, gz)> Which
lies parallel to the constant probability and constant energy
hypersurface and is the perpendicular component of the
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FIG. 1. (a) System state evolution trajectory on an energy-entropy
diagram; (b) entropy (black line) and entropy generation rate
[green (light gray) line] evolutions as a function of dimensionless
time.

entropy gradient to the manifold L(g;,gg). Thus, the entropy
generation rate reveals the entropy gradient changes along the
trajectory in state space.

Figure 2(a) shows the probability distribution among the
energy eigenlevels when the system is at states Ay to A4 and
B in Fig. 1(a). In order to better show each distribution’s
evolution, each curve is normalized by its peak and the result
shown in Fig. 2(b). In Fig. 2(a), one can observe that the
system probability transfers from the reactant subsystem to
the product subsystem. At the same time, the distributions of
both subsystems evolve from narrow to wider distributions,
indicating that the temperature is increasing. The distributions
remain canonical at all times. The distribution evolution for
each subsystem is more clearly seen in Fig. 2(b).

As discussed in Sec. II F, the nonequilibrium evolution of
state can be described via the evolutions of «,()Z,[B,(t)]
and B, (t), which correspond to the particle number N, (¢) and
temperature 7,,(t) = 1/kyB,(t). Z, is the partition function of
the subsystem. Given the evolution of the particle number and
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FIG. 2. System trajectory in state space represented by (a) the
evolution of the probability distribution among the energy eigenlevels
and by (b) the evolution of the normalized distributions. The four
dashed lines correspond to four of the nonequilibrium states along
the trajectory (states A; to A4 in Fig. 1), while the single narrow solid
line is the distribution for the initial state (Ag) and the single bold
solid line is that for the equilibrium state (B).

temperature, one can rebuild the probability distribution via
Eq. (38). Figure 3(a) shows the particle number evolution for
the process in which reactant changes to product. Figure 3(b)
shows the temperature evolution. The energy released by the
chemical reaction heats up both the reactant and product, and
the manner in which the temperature increases follows the
SEA trajectory. At the end, when the system reaches stable
equilibrium, the temperatures of the subsystems are equal, and
the nonequilibrium temperatures converge to that for stable
equilibrium. As already indicated in the discussion above
surrounding Fig. 2(b), the physical meaning of this temperature
increase is a broadening in the probability distribution among
the energy eigenlevels.
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FIG. 3. (a) Evolutions of particle number and reaction rate and
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black line and the green (light gray) line represent the F H,H and
H,,F, respectively, and the red (dark gray) line represents reaction
rate.

B. Influence of the density of states

Using a comparison of system state evolution with and
without vibrational energy eigenlevels included in the system
description, one can study how the density of states influences
system behavior. Figure 4(a) shows the comparison of the
corresponding stable equilibrium curves and the evolution
trajectory using the same initial subsystem temperatures.
Because the stable equilibrium temperature is less than 4000 K
[Fig. 3(b)] and the characteristic temperature of vibration
is about 6000 K, the stable equilibrium curves show some
difference, which is consistent with the result found from
equilibrium thermodynamics. Figure 4(b), in contrast, shows
the difference of the two systems in the nonequilibrium region.
At the beginning, the two systems perform the same. As the
entropy generation rate approaches the maximum, the two
systems perform differently and the system with vibrational
energy eigenlevels exhibits a larger entropy and entropy gener-
ation rate. This phenomenon can be explained using subsystem
temperature. The initial temperature is about one order of
magnitude less than the characteristic temperature of vibration,
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FIG. 4. Comparison of (a) the energy-entropy diagrams and (b)
the entropy (black line) and entropy generation rate [green (light
gray) line] evolutions for a system with and without vibrational
degrees of freedom. The solid lines are for the system with vibrational
energy eigenlevels, while the dashed lines are for the system without
vibrational levels.

which leads to the vibrational energy eigenlevels being frozen.
Thus, the two systems perform similarly. However, as each
subsystem temperature increases [Fig. 3(b)], the vibrational
energy eigenlevels are activated, resulting in a difference in
performance between the two systems.

