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This paper presents a nonequilibrium thermodynamic model for the relaxation of a local, isolated system in
nonequilibrium using the principle of steepest entropy ascent (SEA), which can be expressed as a variational
principle in thermodynamic state space. The model is able to arrive at the Onsager relations for such a system.
Since no assumption of local equilibrium is made, the conjugate fluxes and forces are intrinsic to the subspaces
of the system’s state space and are defined using the concepts of hypoequilibrium state and nonequilibrium
intensive properties, which describe the nonmutual equilibrium status between subspaces of the thermodynamic
state space. The Onsager relations are shown to be a thermodynamic kinematic feature of the system independent
of the specific details of the micromechanical dynamics. Two kinds of relaxation processes are studied with
different constraints (i.e., conservation laws) corresponding to heat and mass diffusion. Linear behavior in
the near-equilibrium region as well as nonlinear behavior in the far-from-equilibrium region are discussed.
Thermodynamic relations in the equilibrium and near-equilibrium realm, including the Gibbs relation, the
Clausius inequality, and the Onsager relations, are generalized to the far-from-equilibrium realm. The variational
principle in the space spanned by the intrinsic conjugate fluxes and forces is expressed via the quadratic dissipation
potential. As an application, the model is applied to the heat and mass diffusion of a system represented by a
single-particle ensemble, which can also be applied to a simple system of many particles. Phenomenological
transport coefficients are also derived in the near-equilibrium realm.
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I. INTRODUCTION

The study of nonequilibrium relaxation processes including
chemical kinetics, mass diffusion, and heat diffusion is typi-
cally accomplished using approaches based on microscopic
mechanics or thermodynamics. With the former, system state
space is spanned by microstates, and the governing equation is
based on the dynamics of classical mechanics (e.g., molecular
dynamics [1] or kinetic theory [2]), quantum mechanics
(e.g., nonequilibrium Green’s functions [3] or the quantum
Boltzmann equation, i.e., the Uehling-Uhlenbeck-Boltzmann
equation [4–6]), or a stochastic process (e.g., Monte Carlo
simulation of the Ising model [7]). These approaches provide
complete information on the microscopic process, such as
individual particle collisions or quantum state scattering.
However, the large amount of very detailed information
required inevitably results in large computational burdens,
which limit the applicability of these approaches.

Approaches based on thermodynamics, on the other hand,
are not similarly burdened and are able to generally capture
the features of the relaxation process of interest via, for ex-
ample, the Onsager relations. Approaches of this type include
nonequilibrium thermodynamics [8,9], linear-response func-
tions and the fluctuation-dissipation theorem [10], stochastic
thermodynamics [11], extended irreversible thermodynamics
[12], etc. The thermodynamic features captured can be
regarded as a coarse-graining of the microscopic dynamics
or as a pattern in ensemble evolution [13,14], which is compu-
tationally more efficient. However, most of these approaches
have limited or no applicability in the far-from-equilibrium
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realm, since the local or near-equilibrium assumption is needed
or analytical solutions are only available at steady state. In
addition, their governing equations are phenomenological or
stochastic in nature, and thus they do not have a first-principles
basis. To address these issues and push the application of
thermodynamic principles further into the nonequilibrium
realm, it is of great importance to (i) find a general and
simple description of a nonequilibrium state corresponding
to a thermodynamic pattern of the microscopic description,
(ii) fundamentally define the macroscopic properties of any
thermodynamic state (i.e., extensive or intensive properties
for both equilibrium and nonequilibrium states), and (iii) use a
thermodynamic governing equation based on first principles.

Steepest-entropy-ascent quantum thermodynamics
(SEAQT), which is a first-principles, thermodynamic-
ensemble-based approach, addresses all of the issues
raised above, providing a governing equation able to
describe the nonequilibrium process from an entropy
generation standpoint. The description of a system state
is based on the density operator of quantum mechanics
or the probability distribution in state space of classical
mechanics. The macroscopic properties of entropy, energy,
and particle number, which are well defined for any state
of any system [15], are used to develop the governing
equation and describe system state evolution. Recently,
this description has been simplified via the concept of
hypoequilibrium state [16], which captures the global
features of the microscopic description for the relaxation
process. In addition, the concept of nonequilibrium intensive
properties introduced in [16] based on the concept of
hypoequilibrium state enables a complete description of the
nonequilibrium evolution of state when combined with the set
of nonequilibrium extensive properties. Unlike the intensive
property definitions of other nonequilibrium thermodynamic
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approaches (definitions that require a local-equilibrium,
near-equilibrium, or steady-state assumption or a phenomeno-
logical basis), the definitions in the SEAQT framework are
fundamental and available to all nonequilibrium states and
are especially suitable for the description of the evolution in
state of relaxation processes. Both of these concepts enable
the generalization of many equilibrium (or near-equilibrium)
thermodynamic relations, such as the Gibb’s relation, the
Clausius inequality, the Onsager relations, and the quadratic
dissipation potential into the far-from-equilibrium realm.

To describe the SEAQT framework, the paper starts with a
derivation in Sec. II A of the SEAQT relaxation dynamics from
the geometry of system state space. Section II B distinguishes
the kinetic (trajectory) and dynamic (time-dependent) features
of the relaxation. Some useful mathematical features of the
relaxation process are then presented in Sec. II C, enabling
the definition of the concepts of hypoequilibrium state and
nonequilibrium intensive properties. As an alternative to the
geometric derivation from state space, the relaxation dynamics
of SEAQT can also be derived using a variational principle
in system state space, as is done in Sec. II D. Section III
then follows with a discussion of mass diffusion in a local,
isolated system in nonequilibrium. Subsequently, the transport
equations, the Gibbs relation, and the Onsager relations
are generalized for the nonequilibrium relaxation process to
the far-from-equilibrium realm, and the quadratic dissipation
potential is given to complete the link from the variational
principle in system state space to that for the conjugate fluxes
and/or forces [9]. Section IV then discusses the process of heat
diffusion by choosing a set of system constraints different from
those used for mass diffusion. In Sec. V, the SEAQT model
is applied to the study of the heat and mass diffusion of a
simple system consisting of an ideal gas (hydrogen), which can
be represented by a single-particle ensemble. Linear behavior
in the near-equilibrium realm provides the phenomenological
transport equations, and higher-order, nonlinear behavior in
the near-equilibrium realm is also studied. Finally, Sec. VI
concludes the paper with some final comments.

II. THEORY: SEAQT EQUATION OF MOTION

The basic framework of SEAQT is introduced in this
section. This framework describes the relaxation process of
a local, isolated system in nonequilibrium based on thermody-
namic concepts. To begin with, the equation of motion for such
a system is derived in Sec. II A from the geometric principle
of steepest entropy ascent. This is followed in Sec. II B by
a discussion of the kinetics and dynamics of the relaxation
process, which enable the study of the thermodynamic trajec-
tory regardless of the details of the microscopic interactions.
A description of the nonequilibrium state and its evolution
for the relaxation process is then given in Sec. II C using
the concepts of a hypoequilibrium state and nonequilibrium
intensive properties. Finally, in Sec. II D, a presentation of the
variational principle of steepest entropy ascent is used to derive
the SEAQT equation of motion for the local system.

A. SEAQT equation of motion for an isolated system

Based on the discussion by Grmela [13,14,17] and Beretta
[18,19], the general form of a nonequilibrium framework is

a combination of both irreversible relaxation and reversible
symplectic dynamics. If written in the generalized form of the
Ginzburg-Landau equation [13,19], the equation of motion
takes the following form:

d

dt
γ (t) = XH

γ (t) + YH
γ (t), (1)

where γ (t) represents the state evolution trajectory, XH
γ (t) and

YH
γ (t) are functions of the system state γ (t), and they represent

the reversible symplectic dynamics and irreversible relaxation
dynamics, respectively. In the SEAQT framework, the system
state is represented by the density operator ρ̂, while XH

γ (t)

follows the Schrödinger equation and YH
γ (t) is derived from the

SEA principle. Thus,

dρ̂

dt
= 1

i�
[ρ̂,Ĥ ] + 1

τ (ρ̂)
D̂(ρ̂), (2)

where τ is the relaxation time, which represents the speed of
system evolution in Hilbert space, and D̂ is the dissipation
operator determined via a constrained gradient in Hilbert
space. A metric tensor must be specified in the derivation of
this dissipation term, since it describes the geometric features
of the Hilbert space [18].

In the application of modeling heat and mass diffusion
presented here, the system is restricted to the class of
dilute-Boltzmann-gas states in which the particles have no
quantum correlation between eigenstates and are indepen-
dently distributed [20]. Such states can be represented by a
single-particle density operator that is diagonal in the basis
of the single-particle energy eigenstates. The Hilbert space
metric chosen is the Fisher-Rao metric, which is uniform in
different dimensions of Hilbert space. Under these conditions,
the symplectic Schödinger term in the equation of motion
vanishes. Thus, the focus in this paper is on the irreversible
relaxation process only.

