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The concept of quantum transition is critically examined from the perspective of the 
modern quantum theory of measurement. Historically rooted in the famous quantum 
jump of the OM Quantum Theory, the transition idea survives today in experimental 
jargon due to (1) the notion of uncontrollable disturbance of a system by measurement 
operations and (2) the wave-packet reduction hypothesis in several forms. Explicit 
counterexamples to both (1) and (2) are presented in terms of quantum measurement 
theory. It is concluded that the idea of transition, or quantum jump, can no longer be 
rationally comprehended within the framework of contemporary physical theory. 

1. HISTORICAL DEVELOPMENT OF THE TRANSITION CONCEPT 

Quantum physics has evolved during this century through two stages. The first, 
often called Old Quantum Theory (OQT), was characterized by a prevailing allegiance 
to the Newtonian-Maxwellian world view, in the sense that the fundamental concepts 
of the era of mechanism were steadfastly retained, the old laws of nature being 
subject to amendment, but not to repeal. Consider, for example, the Bohr atom, 
perhaps the greatest achievement of OQT. Essentially, it was a Rutherford atom, 
a microcosmic planetary system to be envisaged as a mechanistic entity subject to 
classical modes of thought, but obeying amended classical laws, the amendments 
being Bohr's postulates. (The electron was still a charged mass point which emitted 
radiation when accelerated, unless it happened to be accelerating in one of the preferred 
atomic orbits.) 
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In short, OQT embraced the classical tradition of constructing theoretical models 
of microsystems in the image of macrosystems, and of framing microlaws in a language 
depicting more or less visualizable behavior for these miniature macrosystems. It was 
within this philosophical framework that the concept of quantum transition first 
arose. Thus, in the Bohr atom, an electron was imagined to jump instantaneously 
from one orbit to another--the famous "quantum jump." 

The Old Quantum Theory was, however, rather short-lived. It never coped 
satisfactorily with the wide range of experimental data that became available during 
its twenty year existence. And it failed to satisfy certain requirements of reason (the 
process of amending classical laws left them inconsistent), and of scientific epis- 
temology (OQT was becoming so unwieldy that Ockham's Razor could not have 
been ignored much longer). 

The second phase in the development of quantum physics came in the 1920's 
when many of the lingering concepts of mechanism that had characterized the OQT 
were renounced in favor of the more abstract modern quantum mechanics, 
in which microsystems are no longer conceived to be miniature macrosystems, 
and hence the laws of nature no longer attribute visualizable behavior to 
physical systems but concentrate instead upon the prediction of measurement 
statistics. 

In view of this theoretical reorientation, it would seem reasonable to conclude 
that the old concept of transition, rooted as it was in a neoclassical pictorial account 
of elementary systems, should be regarded as an anachronism, since modern quantum 
mechanics does not have a conceptual framework which can accommodate "quantum 
jumps." 

Nevertheless, it is not unusual even today to find quantum-theoretical calculations 
interpreted in terms of those "quantum jumps" of OQT. Suppose, for example, 
a quantum system prepared in a manner symbolized by state vector ~b is to be subjected 
to measurements of an observable whose Hermitean operator is A, with eigenvalue 
equation Ao~k = a ~ k .  According to the quantal algorithm, the quantity I<c~, ~b)l 2 
is the probability that the numerical result of measuring A will be the eigenvalue a~. 
But this is not the interpretation many physicists use; instead, I(c~k, ~b)l 2 is often 
referred to as the probability for finding the system (initially prepared in state ~b) in 
state ~ ,  Similarly, if ~b has causally evolved from some earlier state ~b 0 without 
intervention by a measurement act, ](c~e, ~b)l 2 is often interpreted as the probability 
that the system has made a transition from state ~b o to state ~k. 