Figure 5(a) shows the difference in the system stable
equilibrium distributions with and without vibrational en-
ergies. Figure 5(b) shows the density of states difference.
One can observe that although total properties such as the
entropy change little, the probability distribution and even
the equilibrium particle number changes are somewhat more
significant. All the differences result from the density of states
changing.

C. Influence of the initial condition on the trajectory

Another important study is for the case when the initial
condition is a very high order hypoequilibrium state. In that
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case, although the theoretical discussion in Sec. II F is still
valid, the number of subsystem divisions of the system may
be so high that characterizing each nonequilibrium state as an
Mth-order hypoequilibrium state may no longer be practical.
However, the density of states method still permits the solution
of the equation of motion to very high accuracy. This section
uses the general gamma distribution to study the influence of
initial condition on the nonequilibrium trajectory by varying 6
in Eq. (106). The mean value of the energy for three cases with
different 0’s is chosen to be the same in order to ensure the
same system total energy and the same final stable equilibrium
state. From Eqgs. (111) and (112), the ratio of g in the three
casesis B, : By : B = 1:2:3 and the ratio of the variance
of energy is Var_; : Vary: Var, = 1:1/2:1/3. The initial
distribution for the reactant subspace is shown in Fig. 6, which
takes 0.9999 of the total probability. It can be observed that
for lower 6, there is more probability distributed in the higher
energy eigenlevels (energies greater than —6.4 x 107'° J) and
the energy variance is larger.
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The evolution in dimensionless time is studied in Fig 7. In
order to facilitate the comparison, all the curves are shifted
such that time 0 is the dimensionless time when the maximum
reaction rate is reached, and both Figs. 7(a) and 7(b) use the
same O time. In Fig. 7(a), it is observed that the beginning of
the three cases is quite different, while the reaction processes
after time O are similar. Furthermore, the negative 6 case takes
less time to arrive at stable equilibrium than the zero 0 case
(Maxwellian distribution), and the positive 6 case takes even
more. In Fig. 7(b), the entropy evolution is also similar after
time 0. However, the beginning parts of the evolution exhibit
three features. The first is that the initial entropy of the negative
and positive 6 cases are both smaller than that for 8 = 0 since
the Maxwellian distribution provides the largest entropy for
given energy. That also means that the initial entropy cannot
decide how fast the reaction process is, which instead is
decided by the value and the sign of 8. The second feature
is that for negative 6, the entropy evolution is faster than that
for the zero 6 case, and the maximum of the entropy generation
rate is larger than that for the zero 6 case. The opposite is the
case for the positive 8 case. Both Figs. 7(a) and 7(b) show
that the negative 6 provides the faster reaction process. One
possible explanation is that for lower 6, more probability is
distributed in the higher energy eigenlevels, which accelerates
the reaction process. Another view is that the lower 6 case
has lower 8, which phenomenologically can be explained as
higher temperature. The final or third feature is that in the
evolution after time 0, the probability distributions for the
positive and negative cases are not Maxwellian distributions
in the strict sense used in the next section even though the
particle number and entropy evolution are almost the same.
However, as shown in Figs. 7 and 8, a Maxwellian distribution
in each subspace, for a second-order hypoequilibrium state,
can be a very good approximation for studying a reaction’s
intermediate nonequilibrium states.
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In Fig. 8, the trajectory of the chemical reaction is
illustrated using the product particle number and system
entropy. The particle number of the product can be regarded
as an equivalent variable to the reaction coordinate here. By
using product particle number instead of dimensionless time,
only the information of the intermediate states is kept. It
must be pointed out here that in Fig. 8, any trajectory with
a positive dS/dN, i.e., a monotonically increasing function
linking the initial state and stable equilibrium, does not
violate the second law of thermodynamics. However, the
trajectories plotted are not just any trajectories but those
uniquely predicted by SEA, the maximum-entropy-production
(MEP) trajectories. It can be observed that the trajectories
for the three 6’s chosen are very similar in Fig. 8(a) except
at the very beginning [shown in Fig. 8(b)]. As mentioned
before, even though the probability distributions do not
become second-order hypoequilibrium distributions until very
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late (after the product particle number reaches 0.5), the
second-order hypoequilibrium state can provide a very good
approximation of the intermediate nonequilibrium states. In
addition, in Fig. 8(b), one can observe that the zero 6 case has
the largest initial entropy and lowest d.S/d N. The trajectories
at the beginning can be separated into two parts by the state
which the particle number reaches at 0.002. From 0 to 0.002,
dS/dN for the nonzero 6 case has a huge difference with that
for the zero 6 case. If the entropy is used as the measure of the
difference of the distributions, the larger difference results in a
greater speed of the non-Maxwellian distribution approaching
the Maxwellian one. In this process, the degree of reaction
only changes a little when compared with the change in the
total particle number of the product. After the particle number
reaches 0.002, there is little difference in dS/dN between
the three cases, even though the difference in entropy lasts
until the system distribution reaches that for a second-order
hypoequilibrium state. However, this difference is small when
compared with the total system entropy. Recall from Fig. 7
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that there is quite a big difference in the state evolutions for
the three cases until time 0, when the product particle number
reaches about 0.5. For the range of product particle number
from 0.002 to 0.5, the difference in entropy is negligible
for the intermediate states of the trajectory but nonetheless
has a large influence on the evolution in dimensionless
time.