A group of energy eigenlevels {εi, i = 1,2, . . . } is deter-
mined from the system Hamiltonian. The state of the system
can then be represented by a probability distribution among the
energy eigenlevels {pi, i = 1,2, . . . }, which are the diagonal
terms of the density operator. Using the Fisher-Rao metric
of the probability space {pi, i = 1,2, . . . }, one can define
the distance in probability space, which can be used as the
state distance. Equivalently, the square root of the probability
distribution {xi, i = 1,2, . . . } can be used to represent the
system state with the result that the Fisher-Rao metric of
the probability space becomes the Euclidean metric in the
square root of the probability space of {xi, i = 1,2, . . . }. The
latter representation is used in the paper. Both are expressed
as follows:

State: {pi, i = 1,2, . . . },

Distance: dl = 1

2

√√√√∑
i

pi

(
d ln pi

dθ

)2

dθ, (3)

State: {xi, i = 1,2, . . . },

Distance: dl =
√∑

i

(dxi)2, (4)
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where dl is the distance between p(θ + dθ ) and p(θ ) or x(θ +
dθ ) and x(θ ), and θ is a continuous parameter. An extensive
property of the system can then be defined as a function of the
state {xi}, such that

I =
∑

i

x2
i , (5)

E = 〈e〉 =
∑

i

εix
2
i , (6)

S = 〈s〉 =
∑

i

−x2
i ln

(
x2

i

)
, (7)

where 〈· · · 〉 indicates the ensemble average. The von Neumann
formula for entropy is used, because as shown in [21], it has
all the properties required by thermodynamics. The gradient
of a given property in state space is then expressed by

gI =
∑

i

∂I

∂xi

êi =
∑

i

2xi êi , (8)

gE =
∑

i

∂E

∂xi

êi =
∑

i

2εixi êi , (9)

gS =
∑

i

∂S

∂xi

êi =
∑

i

[ − 2xi − 2xi ln
(
x2

i

)]
êi , (10)

where êi is the unit vector for each dimension. Furthermore,
for an isolated system, the system satisfies the conservation
laws for probability and energy, i.e.,

I =
∑

i

x2
i = 1, E =

∑
i

εix
2
i = const. (11)

The principle of SEA upon which the equation of motion is
based is defined as the system state evolving along the direction
that at any instant of time has the largest entropy gradient
consistent with the conservation constraints. The equation of
motion is thus given by

dx
dt

= 1

τ (x)
gS⊥L(gI ,gE ), (12)

where τ , which is a function of the system state, is the
relaxation time, which describes the speed at which the state
evolves in state space in the direction of steepest entropy
ascent. L(gI ,gE) is the manifold spanned by gI and gE , and
gS⊥L(gI ,gE ) is the perpendicular component of the gradient of
the entropy to the hypersurface that conserves the probability
and energy. It takes the form of a ratio of Gram determinants
expressed as

gS⊥L(gI ,gE ) =

∣∣∣∣ gS gI gE
(gS,gI ) (gI ,gI ) (gE ,gI )
(gS,gE ) (gI ,gE ) (gE ,gE )

∣∣∣∣∣∣∣(gI ,gI ) (gE ,gI )
(gI ,gE ) (gE ,gE )

∣∣∣ , (13)

where (. . . , . . . ) denotes the scalar product of two vectors in
state space. The explicit form of Eq. (13) for {pj } is thus [20]

dpj

dt
= 1

τ

∣∣∣∣−pj ln pj pj εj pj

〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣∣∣∣∣∣∣ 1 〈e〉
〈e〉 〈e2〉

∣∣∣ , (14)

where

〈e2〉 =
∑

i

ε2
i x

2
i , 〈es〉 =

∑
i

−εix
2
i ln

(
x2

i

)
. (15)

The state representation and the equation of motion can
be simplified by combining degenerate energy eigenlevels
[16]. The system is defined by a group of different energy
eigenlevels {εi, i = 1,2, . . . } and their degeneracy {ni, i =
1,2, . . . }. The state of the system is described by a probability
distribution among the energy eigenlevels {pi, i = 1,2, . . . }
or square root of the probability {xi, i = 1,2, . . . }. As a result,
the equation of motion changes to

dpj

dt
= 1

τ

∣∣∣∣∣
−pj ln

pj

nj
pj εj pj

〈s〉 1 〈e〉
〈es〉 〈e〉 〈e2〉

∣∣∣∣∣∣∣∣ 1 〈e〉
〈e〉 〈e2〉

∣∣∣ , (16)

where the properties are defined by

〈e〉 =
∑

i

εix
2
i , 〈s〉 =

∑
i

−x2
i ln

(
x2

i

ni

)
,

〈e2〉 =
∑

i

ε2
i x

2
i , 〈es〉 =

∑
i

−εix
2
i ln

(
x2

i

ni

)
. (17)

B. Nonequilibrium evolution: Kinetics and dynamics

In general, the equation of motion for a system with a given
group of conservation laws takes the form

dpj

dt
= 1

τ (p)
Dj (p), (18)

where Dj (p) is calculated from the conservation laws and the
principle of steepest entropy ascent [22]. Specifically, it takes
the form of Eq. (14) for an isolated system yielding mass and
energy conservation.

Since for a given initial state of the system the nonequilib-
rium thermodynamic path of state evolution is uniquely solved
from Eq. (18), the path can be used to define a new parameter
τ̃ given by

dτ̃ = 1

τ [p(t)]
dt or τ̃ =

∫
path

1

τ [p(t ′)]
dt ′ = τ̃ (t), (19)

where τ̃ is called the dimensionless time. With this time, the
independent variable for the equation of motion can be changed
so that

dpj

dτ̃
= Dj (p). (20)

The solution of this equation is written as

pj = pj (τ̃ ). (21)
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Independent of how the relaxation time τ depends on the real
time t and the state, the equation of motion can always be
transformed to Eq. (20) with the parameter change defined by
Eq. (19). Furthermore, the evolution of the system state follows
the same function [Eq. (21)] in τ̃ . Physically, this means that
the system follows the same trajectory in state space. By using
this transformation, the kinetics and dynamics of the system
are separated. The former is found via Eqs. (20) and (21) and
result in the trajectory in state space based on the parameter τ̃

or a constant relaxation time τ . The dynamics are found via
Eq. (18) and the functional dependence τ = τ (p) [Eq. (19)]
and result in the trajectory in state space based on the real
time t .

In the discussion on mass diffusion (Sec. III) and heat
diffusion (Sec. IV), it is shown that the kinetics (or its
associated trajectory) of the nonequilibrium relaxation results
in a generalized Gibbs relation and the Onsager relations in the
far-from-equilibrium realm and in linear phenomenological
equations in the near-equilibrium realm, which are indepen-
dent of the dynamics. The kinetics appears as a system feature
or pattern of the thermodynamics in the sense of the GENERIC
[13,14,17], which is an ensemble or group feature. Information
about the mechanical details (e.g., how the particles interact
in the system mechanically) can be included in the dynamics
(e.g., by how τ is chosen) when the state evolution in time
t is studied. The focus of this paper, however, is on the
thermodynamic features of the nonequilibrium relaxation so
that τ is assumed constant in the applications below. For a brief
discussion on how values for τ can be determined at different
levels of description, the reader is referred to Appendix A. For
more discussion on the dynamics of nonequilibrium, especially
on how τ is chosen using the mechanics and how τ is related to
the state space geometry, the reader is referred to Refs. [18,23].