Some would argue that the distinction between speaking of the probability for 
the emergence of a number a~ and that for finding the state c~ is unphysical, merely 
semantic in nature. To support the alleged physical equivalence, it is argued that the 
act of measurement (1) disturbs the measured system, and that, in particular, the 
disturbance is such that the measurement act (2) projects the state of the measured 
system into the eigenstate c% corresponding to the measurement result ak. Hence, 
according to this view, it is permissible to interpret I(~k, ~b)12 as the probability for 
finding the system in state ~ .  

It is my contention that the distinction in question is not merely semantic, but 
has genuine physical significance. To establish this claim, counterexamples--con- 
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structed within the framework of modern quantum mechanics--are presented below 
against propositions (1) and (2). 

While it is factually correct that measurement operations upon microphysical 
systems tend to have catastrophic effects upon their states, the notion of uncontrollable 
disturbance of a state by a measurement act, popularized by historic gedanken 
experiments dating back to the turbulent period of transition to modern quantum 
physics, should not be regarded as a universaltrait of the measurement act. In Section 3, 
a measurement interaction will be described formally which leaves the measured 
system in the same quantum state in which it was initially prepared. 

The concept of projection, or wave-packet reduction, is the modern reincarnation 
of the old quantum transitions. Margenau m long ago explored the unscientific 
subjective origins of this notion; however, there are physicists, most notably Land6, (~) 
who do reject the subjective interpretation of quantum physics but nevertheless retain 
the concept of projection as a universal feature of the measurement act. Furthermore, 
many quantum theorists accept the following compromise (8) on the issue of projection: 
Interaction between a system and a measurement apparatus generally converts an 
initial pure system state ~b into a mixture. Hence, if every postmeasurement mixture 
is postulated to consist of the states c~k with weights l(c~, ~b)j~, then a later selection 
of subensembles will result in the production of the very postmeasurement states 
demanded by the projection concept. The conclusion would then be that the afore- 
mentioned interpretations of l(~k, ~b)l~ are physically equivalent. In Section4, 
a measurement interaction is described which is in no sense whatever projective and 
which, unlike the counterexample of Section 3, even involves a known physical 
interaction (spin-spin). 

In addition to the philosophical value of exorcising the old notion of quantum 
transition from modern physics, the insights provided by these considerations have 
consequences of purely physical interest. For example, abandonment of the ideas of 
disturbance andprojeetion would have an impact upon attempts to develop a quantum 
theory of successive measurements, which does not at present exist. Moreover, it 
should be noted that the theory of symmetry in quantum mechanics, including the 
concept of superselection, is founded upon the interpretation of J(~t~, ~b)J 2. The 
implications of the conclusions of the present paper for these branches of quantum 
theory will be explored in subsequent publications. 

2. CONCEPTS IN THE THEORY OF MEASUREMENT 

Before describing in detail examples of nondisturbing and nonprojective measure- 
ment procedures, it seems appropriate to digress briefly to define precisely what I 
understand the concept measurement to entail. Measurement operations are, quite 
simply, empirical procedures which, when performed upon physical systems, yield 
the numbers called data. 

For the data to be of scientific interest, both the mode of preparation of the 
physical system and the measurement procedure must be reproducible. In the language 
of quantum physics, a reproducible preparation scheme is represented by a state 
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vector (or, in general, density operator). A measurement procedure is classified by 
naming the observable (Hermitean operator) about which the procedure is supposed 
to produce data. 

Since microsystems are of greatest interest in quantum physics, it is generally 
impossible to equate measurement with simple observation of the system itself. 
Instead, the act of measurement necessarily involves interaction with a secondary 
system, the apparatus, which in turn produces some effect that can be directly 
apprehended by the senses. Clearly, not just any interaction will suffice if a measure- 
ment operation is contemplated. A measurement interaction must correlate the nume- 
rical results which will be obtained from examining the apparatus with the (fictitious) 
measurement results that would be obtained if the system could be directly observed. ~4) 