D. Numerical error

In Fig. 9, the state of the system without vibrational energy
eigenlevels is compared with the analytical solution of the
state, the gamma function, since the analytical solution for a
system with vibrational levels is difficult to acquire. Figure 9
shows the relative difference of the numerical solution with
the analytical solution at states Ag to A4 and B. The relative
errors of almost all the energy eigenlevels are less than 1072
There are 14 out of the 30793 eigenlevels where the relative
error is larger than 1072, However, the total probability for
these levels is less than 6.5 x 1078, The error is larger for
these energy eigenlevels since they coincide with the region
where the density of states is lower and increasingly steep.
Thus, this error can be explained by truncation error. It is also
observed that the error is larger at the initial state than that at
stable equilibrium. In addition, the states at lower subsystem
temperatures have narrower distributions, whose accuracy is
limited by the quasicontinuous condition. The energy interval
chosen is about 1072 times lower than 1 /B = kT, and that
accuracy sets an upper limit on the relative error at the initial
state. In conclusion, the density of states method developed
and used here provides a very accurate numerical solution
to the SEAQT equation of motion for a system with a very
large number of energy eigenlevels. Furthermore, the criterion
used in the previous section to check whether a distribution
is Maxwellian or not is determined from the study here, i.e.,
if a distribution of energy has its distribution across most of
the energy eigenlevels (for example, 99% of them) very close
to the Maxwellian distribution (relative difference less than
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1%) with the same mean value of energy, the distribution is
regarded as a Maxwellian distribution.
Finally, validation of the numerical accuracy of the time
evolution can be acquired through a value defined by
A= kb( IBproduct _ IBreactant) =1 /Tproduct -1 /Treactant.
(113)
According to Sec. II F, gproduct apnd grroduct yield to ODE
(42) with different initial temperatures. Subtracting the ODE
equations for gProduct and BProduct reqults in
dA
dt
Using the dimensionless time scale for T = 1, the analytical
solution of In A yields

In A(t) = In(1/300 — 1/500) — t = —6.6201 — 1.

_ _%A, A(0) = 1/300 — 1/500. (114)

(115)

Plotting In A as a function of dimensionless time as is done
in Fig. 10 shows the accuracy of the numerical solution for
different times. The deviation starts from time 12 onward.
At dimensionless time 12, A, which is the difference in the
inverse of the reactant and product temperatures, has a value
smaller than 10~8. Thus, this validation proves that the density
of states method can provide an accurate numerical solution
for the equation of motion.