C. Nonequilibrium state and state evolution description:
Hypoequilibrium

The solution of the SEAQT equation of motion exhibits
some good properties, which allow for a complete description
of the nonequilibrium state and the fundamental definition
of the nonequilibrium temperature. More discussion is pre-
sented in Ref. [16], and an example is provided below. The
energy eigenlevels of the system {εi, i = 1,2,3 . . . } with
degeneracy {ni, i = 1,2,3 . . . } can be divided into M sets
{εK

i } (degeneracy {nK
i }) with i = 1,2,3, . . . , K = 1,2, . . . ,M ,

so that the state space of the system (the Hilbert space) H
can be represented by the sum of M subspaces HK , with
K = 1,2, . . . ,M , i.e.,

H =
M⊕

K=1

HK. (22)

To be complete, M can be infinite. The system state can
be represented by the distributions in M subspace energy
eigenlevels {pK

i , K = 1, . . . ,M}. If the probability distribu-
tion in one subspace, for example the Kth subspace, yields
the canonical distribution of parameter βK , the temperature
of the Kth subspace is defined as TK = 1/βK , where the
Boltzmann constant is absorbed into the temperature unit

for simplicity. Given a way to divide the energy eigenlevels,
if the system probability distributions in the M subspaces
are all canonical distributions, the state of the system is
called an Mth-order hypoequilibrium state [16], which can be
described uniquely by the total probability in each subspace
({pK = ∑

pK
i , K = 1, . . . ,M}) and the temperature of each

of the subspaces ({TK, K = 1, . . . ,M}). If the initial state of
the system is an Mth-order hypoequilibrium state, then

pK
i (t = 0) = pKnK

i

ZK (βK )
e−βKεK

i , i = 1,2,3, . . . , (23)

where ZK (βK ) is the partition function of subspace K at
temperature T K . A more general form to represent any
nonequilibrium state is given in [22] using the language of
quantum mechanics. Li and von Spakovsky [16] have proven
that the system retains an Mth-order hypoequilibrium state
throughout the nonequilibrium relaxation process if it initially
starts out in such a state. The solution to Eq. (18) thus becomes

pK
i (t) = pK (t)

ZK [βK (t)]
nK

i e−βK (t)εK
i , i = 1,2,3, . . . . (24)

As a result, each subspace has temperature defined fundamen-
tally throughout the entire nonequilibrium relaxation process.
This result applies to an isolated system with probability
and energy conservation. For a system with a different set
of conservation laws, a similar relation exists. However, the
general proof is left for a future paper. The proof for a system
with heat diffusion only is given in Appendix B.

D. Local variational principle in thermodynamic state space

According to Beretta [20], the equation of motion can
be derived from a local variational principle, which can be
regarded as the variational form of the steepest entropy ascent
principle, i.e.,

Maximize: Ṡ(ẋ) = (ẋ,gS) subject to

Ė = (ẋ,gE) = 0, İ = (ẋ,gI) = 0, (ẋ, ẋ) = ξ (x)

with δẋ �= 0, δx = 0. (25)

The third constraint on ẋ indicates that only the direction of
ẋ is of interest. This variational principle is in microscopic
state space, which contrasts with the variational principle in
the space spanned by conjugate fluxes and forces presented
later for the Onsager relations.

III. THEORY: DIFFUSION IN A NONEQUILIBRIUM
SYSTEM

In this section, the theory for mass diffusion in a local,
isolated system in nonequilibrium is presented. The Gibbs
relation, the entropy generation for a non-quasi-equilibrium
process, the Onsager relations, and the quadratic dissipation
potential are derived based on the concepts of hypoequilibrium
state and intensive properties. The variational principle using
conjugate forces is given at the end of the section.
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A. Equation of motion for mass diffusion

The mass (or probability) diffusion across energy eigen-
levels (or across subspaces) can be studied for an isolated sys-
tem in nonequilibrium. Using Eq. (14), one energy eigenlevel
in the Kth subspace yields the following equation of motion:

dpK
j

dt
= 1

τ

(
−pK

j ln
pK

j

nK
j

− pK
j

A2

A1
+ εjp

K
j

A3

A1

)
, (26)

where

A1 =
∣∣∣∣ 1 〈e〉
〈e〉 〈e2〉

∣∣∣∣, A2 =
∣∣∣∣ 〈s〉 〈e〉
〈es〉 〈e2〉

∣∣∣∣, A3 =
∣∣∣∣ 〈s〉 1
〈es〉 〈e〉

∣∣∣∣.
(27)

Summation over all energy eigenlevels in this subspace yields
the evolution of the probability in the subspace, represented
by pK , namely

dpK

dt
= 1

τ

(
−pK ln pK + pK〈s̃〉K − pK A2

A1
+ pK〈ẽ〉K A3

A1

)
,

(28)

where 〈 ˜· · ·〉K is the specific property in the Kth subspace.
To calculate the specific properties of this subspace, the
subspace’s probability distribution is found from

pK ≡
∑

j

pK
j , p̃K

j ≡ pK
j

pK
, (29)

where pK is the particle number in the subspace. The specific
properties are then expressed as

〈ẽ〉K ≡
∑

j

εK
j p̃K

j , (30)

〈s̃〉K ≡ −
∑

j

p̃K
j ln

p̃K
j

nK
j

. (31)

B. Particle number and temperature evolution when the initial
state is a hypoequilibrium state

If the system is in an Mth-order hypoequilibrium state,
the probability evolution yields Eq. (24). For simplicity, the
following definition is made:

αK = ln ZK − ln pK. (32)

With this definition, the probability evolution of one energy
eigenlevel is given by

pK
i (t) = pK (t)

ZK [βK (t)]
nK

i e−βK (t)εK
i

= nK
i e−αK (t)−βK (t)εK

i , (33)

where αK and βK are nonequilibrium intensive properties of
the Kth subspace, corresponding to the extensive properties
pK and EK ≡ pk〈ẽ〉K . Furthermore, by defining

α = A2

A1
, β = −A3

A1
, (34)

the particle number and energy evolution of the Kth subspace
can be acquired from Eq. (26), i.e.,

dpK

dt
= 1

τ
pK (αK − α) + 1

τ
pK〈ẽ〉K (βK − β), (35)

d〈e〉K
dt

= 1

τ
pK〈ẽ〉K (αK − α) + 1

τ
pK〈ẽ2〉K (βK − β). (36)

From Eqs. (24) and (26), the intensive properties αK and βK

obey the evolutions (see Appendix C for the derivation)

dαK

dt
= − 1

τ
(αK − α), (37)

dβK

dt
= − 1

τ
(βK − β). (38)

The authors prove that α and β have the physical meaning of
intensive properties from measurements of a nonequilibrium
state [24]. At stable equilibrium, the intensive properties in
any subsystem obey the following relations:

α(t = teq) = αK (t = teq) = αeq, (39)

β(t = teq) = βK (t = teq) = βeq. (40)

C. Gibbs relation, entropy generation for a
non-quasi-equilibrium process, the Onsager relations, and the

quadratic dissipation potential in the nonlinear realm

Differential changes of the extensive properties in the Kth
subspace are written as

dEK

dt
=

∑
j

d

dt

(
εK
j pK

j

)
, (41)

dSK

dt
=

∑
j

d

dt

(
−pK

j ln
pK

j

nK
j

)
=

∑
j

(
− ln

pK
j

nK
j

− 1

)
dpK

j

dt
,

(42)

where EK and SK ≡ pK〈s̃〉K are the energy and entropy in
this subspace, respectively.

When a system is in an Mth-order hypoequilibrium state
and undergoes a pure relaxation process, a relation for property
evolution in one subspace is acquired by using Eq. (33), namely

dSK

dt
=

∑ (
εK
j βK + αK − 1

)dpK
j

dt

= βK dEK

dt
+ (αK − 1)

dpK

dt
. (43)

The proof of this relation for one subspace applies to any
differential change (not only the time derivative). Thus, a
generalization of the Gibbs relation to the Kth subspace of
a system in nonequilibrium is expressed by

dSK = βKdEK + (αK − 1)dpK. (44)

From the Gibbs relation at stable equilibrium written as

dS = 1

T
dE − μ

T
dN, (45)
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the physical meaning of βK and αK is shown to be

βK =
(

∂SK

∂EK

)
pK

= 1

T k
, (46)

αK − 1 =
(

∂SK

∂pK

)
EK

= −μK

T k
, μK =

(
∂EK

∂pK

)
SK

, (47)

where T K is the subspace temperature and μK is the subspace
chemical potential with respect to subspace probability pK .
The total differential entropy change for the system, which for
a pure nonequilibrium relaxation process corresponds to the
entropy generation, is

dS =
∑
K

dSK =
∑
K

βKdEK +
∑
K

(αK − 1)dpK

=
∑
K

(βK − β)dEK +
∑
K

(αK − α)dpK, (48)

where both energy (
∑

EK = 0) and probability (
∑

pK =
0) conservations have been applied. The rate of entropy
generation can thus be written in terms of the internal fluxes of
energy and probability inside the system, JK

E = dEK/dt and
JK

p = dpK/dt , and the conjugate forces XK
p = βK − β and

XK
E = αK − α. The result is

σ (J,X) = dS

dt
=

∑
K

XK
E JK

E +
∑
K

XK
p JK

p . (49)

The Onsager relations are then acquired from Eqs. (35) and
(36) in the form of J = 
X, where 
 is a symmetric and
positive-definite operator. Thus,

JK
p = 1

τ
pKXK

p + 1

τ
EKXK

E , (50)

JK
E = 1

τ
EKXK

p + 1

τ
〈e2〉KXK

E . (51)

The quadratic dissipation potential using force representation
[9,25] is then written as