In a quantum-theoretical context, this correlation is achieved by an analysis that 
may be called probability matching. If the interaction of the system and apparatus 
leaves the composite in a state such that the probability distribution for measurement 
results of some apparatus observable B after the interaction matches that for measure- 
ment results of a system observable A at the onset of the interaction, then the inter- 
action in question has established a correlation of precisely the kind needed to devise 
a procedure for measuring A. To be explicit, an operational definition of A would read 
as follows: At time to, let system and apparatus begin to interact. When the correla- 
tion is established, measure B, obtaining result b~, which is correlated by the prob- 
ability matching to A-eigenvalue ak. The number as which has emerged from this 
procedure is identified as the result of measuring A at time to • 

In a previous publication ~5~ by Margenau and the present writer, a classification 
scheme for measurement procedures was set forth which will prove useful below. 
The distinction to be drawn among various measurement interactions relates to the 
breadth of their applicability. A simple measurement procedure is one that will 
succeed in establishing the required correlations regardless of the initial state of the 
system (or at least for a wide class of initial state preparations). This type of measure- 
ment operation is to be contrasted with historical measurement procedures, in which 
the interaction establishes the desired correlation only for a particular initial state; 
i.e., the measurement is designed using some knowledge of the previous history of the 
system to be measured. 

In terms of the quantal formalism, the evolution operator describing a simple 
measurement interaction is independent of the initial state of the system, whereas 
that describing an historical measurement interaction depends on the initial system 
state. In the paper ~5~ where these ideas were first employed, several historical proce- 
dures for the simultaneous measurement of noncommuting observables are described. 
The nondisturbing measurement to be discussed in Section 3 is also of the historical 
type. The nonprojective procedure considered in Section 4 is a simple quantum 
measurement operation. 

3. A NONDISTURBING QUANTUM MEASUREMENT 

Since the primary purpose of the remainder of this paper is to provide counter- 
examples, within the framework of modern quantum mechanics, which contradict 
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the bases of the transition concept, it is sufficient and indeed desirable to consider 
only the simplest nontrival physical systems. Accordingly, the present analysis will 
be limited to the interaction between two distinguishable "spins," one playing the 
role of system S, the other of measurement apparatus M. Mathematically, each spin 
is characterized by a two-dimensional Hilbert space, and the observables for each 
spin consist of all linear combinations of Pauli spin operators (~r~, % ,  ~r~) and the 
identity (1). The combined S + M system is then characterized by the four-dimen- 
sional tensor product space, and the observables for the composite system consist 
of all linear combinations of the 16 direct products of (1, o) for M with (1, o) for S. 

Let %/3 denote the eigenvectors of or, with eigenvalues + l, --1, respectively. 
The following basis vectors will be used for the composite Hilbert space: 

- - - - /3 /3  

where, for example, ~/3 signifies the tensor product of the c~ in the S-space with the/3 
in the M-space. Similarly, in direct products of S and M operators, the first factor 
will always be understood to refer ro S, the second to M. 

To construct a measurement procedure, we conventionally adopt some initial 
state for the apparatus, then seek a correlation-producing interaction that converts 
the apparatus M into a new state which embodies information about the initial 
state of the system S. Specifically, we take ~ as the initial state for M. 

To devise a nondisturbing measurement scheme, a unitary evolution operator T 
must be found that effects the following state evolution for S ÷ M: 

where ~b is the initial state of S. Such an interaction, if it exists, transfers the state 
specification of S to M, yet S emerges in the same state it was in at the beginning of 
the measurement. Hence, measurements upon M yield measurement results for S 
without changing the state of S. 

It is convenient to divide the question as to the existence of T into two parts: 

(s) Is there a T independent of ~b which satisfies (1), i.e., can a simple non- 
disturbing measurement be performed? 

(h) Can a Tbe found for any specific ~b which satisfies (1), i.e., can an historical 
nondisturbing measurement be performed? 