VI. CONCLUSIONS

In the preceding study, the nonequilibrium state evolution
trajectory for a chemical reaction process is predicted using
a first-principles, thermodynamic-ensemble based approach,
which provides a computationally simpler, alternative global
method for predicting the chemical kinetics of systems. This is
well illustrated via the definition of hypoequilibrium state and
the existence of canonical distributions outside the realm of
stable equilibrium. The nature of the SEA equation of motion
directly leads to the existence of a unique nonequilibrium
evolution trajectory in state space, which represents the
kinetics. With the categorization of nonequilibrium states
by different ordered hypoequilibrium states, subsystem and
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subsystem temperatures serve as a good description of the
trajectory in high-dimensional state space, whose properties
are ensured by the equation of motion or the principle of SEA.
In addition, with the goal of being able to model systems
with a very large number of energy eigenlevels (for the
system considered here, on the order of 10'*°), the concepts of
degeneracy and density of states are utilized, and the equation
of motion for the degenerate system is developed. The equation
of motion for an energy interval is presented and the numerical
process to solve it introduced.

The clear physical meaning of the evolution trajectory,
subsystem, and subsystem temperature are shown in the results
as are the chemical reaction process via particle number
evolution and subsystem heating via temperature evolutions.
This work provides a reasonable generalization of the concept
of temperature at stable equilibrium and offers a framework to
describe and study nonequilibrium states and their relaxation
process. In addition, even if the order of the hypoequilibrium
state is very high so that using this concept in such a case
may not be practical, the density of state method still permits
solution of the equation of motion so that the nonequilibrium
thermodynamic trajectory, especially that for the intermediate
states of the system, can be determined with the SEAQT
equation of motion. As to the influence of the initial state,
it is shown that a second-order hypoequilibrium state is
a good approximation for determining the nonequilibrium
thermodynamic trajectory when the initial condition or state is
that of a gamma distribution for the two subsystems. It is worth
noting that although the results given in this paper are based on
a two-subsystem division and second-order hypoequilibrium
state, the approach presented here can be easily applied to
a system with a much higher number of subsystems. What
order of hypoequilibrium state is sufficient for arriving at
an approximation is left as an open question for future
work.

Finally, different from other methods for studying nonequi-
librium systems, which are phenomenological or based
on mechanics, this paper introduces a practical alterna-
tive approach based on a first-principles thermodynamic
framework for studying the relaxation of nonequilibrium
states.
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APPENDIX A: PSEUDOSYSTEM

In this Appendix, a system property calculated by the
density of states method developed here is proven to be a good
approximation of the property’s true value. For the moment of
energy in each interval of a given subspace (subsystem),
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The third equal sign of Eq. (A1) and the second of Eq. (A2)
hold when

Zn
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: <1

(A3)
which is the case for the intervals other than the lowest ones. In
Fig. 9, it is shown that those intervals account for only a very
small probability, if the probabilities of the original system and

pseudosystem have the forms
pl=Cn} (ej»)ge_e}ﬁ, (A4)

P, = CN:(E;)le EiP, (A5)

For the properties of each interval of a given subspace
(subsystem),
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The fourth equal sign in Egs. (A6) and (A7) results from the
quasicontinuous condition given by

—B(e)i + PiInC — ijeln b

C — P.OI(E;) = (5);.

1 .
5 > Eiv — Eil > € — Ei (A9)

e EENB = (A10)
In addition, under the quasicontinuous condition and the as-
sumption that the probability distribution p'; or the distribution

P; or P; have the property of higher order moment convergence
at least to the second order in energy (e.g., as for the case of
an ideal gas), the summation of discrete energy eigenlevels
can be approximated by an integral over a continuous
spectrum. Thus, properties for a given subsystem are found
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Note that both discrete summations of the original system and
the pseudosystem can be regarded as the Riemann summation
of the integral, and the difference of the Riemann summation
and the integral is of second order or greater for the energy
interval. This means that the difference between both Riemann
summations (original system and pseudosystem) is of second
order or greater when the quasicontinuous conditions hold.
The properties for the system as a whole are then given by

(Z ) (@) = <Z<é>i>, (A15)
i K K

(Zm) . (Al6)
K

(A17)

o=y
o=y

(A18)

where the summation is over all subsystems. With these
expressions and the proof above linking the original and
pseudosubsystem properties, it is also clear that (A;), (A,),
and (A5) are equal to (A;), (A»), and (A3) under the quasicon-
tinuous condition. Thus, the solution of the equation of motion
for the pseudosystem [Eq. (71)] can be used as a numerical
approximation of that for the original system Eq. (70).
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APPENDIX B: ONSAGER INVESTIGATION