�(X,X) = 1

2
〈X,
X〉 = 1

2τ

∑
K

[pK (αK − α)2

+ 2EK (αK − α)(βK − β) + 〈e2〉K (βK − β)2],

(52)

while the variational principle using force representation is
expressed as

δ[σ (J,X) − �(X,X)]J = 0, J = const, δJ = 0, δX �= 0,

(53)

where σ (J,X) and �(X,X) are given by Eqs. (49) and (52).
Furthermore, even though the following constraints apply to
the fluxes: ∑

K

JK
p = 0,

∑
K

JK
E = 0, (54)

the reciprocity seen in Eqs. (50) and (51) is completely
consistent with the Onsager theory because, according to

Gyarmati [9], “the validity of Onsager’s reciprocal relations
is not influenced by a linear homogeneous dependence valid
amongst the fluxes.” Therefore, the physical interpretation
given here is fully compatible with other investigations [24]
and does not require a reformulation in terms of independent
fluxes, even though this could be done. In addition, it is
from the gradient dynamics of the nonequilibrium relaxation
process that the entropy generation, the Onsager relations, and
the quadratic dissipation potential of a local, isolated system
in nonequilibrium have been derived using the geometric
principle of SEA as well as the concepts of hypoequilibrium
state and nonequilibrium intensive properties. Alternatively,
the variational principle of SEA in system-state space could
be used to arrive at these relations, as is done in [22] using the
language of quantum mechanics. Of course, these relations
also correspond to the variational principle in the space
spanned by conjugate forces and fluxes [9].

IV. THEORY: HEAT DIFFUSION IN A
NONEQUILIBRIUM SYSTEM

A local, isolated system in nonequilibrium with heat
diffusion only is considered in this section. This requires a
model with a different set of constraints (i.e., the probability
redistribution is only allowed in each subspace) than when
heat and mass diffusion are both considered. The entropy
change of the system and subspaces due to heat diffusion for
a non-quasi-equilibrium process is given.

A. Equation of motion for heat diffusion

Different from previous forms of the equation of motion,
the form for pure heat diffusion yields a different set of
conservation equations. If the system is separated into M

subspaces with energy flow but no probability flow across
the subspaces, there are M + 1 conservation laws. System
probability conservation is replaced by that for M individual
subspaces. In Appendix B, it is proven that the concept of
hypoequilibrium state and nonequilibrium temperature are
also well defined under these new constraints given by

IK =
∑

i

(
xK

i

)2 = pK, K = 1,2, . . . ,M, (55)

E =
∑

i

εix
2
i = const. (56)

For simplicity, a second-order hypoequilibrium state is studied
first. The system is separated into two subspaces (subspace a

and subspace b) so that the equation of motion takes the form

dpa
j

dt
= 1

τ

∣∣∣∣∣
pa

j sa
j pa

j 0 εa
j pa

j

〈s〉a pa 0 〈e〉a
〈s〉b 0 pb 〈e〉b
〈es〉 〈e〉a 〈e〉b 〈e2〉

∣∣∣∣∣∣∣∣∣ pa 0 〈e〉a
0 pb 〈e〉b

〈e〉a 〈e〉b 〈e2〉

∣∣∣∣
, (57)
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where the contribution of each subspace to the total property
is defined by

〈s〉 = 〈s〉a + 〈s〉b, 〈s〉a =
∑

pa
i s

a
i , 〈s〉b =

∑
pb

i s
b
i , (58)

〈e〉 = 〈e〉a + 〈s〉b, 〈e〉a =
∑

pa
i ε

a
i , 〈e〉b =

∑
pb

i ε
b
i , (59)

and where

s
a(b)
j = − ln

p
a(b)
j

n
a(b)
j

= s̃
a(b)
j − ln pa(b), s̃

a(b)
j ≡ − ln

p̃
a(b)
j

n
a(b)
j

.

(60)

By defining

B1 =
∣∣∣∣∣∣
pa 0 〈e〉a
0 pb 〈e〉b

〈e〉a 〈e〉b 〈e2〉

∣∣∣∣∣∣, Ba
2 =

∣∣∣∣∣∣
〈s〉a 0 〈e〉a
〈s〉b pb 〈e〉b
〈es〉 〈e〉b 〈e2〉

∣∣∣∣∣∣,

Bb
2 =

∣∣∣∣∣∣
〈s〉b 0 〈e〉b
〈s〉a pa 〈e〉a
〈es〉 〈e〉a 〈e2〉

∣∣∣∣∣∣, B3 =
∣∣∣∣∣∣
〈s〉a pa 0
〈s〉b 0 pb

〈es〉 〈e〉a 〈e〉b

∣∣∣∣∣∣,
(61)

Eq. (57) can be simplified to

dpa
j

dt
= 1

τ

(
pa

j s
a
j − pa

j

Ba
2

B1
− εa

j pa
j

B3

B1

)
. (62)

Moreover, the equation of motion for the probability distri-
bution in one subspace can also be written in terms of the
normalized probability by dividing both sides of Eq. (62) by
pa so that

dp̃a
j

dt
= 1

τ

(
p̃a

j s
a
j − p̃a

j

Ba
2

B1
− εa

j p̃a
j

B3

B1

)
. (63)

Furthermore, if the system is in a second-order hypoequi-
librium state initially so that each subspace has a canonical
distribution, Eq. (63) can be simplified further to arrive at the
form

dp̃a
j

dt
= 1

τ
p̃a

j

[(
s̃a
j − 〈s̃〉a) − β

(
εa
j − 〈ẽ〉a)], (64)

where s̃a
j is defined by Eq. (60) and 〈s̃〉a and 〈ẽ〉a are defined

by Eqs. (30) and (31). The parameter β given as

β ≡ B3

B1
= paÃa

1β
a + pbÃb

1β
b

paÃa
1 + pbÃb

1

, (65)

B1 = papb
(
paÃa

1 + pbÃb
1

)
, (66)

B3 = papb
(
paβaÃa

1 + pbβbÃb
1

)
, (67)

is a weighted average of the inverse temperatures of the subsys-
tems relative to the mole fractions and the energy fluctuation
(or nondimensional specific heat at constant volume) of the
subspaces written as

Ã
a(b)
1 = 〈ẽ2〉a(b) − (〈ẽ〉a(b))2 = −∂〈ẽ〉a(b)

∂βa(b)
= C

a(b)
V

(βa(b))2
, (68)

C
a(b)
V ≡ 1

kb

∂〈ẽ〉a(b)

∂T a(b)
. (69)

For the more general case of an Mth-order hypoequilibrium
state and the system separated into M subspaces, Eq. (63)
remains the same but with

β ≡ B3

B1
=

∑M
K pKÃK

1 βK∑M
K pKÃK

1

. (70)

A given interaction type (e.g., heat diffusion) results in
a given relaxation time τ (see Sec. II B), while the ratio
B3/B1 provides an average temperature based on subspace
mole fractions and energy fluctuations. At stable equilibrium,
β = βeq. Now, if one subspace R is attached to a reservoir,
the evolution of the other subspaces behaves according to the
equation of motion, Eq. (63), with βR constant. For example,
only part of the energy eigenlevels can absorb energy from the
environment. Mathematically, if subspace R yields one of two
conditions,

∀ K �= R, CR
V 	 CK

V , pR 	 pK, (71)

the relation β = βR holds and subspace K( �= R) yields the
equation of motion

dp̃K
j

dt
= 1

τ
p̃K

j

[(
− ln

p̃K
j

nK
j

− 〈s̃〉K
)

− βR
(
εK
j − 〈ẽ〉K)]

.

(72)

Note that in this equation, the only parameter related to
subspace R is the reservoir temperature βR . The energy
eigenstructure of subspace R plays no role.

B. Property of heat diffusion: Non-quasi-equilibrium processes
and the second law of thermodynamics

Based on Eq. (62), the total entropy and energy evolution
in one subspace can be determined via

dSK

dt
= d〈s〉K

dt
= pK d〈s̃〉K

dt
= 1

τ
pK (βK − β)βKÃK

1 , (73)

dEK

dt
= d〈e〉K

dt
= pK d〈ẽ〉K

dt
= 1

τ
pK (βK − β)ÃK

1 . (74)

Dividing Eq. (73) by (74) yields

dSK

dEK
= dSK

dt

/
dEK

dt
= βK. (75)

This equation is a generalized form of the differential entropy
transfer due to heat diffusion using the nonequilibrium
temperature for each subspace, i.e.,

dSK = βKdEK = δQK

T K
. (76)

Moreover, Eq. (76) can be applied to all kinds of thermo-
dynamic processes and is not limited to quasiequilibrium
processes. This argument comes from the universal definition
of nonequilibrium temperature provided in this paper.