The answer to (s) turns out to be negative, as the following argument demonstrates. 
Let a ~- (~, ~b), b ~ (/~, ~b), so that ~h = ao~ + bfl. A simple nondisturbing T must 
satisfy 

T(a~ + b/3)~ = (ac~ + b/3)(a~ + b/3), f o r  every a, b, ] a 12 + ]b [2 = 1 (2) 

Invoking the linearity of T and expanding, we may rewrite (2) as 

aTc~ q- bTflo~ = a%~o~ -? bafl~ -+- abcq3 + b2flfl, for every a, b, [ a 12 -q- i b [ 2 = 1 

( 3 )  
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But (3) implies that T must depend on a and b, hence on ~h. To see this, consider 
the scalar product of (3) with ~o~: 

a(~o~, T~}  + b(o~, TI3a) = a ~, for every a, b, } a ['~ + [ b [~ = 1 (4) 

Some matrix elements of T may be found by exploiting the arbitrariness of a, b. 

Let a =  1, b = 0 ;  hence, 

Let a = 0 ,  b =  1; hence, 

1 
Let a = b = - ~ ,  hence, 

(a~,  T ~ }  ----- 1 (5a) 

@% Tfla} = 0 (5b) 

~__( 1 '2 

(5c) 
Combining (5a-c), we obtain the absurdity l /x /2  = 1/2. We conclude that there 
exists no simple nondisturbing measurement interaction between two "spins." 

The question (h), however, does have an affirmative answer. It is possible to 
devise a nondisturbing measurement procedure of  the historical type. Specifically, 
the following Hamiltonian represents an interaction upon which such a measurement 
scheme may be founded1: 

H = -- ~[6(1)(1) -- ~/2 (1)(cr~ + ~ )  -- ~/2 (e~ + ~r~)(1) -- (~r~)(% -- ~/2 ~r~ + %) 

- ~/~ (~) (~  - ~ )  - ( ~ o ) ( ~  + v ' 2  ~ + ~ ) 1  (6)  

To prove this claim, first SchrSdinger's equation for S + M must be solved for 
this H. In the present four-dimensional Hilbert space, the method is straightforward, 
if tedious; the evolution operator is obtained by exponentiation of H: 

T(t) = e -'*zt (7) 

(we take h = 1). 
It is convenient to work with matrix representations of the quantities involved, 

using the basis ~b 1 , ¢2, ~bz, ~b 4 defined above. 
With this basis, the H matrix, denoted by (H), is given by 

5 - - 2  ~ 2  
1 --(1 + ~ 2 ) - - i v / 2  

( H ) = - - ~  --(1 + ~ / 2 ) + i x / 2  
--1 

--(1 + ~/2) + i ~/2 
7 

--1 --  2i V2  
( 1 - -  V 2 ) - i V 2  

7 
(1 - ~ / 2 )  + i ~ / 2  

_1) 
(1 --  ~/2) + i "v/2 
(1 - v ' ~ )  - i ,/~ 

5 + 2  ~/2 

(8) 

1 The question whether and how this Hamiltonian is realized practically is not important in this 
fundamental context. 
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Its normalized eigenvectors are 

(lq,  t I_L_ 1_2__ 
2 ~/2 \ - - 1  + ~ /2 ]  2 ~/2 \ - - 1 - -  ~ /2 /  (,) (1) 

--1 --1 

(9) 

and the corresponding eigenvalues are, respectively, 0, --2, --1, --3. Therefore, in 
a representation in which (H) is diagonal, the evolution operator's matrix has the 
following form: 

(i °°  
e i2~ 0 (10) 

(T(t)). .i~go.al = 0 e" 
0 0 e TM 

To transforms this back to the original representation, we form the matrix of (H) 
eigenvectors, 

1 1 - 1 + i V 2  - 1 - i V 2  (11) 
( U ) ~  2 V ~  1 - - 1 - - i ~ / 2  --1 + i V 2  

\ - 1 + V 2  - l - V 2  -1  -1  

and work out the transformation: 

(T(t))original representation = ( U ) (T ( I ) ) t t  diagonal (U¢) (12) 

For most values of t, the resultant evolution matrix describes an interaction of  
the more common variety in which an initially pure state of S is converted to a mixture. 
However, if the interaction is cut off at t = 7r/2, a remarkable exception to the usual 
pure-to-mixed conversion process is obtained. 