Some results of the Onsager investigation using the con-
cepts of hypoequilibrium state and nonequilibrium intensive
properties found in Refs. [27,28] are given in the following. For
a general discussion of the Onsager relations in SEAQT using
the language of quantum mechanics, the reader is referred to
[25]. If the system is in an Mth-order hypoequilibrium state,
the probability evolution yields Eq. (32). For simplicity, the
following definition is made:

K =1InzK —1npX. B1)
Thus, the probability evolution of one energy eigenlevel is
given by
pX@) g _BK(1)eK
ZKBK (i ‘
ZE[BE (1]
= nKe=@ O-F e (B2)

pF () =

aX and X are nonequilibrium intensive properties in the K th
subspace, corresponding to the extensive properties of pX and
EX . Furthermore, by defining

B = T, (B3)

the particle number and energy evolution of the K th subspace
can be acquired from Eq. (36) by summation over one
subspace, i.e.,

dpX 1 1
% =A@ o+ —EXBE —p).  (BY
K 1 1
"5 = —EX@f —a)+ —(A)KBX - p).  (BS)
t T T

where (e?)X is defined by Eq. (61) and pX and EX are the

probability and energy in the Kth subspace. When a system

is in an Mth-order hypoequilibrium state and goes through a

pure relaxation process, arelation for the evolution of extensive

properties evolution in one subspace exists and is expressed as
K EK K

dS =~ d — +( K—l)— (B6)

where SX is the entropy in the K th subspace. This is the Gibbs
relation for the subspace. The physical meaning of % and a¥

is then given by
ask 1
K _ = —, B7
p (8EK>,,K Tk ®7)

K _ (95" uk . (9EK
—_ = a_K = __k’ I[,L = X B (BS)
P~ J gx T ap SK

where TX is the subspace temperature and pX is its chemical
potential with respect to the subspace probability pX. The
differential change in the total entropy, which for a pure
relaxation process is equivalent to the entropy generation, is

then written as
Z,BKdEK + Z(a — DdpX

ds = ZdSK

=Y (B¥ — BdEX + Y (@K —wapX,  (BY)
K K
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where both energy (3} dEX = 0) and probability (3" dpX =
0) conservation have been applied. The Casimir condition
holds and J£ = dEX /dt and J ' = dp* /d1 are defined to be
the internal fluxes of energy and probability inside the system,
while X5 = X — B and X§ = aX —a are the conjugate
forces. Thus,

ds K K K K
E:ZXEJE +ZXPJP'
K K

The Onsager relations are acquired from Egs. (B4) and (BS)
in the form of J = AX, where A is symmetric and positive
definite, so that

(B10)

1 1

I =—pfX5 + —EFXE, (B11)
T T
1 1

JEK = ;EKX;( + ;<e2)’(x§, (B12)

while the quadratic dissipation potential in force representation
[30,31] is given by
1 1
EX,X) = =(X,AX) = — KX —a)?
X.X) = (X, AX) 21;[17(0( @)
+2E5 @ —a)(B" — B)+ () (B — 1.
(B13)
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Furthermore, even though the following constraints apply to

the fluxes
K K

the reciprocity seen in Eqgs. (B11)-(B13) is fully consistent
with the Onsager theory since according to Gyarmati [30]
the validity of Onsager’s reciprocal relations is not influ-
enced by a linear homogeneous dependence valid amongst
the fluxes. Thus, the physical interpretation of Eqs. (B11)—
(B13) in terms of hypoequilibrium state and nonequilib-
rium intensive properties does not require a reformulation
in terms of independent fluxes even though this could be
done.

Thus, from the entropy generation of a nonequilibrium
isolated system derived from the relaxation gradient dynamics,
which are based on the geometry of system state space, one
is able to arrive at the Onsager relations and the quadratic
dissipation potential using the concepts of hypoequilibrium
state and nonequilibrium intensive properties. Alternatively,
one can arrive at these relations and this potential using
a variational principle in system state space as is done in
Ref. [25]. Of course, the Onsager relations and quadratic
dissipation potential also correspond to a variational principle
in the space spanned by conjugate forces and fluxes [30].
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