V. MODEL: A COMPOSITE SYSTEM IN
A NONEQUILIBRIUM STATE

Interacting systems can form a composite nonequilibrium
system with the interaction resulting in the nonequilibrium
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relaxation process for the composite. Using the SEA equation
of motion, the state evolution of the composite system can
be determined. Proper division of this composite allows the
subspaces to be viewed as interacting subsystems within
the composite. The behavior of each subsystem can thus
be studied via an analysis of the state evolution of each
subspace. In particular, if two individual subsystems involved
in an interaction both have canonical state distributions, and
each subsystem’s energy eigenvectors spans one subspace,
the composite system is in a second-order hypoequilibrium
state. On the other hand, if each individual subsystem’s state
cannot be described by a canonical distribution, a higher-order
hypoequilibrium state is required.

In the following section (Sec. V A), the SEAQT framework
using single-particle energy eigenlevels is applied to the study
of a simple system. Section V B then explains the process of
subspace division, followed in Sec. V C by a comparison with
the phenomenological equations for mass and heat diffusion. In
Sec. V D the physical details of the system used are described.
Finally, in Sec. V E, the coupling of mass and heat diffusion is
modeled and discussed.

A. Multiparticle classical simple system

Theoretically and in general, the SEAQT equation of
motion is applicable to multiparticle systems provided the
energy eigenstructure of the system is known [24]. How-
ever, for a multiparticle classical simple system, the energy
eigenstructure of a single particle and its associated equation
of motion can be used to study the system, since all of the
particles (or particle groups) have the same energy eigenlevels
{εi, i = 1,2,3, . . . } and degeneracy {ni, i = 1,2,3, . . . }. Thus,
the system state can be represented by the particle number (or
particle group number) at each energy eigenlevel {mi, i =
1,2,3, . . . }. The mole fraction of particles at the ith energy
eigenlevel is given by yi = mi/

∑
mi . The extensive property

constraints of the system are then

M =
∑

i

mi = const, (77)

E =
∑

i

εimi = const, (78)

S =
∑

i

−mi ln
yi

ni

. (79)

Dividing the constraints by the total particle number
∑

mi ,
the system state can be represented by the mole fractions
{yi, i = 1,2,3, . . . }, which are equivalent to the single-particle
probability distribution {pi, i = 1,2,3, . . . }. For an isolated
system, the constraints become

I =
∑

i

yi =
∑

i

pi = const, (80)

〈e〉 = E

M
=

∑
i

εiyi =
∑

i

εipi = const, (81)

〈s〉 = S

M
=

∑
i

−yi ln
yi

ni

=
∑

i

−pi ln
pi

ni

. (82)

Here 〈· · · 〉 represents an average specific property. The
constraints and equation of motion reduce to the single-particle
case [Eqs. (5)–(7) and (14)] when yi = pi, i = 1,2,3, . . . .

In general, a system’s energy eigenstructure and extensive
properties are a function of the total particle number of each
constituent. This is also true of its specific properties in the
presence of a mass interaction or chemical reaction if the
system is partitioned and not simple [26], since partitioning
influences each partition’s energy eigenstructure. Thus, for
mass diffusion, the framework outlined here requires an
invariant eigenstructure, and as a consequence the simple
system assumption. With this assumption, the particle number
no longer influences the specific properties. This same assump-
tion, however, is not required in the case of heat diffusion since
the total number of particles for each system partition (i.e.,
subsystem) does not change.

B. Interacting systems

It is assumed that a group of observable operators F̂

commuting with the Hamiltonian operator Ĥ exists. The de-
generate energy eigenlevels of the system can be distinguished
by eigenvalues of the observations of F̂ , which have values
F1,F2, . . . ,FM so that the system energy eigenlevels can be
separated into M sets {εK

i , i = 1,2,3, . . . } with degeneracy
{nK

i , i = 1,2,3 . . . }, where K = 1, . . . ,M . In each set, every
energy eigenlevel represents an eigenstate common to both F̂

and Ĥ with the same eigenvalue of F̂ . Eigenstates in each of
the sets can be spanned into a subspace of the system state
space and can be designated as a subsystem.

Practically, by choosing the observable operator, the system
can be viewed as a composite system whose subsystems
can be properly arranged to study specific phenomena. For
the kinetics of a chemical reaction, F can be chosen to
be an observable operator of species whose eigenvalues are
“Reactant” and “Product”. In heat and mass diffusion, the
observable operator F is chosen to be the relative location
to a partition, with eigenvalues of “left” (left of the partition)
and “right” (right of the partition). The partition allows mass
and heat diffusion (see Fig. 1). To be more precise, it is
assumed that the de Broglie wavelength λd is much smaller
than the distance δx between the center of the subsystem on
the “left” and that on the “right”. This wavelength represents
the classical limit, i.e.,

pv =
√

2mXkbT , λd = h

pv

= h√
2mXkbT

, δx 	 λd,

(83)

FIG. 1. For mass diffusion, mass flow and energy flow are both
allowed across the partition. For heat diffusion, only energy flow is
allowed.
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where mX is the mass of the particle in the system, and pv is
the expectation value of the particle momentum for a system
at temperature T .

C. Phenomenological transport equation

With the assumption that the two subspaces of the system
are two subsystems at two positions, the phenomenological
transport equations of mass and heat diffusion can be derived.

1. Mass diffusion

Using Eq. (28), the equations of motion for two subspaces
are written as

d ln pa

dt
= − 1

τ
ln pa + 1

τ

(
〈s̃〉a − A2

A1
+ 〈ẽ〉a A3

A1

)
, (84)

d ln pb

dt
= − 1

τ
ln pb + 1

τ

(
〈s̃〉b − A2

A1
+ 〈ẽ〉b A3

A1

)
. (85)

When the two subspaces of the system have the same
eigenstructure and temperature, subtracting Eq. (85) from
Eq. (84) yields

d

dt
(ln pa − ln pb) = − 1

τ
(ln pa − ln pb). (86)

Substituting the subspace probability (or mole fraction) given
by Eq. (87) into Eq. (86) results in

pa = ma

ma + mb
, pb = mb

ma + mb
, (87)

d

dt

(
ln

ma

mb

)
= − 1

τ

(
ln

ma

mb

)
, (88)

where ma(b) is the particle number in subspace a(b) as defined
in Sec. V A. If the global mass distribution is continuous and
positions A and B are close enough,

ma = mb + �m, (89)

which transforms Eq. (88) into

d

dt

(
�m

mb

)
= − 1

τ

�m

mb
, (90)

J b→a ≡ 1

2A

d

dt
(ma − mb) = −ma − mb

2τA
= − δx

2τA

dm

dx

= − (δx)2

2τ

dc

dx
, (91)

where the approximation ln(1 + x) � x for small x has
been used, and higher-order terms are dropped to arrive at
Eq. (90). In Eq. (91), δx is the distance between two positions,
A is the cross-sectional area of the interacting surface, and
J b→a is the flux of particle numbers equal to (dma/dt)/A or
(−dmb/dt)/A [hence the division by 2 in Eq. (91)]. With
c as the concentration, Eq. (91) recovers Fick’s law with
the diffusion coefficient (diffusivity) given by D = (δx)2

2τ
. The

specific form of D is directly related to the form of τ , which
contains the detailed mechanical information (see Sec. V D
for an example). The phenomenological linear equation can be
derived without the form of τ , which is a pure thermodynamic
feature or pattern of the nonequilibrium relaxation process.

In addition to results such as these for the near-equilibrium
realm, thermodynamic features or patterns in the far-from-
equilibrium realm can also be studied using Eqs. (35) and (36)
provided the initial state is a hypoequilibrium state. For the
case when it is not, Eq. (14) can be used directly, as is done,
for example, in [16].

2. Heat diffusion

For a system in which the only interaction is that of heat
diffusion, Eq. (74) captures the energy flow between two
subsystems, i.e.,

J b→a
E = −κ ′δxA

dT

dx
= 1

τ
pa(βa − β)Ãa

1

= 1

τ

papbÃa
1Ã

b
1

paÃa
1 + pbÃb

1

(βa − βb), (92)

where J b→a
E is the heat flux or the rate of energy transferred

per unit area, A is the cross-sectional area of the interacting
surface, T a and T b are the temperatures of the two subsystems,
and Eq. (65) has been substituted for β. Equation (92) recovers
Fourier’s law of heat diffusion (conduction). The thermal
conductivity per unit length κ ′ and the thermal conductivity κ

are expressed as

κ ′ = 1

τ

papbβaβbÃa
1Ã

b
1

paÃa
1 + pbÃb

1

1

A
, κ = κ ′δx. (93)

In the near-equilibrium region with the same constituent in
both subsystems,

pa = pb = 1

2
, Ca

V = Cb
V = CV , (94)

and the thermal conductivity per unit length and the thermal
conductivity are expressed in terms of the energy fluctuation
(or nondimensional specific heat at constant volume) of the
subspaces, i.e.,

κ ′ = 1

2τ
CV

1

A
, κ = 1

2τ

δx

A
CV . (95)

The above formulation is applicable for any kind of interaction
resulting in a flow of energy only. Furthermore, if the
heat and mass diffusion are affected via the same kind of
micromechanical interactions such as the collision of particles,
it can be assumed that the same τ is applicable when the
system is in the near-equilibrium region close to the same
stable equilibrium point. In this case, κ = CV D/V , where
V = Aδx is the volume of the subsystem. This last result is
the same as that found from classical transport theory and
is a direct consequence of the thermodynamic features of
the system minus any direct knowledge of the details of the
micromechanical interactions taking place.