If  t = 7r/2, then e i2~ =- --1, e i~ ----- i, e TM = --1, and the expression given by (12) 
is much less cumbersome than for general t. In the original representation, the result is 

o 1/V2 1/~2 
(T('= @))= ['/2: o (13) 

% ,  

o 1/v'2 - 1 /v '~ /  

To see the significance of  this evolution operator, consider its impact on the 
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initial S -}- M state ~bc~ = (am -t- b/3)~, which is represented by a column vector with 
components (a, 0, b, 0): 

0 a { b i  (14) = = 1 / ~ / ~  

0 b 

i.e,~ 

T(t = 7r/2) ~b~ = ( 1 / v ' 2 ) ( a ~  + b ~  + a B~ + bflfl) 

= [(1/v'~.)~ + (1/~/~)/~](a~ + b/3) (15) 

From (15), it is easy to see that, i f a  = b = 1/~/2, i.e., ~b = 8 ~ (1/~/2)~ + (1/~/2)/3, 
then the interaction described by H can indeed be employed to construct a non- 
disturbing measurement. 

To be specific, if S is initially in the state 8, and M interacts with S in the manner 
represented by H for a time interval ~r/2, S will emerge from the interaction in its 
original state 8, and M will then be in a state (its 8) correlated with the original state 
of S in such a manner that measurements on M will yield the same probability distribu- 
tions that analogous measurements on S would have yielded before the interaction. 
Thus, we have constructed a measurement procedure which does not disturb the state 
of  the measured system. 

In addition to demonstrating that change of state cannot be regarded as a uni- 
versal feature of the measurement act, the present example also demolishes another 
quantum myth, namely, that if the value of one member of a noncommuting pair 
of observables is known, the other cannot be measured without destroying the certain 
value of the first. In the present instance, 3, the state of S before and after a measure- 
ment, in an eigenstate of ~ .  But the procedure described above is readily adapted 
to a measurement of  ~r~ on S--al l  that need be done is measure cr~ on M after the 
interaction. Hence, we have another example of an historical measurement procedure 
to be added to the list of those considered in the previous paper ¢5~ mentioned in 
Section 2. 

It is also possible to use the same interaction H to provide an example of a simple 
nonprojective measurement procedure. (Being simple, it is, of  course, one .that 
disturbs the state of S, as proved at the beginning of this section.) However, instead 
of discussing such measurements with the above H as the interaction, it seems 
preferable to consider a more realistic interaction (Section 4) which also leads to 
a simple and nonprojective measurement scheme. 

4. A SIMPLE NONPROJECTIVE QUANTUM MEASUREMENT 

The interaction between S and M discussed in the preceding section was strangely 
complex and artificial; it was, of course, expressly contrived as a formal counter- 
example to the proposition that state change by the measurement act is a necessary 
feature of quantum physics. In this section, we present a somewhat more physically 
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reasonable example of a measurement interaction between S and M, one which does 
result in a change of state for S but not the projective change of orthodox measure- 
ment theory. In particular, for the interaction analyzed below, the probability for 
obtaining a specified eigenvalue from a measurement on S is numerically different 
from the probability of finding S after the measurement in the eigenstate belonging 
to that eigenvalue. 

Consider a spin-spin interaction between S and M described by the Hamiltonian 

H = g a  • ~ (16) 

where g is a real number which may be regarded as the strength of the interaction. 
Proceeding as in the previous section, we solve SchrSdinger's equation for this H 

by exponentiating to obtain the evolution operator T( t ) .  