D. Mass and heat diffusion of hydrogen

To model the mass and heat diffusion for a specific case,
a composite system of hydrogen is set up with two subspaces
corresponding to subsystems on two sides of a partition. The
energy eigenlevels of the two subsystems together form the
energy eigenlevels for the composite system as a whole.
Denoting the state space of the subsystem on the “left” by
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Ha and that on the “right” by Hb, the composite system state
space H takes the form

H = Ha ⊕ Hb. (96)

The available energy eigenvalues for one subspace (“left” or
“right”) are constructed from the energy eigenvalues of each
degree of freedom for translation and rotation, i.e., from

εa(b) = εt,H2 + εr,H2 . (97)

The translational energy eigenvalue εt uses the form of the
infinite potential well, while the rotational energy eigenvalue
εr uses the form of the rigid motor. These are expressed as
follows:

εt (nx,ny,nz) = �
2

8mH2

(
n2

x

L2
x

+ n2
y

L2
y

+ n2
z

L2
z

)
, (98)

εr (j,jz) = j (j + 1)�2

2I
, (99)

where nx , ny , and nz are the quantum numbers for the
translational degrees of freedom, mH2 is the mass of hydrogen
molecule, and jz are the quantum numbers for the rotational
degrees of freedom, I is the moment of inertia, and Lx , Ly , and
Lz are chosen based on the characteristic lengths of the particle
container, which are not necessarily the dimensions of each
subsystem, since each subsystem can be a local control volume
within the particle container. Furthermore, the vibrational
energy is not included because (as is shown by the authors in
[16]) at the temperature considered in this study, the vibrational
contribution is small. The disassociation energy is also not
included via the selection of the proper energy reference. Each
combination of quantum numbers and position corresponds to
one energy eigenlevel in the subspaces (or subsystems). The
composite system energy eigenlevels are formed by all the
available energy eigenlevels of the “left” and the “right”.

The evolution in real time can be studied by choosing τ

based on Eq. (91) or (95) with the help of experimental data
or from ab initio calculations using quantum mechanics or
classical mechanics. Utilizing Eq. (95),

τ = (δx)2

2D
, (100)

where δx is the distance between the centers of the subsystems,
and D, which is a function of pressure P and temperature
T , is the self-diffusion coefficient. For the present study,
the dependence of the diffusion coefficient for gases on
temperature uses the function provided by the Chapman-
Enskog theory. For binary diffusion of A and B, the diffusion
coefficient is

DAB = 0.001 858 3T 3/2√1/MA + 1/MB

Pσ 2
AB�

, (101)

where MA and MB are the standard molecular weights, P (atm)
is the pressure, T (K) is the temperature, σAB (Å) is the
average collision diameter, and � is a temperature-dependent
collision integral. In the case of self-diffusion for hydrogen,
the parameters of A and B are both chosen to be that of the
hydrogen molecule H2, while σAB and � are tabulated [27]. For
simplicity, we use the self-diffusion coefficient for hydrogen

at equilibrium given by D = D(P eq,T eq) to scale our τ and
provide a time scale for the entropy generation. However,
since the focus of our paper is the kinetics (thermodynamic
path) of the diffusion process and not the dynamics, a more
detailed discussion of the nonequilibrium effects related to the
dynamics of a time-dependent τ is left for a future paper [23].
A brief discussion of how values for τ can be determined at
different levels of description is given in Appendix A.

A second-order hypoequilibrium state with the subspace
division of “left” and “right” is chosen to be the initial con-
dition, which means that the two subspaces (subsystems) are
each in a local equilibrium state. The non-quasi-equilibrium
process of mass and heat diffusion is studied using Eqs. (26)
and (62). For the case when the subsystems are not in states
of local equilibrium, the two subspaces can be divided even
further. For example, if the “left” subsystem is an Mth-order
hypoequilibrium state, this subspace, subspace a, can be
divided into M subspaces based on the initial condition.
However, the evolution of each subspace, regardless of whether
or not the subsystem is in a state of local equilibrium, yields
the same form of the equations of motion, Eqs. (26) and (62).
For the case considered here, the initial condition is given by
Eq. (23), i.e., by

p
a(b)
i (t = 0) = pa(b)n

a(b)
i

Za(b)(βa(b))
e−βa(b)ε

a(b)
i . (102)

The time evolution is acquired by solving Eqs. (26) and (62).
For a more general initial condition, such as that for an infinite-
order hypoequilibrium state, the equation of motion can be
solved using the density-of-states method developed in [16].

The specific properties of the individual subsystems at a
given temperature and volume are expressed as

Za(b)(βa(b),V ) = ZtZr = V

(
mH2

2π�2βa(b)

) 3
2 2I

βa(b)�2

= CZV (βa(b))−5/2, (103)

〈ẽ〉a(b)(βa(b)) = 5

2
kbT

a(b) = 5

2βa(b)
= CV

βa(b)
, (104)

〈s̃〉a(b)(βa(b),V ) = βa(b)〈ẽ〉a(b) + ln Za(b)

= −5

2
ln βa(b) + ln V + Cs

= −CV ln βa(b) + ln V + Cs, (105)

where CZ and Cs are constants determined from Eqs. (103)–
(105).

E. Mass and heat diffusion coupling

For mass diffusion with no temperature difference, as
shown in Eq. (38), the temperature difference remains zero,
only the particle number difference changes, and Eq. (35)
reverts to the linear transport equation in the near-equilibrium
realm. The more complex case occurs when mass diffusion
takes place in the presence of a temperature difference, in
which case coupling effects may be present.

The mass flow between two subsystems is determined by
subtracting the probability evolution of one [Eq. (35)] from
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the other, with the result that

2J b→a
p = dpa

dt
− dpa

dt
= 1

τ
pa(αa − α) + 1

τ
pa〈ẽ〉a(βa − β)

− 1

τ
pb(αb − α) − 1

τ
pb〈ẽ〉b(βb − β). (106)

The coupling effects come from the differences in both
of the nonequilibrium intensive properties α and β. To study
the effect of temperature on the probability (mass) flow,
the two subsystems start from the same initial probability
(pa = pb = peq = 0.5) but different temperatures. For the
case of a perfect gas (i.e., ideal gas with constant specific heat),
the final stable equilibrium temperature T eq is an average of
the initial temperatures of the two subsystems, namely

T eq = (T a + T b)/2, ξ ≡ �T/T eq,

T a = T eq + �T, T b = T eq − �T. (107)

Thus, Eq. (106) can be simplified to

J b→a
p = 1

2τ
peq[(〈s̃〉a − 〈s̃〉b) − β(〈ẽ〉a − 〈ẽ〉b)], (108)

where 〈s̃〉a(b) and 〈ẽ〉a(b) are the specific entropy and energy
of subsystem a(b) defined by Eqs. (30) and (31). Substituting
Eqs. (104) and (105) yields

J b→a
p = 1

2τ
peq

[
CV

(
ln

1

βa
− ln

1

βb

)
− β

(
CV

βa
− CV

βb

)]

= CV peq

2τ

[
(ln T a − ln T b) − 1

T
(T a − T b)

]
, (109)

where T = 1/(kbβ), and the relation T/T eq = 1 + ξ 2 +
O(ξ 4) holds when pa = pb. The mass (probability) flux due
to a temperature difference is then written as

J b→a
p = dpa

dt
= CV peq

τ

[
�T

T eq
+ 1

3

�T 3

(T eq)3
− �T

T

]

= 4

3

CV peq

τ

�T 3

(T eq)3
+ O(ξ 5), (110)

where the approximation ln(1 + x) � x − x2

2 + x3

3 has been
used and higher-order terms dropped. The temperature evolu-
tion, Eq. (38), then reduces to

dT a

dt
= − 1

τ
�T [1 + O(ξ )]. (111)

In the near-equilibrium realm where only small temperature
differences exist (ξ � 1), higher-order nonlinear temperature
difference effects, which influence the probability (mass) flux,
are negligible and can thus be ignored. For this case, the
temperature evolution equation [Eq. (111)] and the probability
(mass) evolution equation [Eq. (110)] due to a temperature dif-
ference are effectively decoupled. In the far-from-equilibrium
realm, however, higher-order temperature difference nonlin-
earities may be significant in which case coupling effects
become important. In Fig. 2, the thermodynamic trajectories
of three different cases for which the initial probabilities for
the two subsystems are the same are plotted on a temperature-
particle number diagram. For each case, the trajectory consists

FIG. 2. Thermodynamic trajectories on a temperature-particle
number diagram. The initial probabilities for the two subsystems
[black line for subsystem a, green (gray) line for subsystem b] are
the same, while the initial temperature of subsystem b is 1500 K and
that for subsystem a is 300 K (solid line), 500 K (dashed line), 800 K
(dashed-dotted line), and 1100 K (dotted line), respectively.

of two lines, one for each subsystem, with each point on each
line representing an intermediate state for a given subsystem.
The two subsystems start from opposite ends of the two colored
lines and evolve toward the common end of the lines, which
is the state of stable equilibrium for the system. As can be
seen in the figure, when the temperature difference between a

and b is small, the maximum of the concentration difference
through the evolution approaches zero very quickly. Since
the lowest-order terms of Eqs. (110) and (111) have different
signs, the nonlinear effects of temperature drive the probability
(mass) flux toward the higher temperature subsystem. This
phenomenon can be explained from an entropy generation
standpoint. The higher-temperature subsystem has a higher
specific entropy so that the probability (mass) flux toward it
results in entropy generation for the system. On the other hand,
the temperature evolution is explained by the fact that the heat
diffusion toward the lower-temperature subsystem increases
the specific entropy in the lower temperature subsystem, which
in turn results in entropy generation for the system.

When probability (mass) and temperature differences exist
at the same time, it is the combined effect (i.e., the coupling)
from the probability and the temperature that determines the
probability flow, since the lower-order terms of Eqs. (91)
and (110) have opposite signs. In Fig. 3, the trajectory for
case 1 (initially pa = 0.8, pb = 0.2, T a = 1500 K, and T b =
300 K) shows a competition effect between the probability
and temperature (i.e., the signs of the fluxes given by Eqs. (91)
and (110) are opposite), while the trajectory of case 3 (initially
pa = 0.2, pb = 0.8, T a = 1500 K, and T b = 300 K) shows
a cooperation effect (i.e., the signs of the fluxes given by
Eqs. (91) and (110) are the same). Both of these can be
explained via the effects discussed relative to Fig. 2. In
addition, as a validation, Fig. 4 provides the entropy generation
rate for the three cases along with the entropy trajectories.
All exhibit monotonic increases in the entropy over time.
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FIG. 3. Thermodynamic trajectories on a temperature-particle
number diagram for the three cases. Case 1: pa = 0.8, pb = 0.2,
T a = 1500 K, and T b = 300 K (dashed-dotted line); case 2: pa =
0.8, pb = 0.2, T a = 900 K, and T b = 900 K (solid line); and case
3: pa = 0.2, pb = 0.8, T a = 1500 K, and T b = 300 K (dashed line).
The black lines are the trajectory of subsystem a, and the green (gray)
lines are the trajectory of subsystem b.

With respect to the entropy generation, case 1, for which the
probability and temperature effect is competitive, results in a
greater variation in the entropy generation rate than that for
the diffusion case without a temperature difference (case 2),
while the case for which the probability and temperature effect
is cooperative (case 3) results in a much steeper drop in the
entropy generation rate than either of the other two cases.

To place the entropy evolution within an actual time scale
for the three cases studied, the absolute concentration (or

FIG. 4. Entropy evolution and entropy generation rate in di-
mensionless time for the three cases of Fig. 3. Case 1: pa = 0.8,
pb = 0.2, T a = 1500 K, and T b = 300 K (dashed-dotted line); case
2: pa = 0.8, pb = 0.2, T a = 900 K, and T b = 900 K (solid line); and
case 3: pa = 0.2, pb = 0.8, T a = 1500 K, and T b = 300 K (dashed
line). The black lines are the entropy evolutions relative to the vertical
axis on the left, and the green (gray) lines are the entropy generation
rates relative to the vertical axis on the right.

FIG. 5. Entropy evolution and entropy generation rate in real time
for the three cases of Fig. 3. Case 1: pa = 0.8, pb = 0.2, T a = 1500
K, and T b = 300 K (dashed-dotted line); case 2: pa = 0.8, pb = 0.2,
T a = 900 K, and T b = 900 K (solid line); and case 3: pa = 0.2,
pb = 0.8, T a = 1500 K, and T b = 300 K (dashed line). The black
lines are the entropy evolutions relative to the vertical axis on the left,
and the green (gray) lines are the entropy generation rates relative to
the vertical axis on the right.

equivalently, the equilibrium pressure) needs to be specified. In
particular, assuming an ideal gas and knowing the equilibrium
temperature for the three cases (case 1: 1260 K, case 2: 900 K,
and case 3: 540 K; see Fig. 3), we set the corresponding
equilibrium pressures to be 0.014 atm (case 1), 0.01 atm (case
2), and 0.006 atm (case 3) in order to arrive at the same particle
concentration of 0.1355 mol m−3 for all three cases. Using
Eqs. (100) and (101), the relaxation time for the three cases can
be calculated. In Eq. (101), the distance of two subsystems is
chosen to be 10−5 m, which is on the same order of magnitude
as the mean free path [(3.4–7.8) × 10−5 m], so that the system
studied exhibits nonequilibrium effects. The mean free path
is calculated from l = kBT√

2πd2P
, where d is the diameter of the

gas particles, which is set equal to twice the Van der Waals
radius of hydrogen (2 × 1.2 Å). In addition, we verify that the
distance of two subsystems is much larger than the de Broglie
wavelength (∼10−10 m) given by Eq. (83).

Using the relaxation times (case 1: 4.41 × 10−10 s; case 2:
5.52 × 10−10 s; case 3: 7.79 × 10−10 s) calculated based on the
self-diffusion coefficient, Fig. 5 shows the entropy evolution
in real time. The three cases have the same concentrations but
different equilibrium temperatures so that the scaling of the
three curves using the relaxation times is different. However,
the curves retain the same features as in Fig. 4. We observe that
even though the relaxation time for case 1 is smaller than
that for case 3 due to its higher equilibrium temperature and
that the total entropy generated per particle is smaller as well
(i.e., 7.76 × 10−23 J K−1 particle−1 for case 1 as opposed to
11.86 × 10−23 J K−1 particle−1 for case 3), case 1 still takes
about the same amount of time as case 3 to arrive at stable
equilibrium. The reason is that the initial entropy generation
rates for case 1 are much smaller than those for case 3 due to
the competition effect of heat and mass diffusion present in
the former, and the cooperation effect present in the latter.
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VI. CONCLUSION

This paper investigates the relaxation process of local,
isolated systems in nonequilibrium using the SEAQT frame-
work. The mass and heat diffusion inside the system, which
are the mass and energy redistributions among the system
subspaces (or equivalently among the energy eigenlevels), are
described by defining conjugate forces and conjugate fluxes
using the concepts of hypoequilibrium state and nonequilib-
rium intensive properties. These thermodynamic features or
patterns of the nonequilibrium relaxation process are used
to generalize the Gibbs relation, the Clausius inequality, the
Onsager relations, and the quadratic dissipation potential to
the far-from-equilibrium realm and for non-quasi-equilibrium
processes. In addition, the variational principle in the spaces
spanned by conjugate forces and conjugate fluxes is derived
from the variational principle in system state space (i.e., from
the principle of steepest entropy ascent). As an application,
the mass diffusion of a simple system consisting of hydrogen
is studied. The study results in decoupled mass and energy
transport equations and their associated phenomenological
coefficients in the near-equilibrium realm. In the far-from-
equilibrium realm, the coupling phenomena and the nonlinear
effects for mass and energy transport are derived.

From this investigation, it is evident that the introduction
of the concepts of hypoequilibrium state and nonequilibrium
intensive properties into the SEAQT framework provides a
novel and fundamental vantage point from which to describe
nonequilibrium states and their evolution during a relaxation
process. In addition, use of the density-of-states method
developed by the authors in [16] has permitted the wide
application of the SEAQT framework to the study of nonequi-
librium systems in which complex, coupled reaction diffusion
pathways are modeled and compared with experiment [28,29].
As a complement to the present paper, Ref. [24] continues our
study of the non-quasi-equilibrium process of two interact-
ing systems and completes our discussion of Onsager-type
investigations of the relaxation process with fluxes both inside
a nonequilibrium system and across different systems. All
of these studies show SEAQT to be a powerful approach
applicable to the study of nonequilibrium phenomena across
all temporal and spatial scales.
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APPENDIX A: RELAXATION TIME τ

A brief supplementary explanation is given here to describe
the range over which the SEA framework can be applied and
how the relaxation time τ can be chosen. For more detailed
discussions on the dynamics of nonequilibrium, especially on
how τ is chosen using the mechanics and how τ is related to
the state-space geometry, the reader is referred to [18,23].