In the representation given by the basis ~bl, ~b.~, ~b~, ~b4, defined earlier, the (H) 
matrix is 

1 0 0 

--1 2 0 (17) 
(H) = g 2 -- 1 

0 0 

Its orthonormalized eigenvectors are 

1 0 {1/Ov,~ I/~/2~ 
(18) 

The first three belong to eigenvalue g, the fourth to eigenvalue --3g. Thus, in a 
representation where (H) is diagonal, the evolution matrix has the form 

e -in 0 
I . , t t ) )  = 0 e -ug  

0 0 e i~ag 

(19) 

The transformation matrix needed to find the representation of T ( t )  for the original 
basis is again just the matrix of H eigenvectors, 

thus 

(ooO o (v)=- o 1/V2 1/V2 
Ol 1/V2o -1~V2] 

(20) 

(T( t ) )o r ig ina l represen ta l ion  = (U) (T( t ) )nd iagona l  ( U  ~) (21) 
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Evaluation of (21) yields 

(T( t ) )=  0 ½(1 + e )  ½ ( l - - e )  (22) 
½(l- -e)  ½(1 + e )  

0 0 

where e ~ e aag. 
To devise a measurement procedure based on this spin-spin interaction, we 

again let the initial state of M be ~; however, since a simple measurement (in the 
sense defined earlier) is desired, the initial state of S is left arbitrary. The initial state 
of the composite S + M is therefore 

~b~ = (ao~ + b/3)~ = aa~ + b/%~ (23) 

which may be represented by a column vector with elements (a, O, b, 0). 
f f  the spin-spin interaction lasts for a time t, the state of S + M will evolve as 

follows: 

\ 0  [ ½ b ( 1 L  e ) )  (24) (T(t))@cO = |½b(1 + e) 

i.e., 

T(t) ~bo~ = ac~o~ + ½b(1 -- e) c~/3 + ½b(1 + e)/3c~ (25) 

For most values of t, (25) embodies no correlation between S and M useful for 
devising a measurement procedure. Moreover, for most t values, S alone is, typically, 
in a mixture state. However, suppose an experimental arrangement is constructed 
which permits control of the time interval during which the interaction H is effective. 
(Roughly speaking, this might be accomplished by "crossing beams" of S and M 
and varying the velocity of one or both.) If the interaction lasts only for a time interval 
zr/4g, then e = --1, and 

T(t = ~14g) = aao~ + b ~  = o~(a~ + b~) = ~¢ (26) 

The interaction ~ described by (26) leaves M in a state such that measurements 
of all M-observables at t = rr/4g yield the same probability distributions that 
measurements of S-observables at t = 0 would have given. Hence, we have a measure- 
ment procedure. 

However, S emerges from this measurement operation in the pure state ~, 
contrary to the dictates of the projection theory, even in its mildest form. In particular, 
the probability for finding S in the state ~ after the measurement (with this method) 
of any observable whatever is always unity, and consequently, that for finding S in 
any state other than ~ is always zero. 

2 Evolution operators which trade S and M states have been discussed formally by Albertson c6~ 
and Fine. tv~ 
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But the probability of obtaining + 1, the eigenvalue to which ~ belongs, when ~ 
is measured, is not unity, but ]a  ]2 _ I(~, ~b)l 2. Hence, the difference between inter- 
preting [(% ~b)l 2 as (1) a probability that an eigenvalne will emerge from a measure- 
ment act or (2) as a probability that after the measurement act the system will be 
found in state c~ is a physical difference, not a semantic distinction. And only interpre- 
tation (1) is physically correct. 

We observed earlier that in modern quantum mechanics, when ~b has evolved 
from an earlier state ~bo, the q u a n t i t y / %  ~b)] 2 is commonly referred to as the transi- 
tion probability from state ~b o to state % thus perpetuating the concept of quantum 
jumps peculiar to the Old Quantum Theory. In view of  the above considerations, it 
is therefore apparent that the notion of  quantum transition cannot be included with 
logical consistency within the modern quantal framework. 

In short, the concept of quantum jump is no longer a part of quantum physics. 
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