Given a well-defined system with a group of constraints
(i.e., a “level of description” [13,30] of a system state),
Eq. (18) exists to explain the system’s entropy generation,
regardless of the spatial and temporal range of the system’s
behavior. Beretta has set up several models using the principle

of SEA for different spatial and temporal scales by defining
the proper state space and constraints [18]. In addition to the
“level of description” of the system state, the metric and
relaxation time are defined by the elementary phenomena
[30] involved in the relaxation process, i.e., what the “level
of phenomena” is. By “elementary phenomena,” we mean
that the phenomena need not be explained by using a more
microscopic process in the model. As an example, when the
mass diffusion process in a continuum model is viewed as
elementary, it can be described by a diffusion coefficient, even
though in a more microscopic framework, such as molecular
dynamics or kinetic theory, diffusion can be described or
explained by a balance between particle collisions and particle
free-flight. Practically, given a model setup of state space,
constraints, and metric, the relaxation time τ can be chosen
using the experimental data of the given “level of phenomena”
(e.g., the diffusion coefficient measurement in Sec. V D) or
calculated from a more microscopic “level of phenomena”
[e.g., the Chapman-Enskog theory of Eq. (101)] to recover the
dynamics of interest.

At the atomistic level where the “level of description” is at
a quantum level, the spin coherence in a study of entropy
generation in, for example, a quantum spin system is the
“level of phenomena.” In this case, the relaxation time can be
chosen according to the characteristic time of a quantum-level
experiment, as is done in [31].

At a mesoscopic level, the “level of description” is the
local distribution function; the “level of phenomena” is the
local redistribution, which results from the more microscopic
collisions or scattering of individual particles; and the relax-
ation time can be calculated from the collision integral. A
comparison of the SEAQT framework with kinetic theory for
a local system (i.e., for an infinitesimally small system to
which SEAQT is applied) allows the SEA framework to use
the relaxation time of kinetic theory. The equation of motion
of kinetic theory takes the general form

∂f

∂t
− {f,H } =

(
∂f

∂t

)
col

, (A1)

where the second term on the left-hand side is the Poisson
bracket term, which accounts for the reversible part (XH

γ ) in
Eq. (1), while the collision term on the right-hand side accounts
for the irreversible part (YH

γ ) of Eq. (1). In the near-equilibrium
region, the BGK approximation with relaxation time τ takes
the form

∂f

∂t
− {f,H } = − 1

τ
(f − f eq). (A2)

As a comparison, the SEAQT equation of motion can be
rewritten in the following form using Hilbert space for state
space and the Schrödinger equation for the reversible part:

dρ̂

dt
− 1

i�
[ρ̂,Ĥ ] = 1

τ (ρ̂)
D̂(ρ̂). (A3)

In this equation, the irreversible part on the right-hand side is
developed thermodynamically and reduces to the right-hand
side of Eq. (A4) in the near-equilibrium region, i.e.,

dρ̂

dt
− 1

i�
[ρ̂,Ĥ ] = − 1

τ (ρ̂)
(ρ̂ − ρ̂eq), (A4)
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where ρ̂eq is diagonal in the energy eigenstate basis and
Maxwellian. Thus, in the classical limit, the density operator
reduces to the phase-space distribution function and the
commutator to the Poisson bracket, recovering the BGK
equation. Via a comparison of Eqs. (A2) and (A4), the
relaxation time in kinetic theory, which is derived ab initio
from quantum mechanics or classical mechanics (i.e., from the
collision integral), is equivalent in the near-equilibrium realm
to the relaxation time of entropy generation in the SEAQT
framework. Thus, practically, when a SEAQT model is set up
at a mesoscopic level for a local system, the relaxation time
in SEAQT is that of the BGK equation of kinetic theory. Even
in the case of a nonuniform metric, this correspondence exists
[23]. As to the “level of phenomena,” the choice of τ using
kinetic theory implies a local relaxation, resulting from more
microscopic particle collisions, and it is thus the elementary
phenomenon for this “level of description.”

In a macroscopic system at a continuum level where the
elementary phenomenon is mass diffusion or heat diffusion
(i.e., the “level of phenomena”), SEAQT still sets the “level
of description” to be the distribution function among energy
eigenlevels. The authors have proven that the SEAQT equation
for mass diffusion and heat diffusion can recover the linear
transport equation (Sec. V C), and the simplest way to deter-
mine τ is to use experimental data of the phenomenological
coefficient (Sec. V D). Moreover, this macroscopic τ can
also be acquired from the diffusion coefficient calculated
from the moment integral of the BGK equation (i.e., the
Chapman-Enskog theory) used to determine the mesoscopic
τ in the previous paragraph, and in this case it is the result of
both local relaxation and convective transport.

APPENDIX B: HYPOEQUILIBRIUM FOR
HEAT DIFFUSION

In this Appendix, it is proven that for a system with heat
diffusion only, if the initial state is given by Eq. (23), the system
evolution is also given by Eq. (24), and the nonequilibrium
temperature is well-defined. The proof follows the same
process as in [16] for a system with probability and energy
conservations. To show this, Eq. (62) is reformulated such that

d

dt
ln

pa
j

na
j

= 1

τ

(
− ln

pa
j

na
j

− Ba
2

B1
+ εa

j

B3

B1

)
, (B1)

where it is noted that d(ln na
j )/dt is zero and that B1, Ba

2 ,
and B3 are the same for all chosen energy eigenlevels pa

j

from subspace a and only a function of the entire probability
distribution at a given instant of time. Subtracting the equations
of motion for the ith and kth energy eigenlevels results in

d

dt

(
ln

pa
j

na
j

− ln
pa

k

na
k

)
= − 1

τ

(
ln

pa
j

na
j

− ln
pa

k

na
k

)

+ 1

τ

B3

B1

(
εa
j − εa

k

)
. (B2)

Defining a new variable

Wjk = 1

εa
j − εa

k

(
ln

pa
j

na
j

− ln
pa

k

na
k

)
, (B3)

the time evolution of Wjk yields the ordinary differential
equation,

dx

dt
= − 1

τ
x + 1

τ

B3

B1
. (B4)

If pa
j and pa

k are in the same subsystem for which the initial
probability distribution is a canonical one, i.e., if

pa
j (t = 0) = αana

j e
−εa

j βa

, pa
k (t = 0) = αana

ke
−εa

k βa

, (B5)

then

Wjk(t = 0) = 1

εa
j − εa

k

(
ln

pa
j

na
j

− ln
pa

k

na
k

)
= −βa. (B6)

For ∀ pa
j ,p

a
k in the same subsystem a, the time evolution of

Wjk yields the same ordinary differential equation (ODE) with
the same initial value, namely

dx

dt
= − 1

τ
x + 1

τ

B3

B1
, x = Wjk(t = 0) = −βa, (B7)

so that the solution of Wjk is the same, Wjk(t) = βa(t).
Therefore, the probability distribution in this subsystem
maintains the canonical distribution with the parameter βa(t)
given by

pa
j (t) = αa(t)nje

−εa
j βa (t). (B8)

In addition, the temperature of the subsystem at time t is
defined by

T a(t) = 1

kbβa(t)
. (B9)

Thus, for a system in a nonequilibrium state, the hypoe-
quilibrium temperature for each subsystem is defined. This
temperature can be the same as or different from that of any
other subsystem. If a system is in an Mth-order hypoequilib-
rium state, it remains at least of order M throughout as well
as after the evolution, and the probability distribution of each
subsystem remains canonical.

APPENDIX C: EVOLUTION OF INTENSIVE PROPERTIES

In this Appendix, the evolutions of intensive properties are
given for the system with probability and energy conservations.
Equation (26) is reformulated such that

d

dt
ln

pK
j

nK
j

= 1

τ

(
− ln

pK
j

nK
j

− A2

A1
+ εa

j

A3

A1

)
. (C1)

Using Eqs. (33) and (34) yields

d

dt

[−αK (t)−βK (t)εK
i

] = 1

τ

[
αK (t) + βK (t)εK

i − α − εK
j β

]
.

(C2)

Subtracting the equations of motion for the ith and j th energy
eigenlevels results in

d

dt

[ − βK (t)εK
i + βK (t)εK

j

] = 1

τ

[
βK (t)εK

i − βK (t)εK
j

]
− 1

τ
β
(
εK
i − εK

j

)
. (C3)
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If i �= j , dividing both sides by (εK
i − εK

j ) results in the
evolution for βK , namely

dβK

dt
= − 1

τ
(βK − β). (C4)

Finally, subtracting Eq. (C4) from (C2) gives the evolution for
αK , i.e.,

dαK

dt
= − 1

τ
(αK − α). (C5)
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