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Using Schr6dinger's generalized probability relations of  quantum mechanics, it is 
possible to generate a canonical ensemble, the ensemble normally associated with 
thermodynamic equilibrium, by at least two methods, statistical mixing and sub- 
ensemble selection, that do not involve thermodynamic equilibration. Thus the 
question arises as to whether an observer making measurements upon systems 
from a canonical ensemble can determine whether the systems were prepared by 
mixing, equilibration, or selection. Investigation of  this issue exposes antinomies in 
quantum statistical thermodynamics. It is conjectured that resolution of  these 
paradoxes may involve a new law of  motion in quantum dynamics. 

1. CANONICAL STATES: PREPARATION AND VERIFICATION 

Though Schr6dinger has long been enshrined in our textbooks, and quite 
properly, as one of the creators of quantum mechanics, it is noteworthy 
that he was in fact also one of its severest critics. Fifty years ago, shortly 
after the appearance of the now famous protest of Einstein, Podolsky, and 
Rosen, Schr6dinger demonstrated that they had exposed only the tip of the 
iceberg. In a brilliant pair of papers (1'2) concerning "probability relations 
between separated systems," he revealed startling generalizations which 
remain to this day largely unknown. By contrast, the special EPR case, 
after subsequent quantification in the Bell inequalities, finally became 
experimentally interesting and is today deservedly notorious. 

Schr6dinger, like Einstein, deplored certain logical consequences of 
quantum mechanics. In particular, he characterized his generalized 
probability relations as "conclusions unavoidable within the present theory 
but repugnant to some physicists including the author." The present paper, 
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written as we celebrate the Schr6dinger Centenary, will focus more on the 
unavoidability than the repugnance as we explore the special consequences 
of Schr6dinger's relations when they are extended specifically to quantum 
thermodynamics. 

To set the stage, let us imagine that an experimenter X s has been 
provided with a reproducible procedure that prepares a physical system ~ J  
for study. In addition, X j has at his disposal measurement devices that give 
operational meaning to all the observables A j, B s .... of ~fs. If X J takes as 
his mission the determination of the quantum state pJ that describes 
systems prepared in the manner prescribed, he must in general execute the 
preparatory procedure many times, generating thereby a statistical ensem- 
ble, and in each run obtain a datum for some observable by employing the 
appropriate device. In principle, he eventually will have gathered enough 
data on, say, observable A j to compute the mean value (AS).  Continued 
repetition would finally yield a set of statistics { ( Y ) ,  (BJ),...} rich 
enough to determine the state y .  The list of observables {A s, BS,...} whose 
means are sufficient to find pJ has been called a quorum. (3) 

For simplicity we adopt a mathematical notation in which the same 
symbol will be used both for a physical concept and its mathematical 
representative in quantum mechanics. Thus ~ J  denotes a Hilbert space; 
A j, B J,..., self-adjoint operators; and y ,  the density operator. The quantat 
mean value ( A  s ) is then given by 

( A j )  = Trs(pS A j) (1) 

where Trj denotes the trace over Hilbert space ~s.  The various symbols are 
superscripted in anticipation of later considerations of multicomponent 
systems where, for example, ~¢~1 ® ~¢~2 will denote both the physical com- 
posite of systems ~q,l and ~ 2  and the tensor product space that represents 
it mathematically. In this case p12 is the total density operator for 
~q~® ~2 ,  and p~, for example, is the reduced density operator 

p l  = Tr2012 (2) 

Consider for the moment only system ~ 1  and its observer X 1. Sup- 
pose that X ~ has gathered sufficient data to compute the means for a 
quorum of observables of ~ I  and from them has concluded that pl has the 
form 

p~ = pl(/~) (3) 

where ~I(fil) is the well-known canonical density operator defined by 

e 
~6(/3) = ~ (4) 

z(fl) 
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with 
Z ( f l ) =  Tr  e -aH (5) 

H being the energy operator of the system. Obviously the preparation 
scheme generating the statistical ensemble from which X a has determined 
pl is very specialized, for the canonical state #1(/~) is far from arbitrary. 
Indeed such canonical states are subject in practice to a great deal more 
interpretation and application than are other density operators because of 
their unique role in thermodynamics. At this point X I, having determined 
(3), can contribute nothing more to the study of jr1,  since (3) and the 
mean value formula (1) now enable prediction of all further statistical data 
that X 1 could obtain by measurement of the remaining observables of Yf~ 
(those outside the quorum). 

Nevertheless, particularly in view of the familiarity of (3), it is difficult 
to restrain speculation as to the nature of the behind-the-scenes 
machinations that might have provided X ~ with an ensemble described by 
(3). Interestingly, there are at least three conceptually distinct methods that 
could have been invoked to generate the ensemble that was presented to 
X~: (a) statistical mixing, (b) thermal equilibration, and (c) subensemble 
selection through correlations. In the sections that follow we shall illustrate 
each of these possibilities in detail. 

As we proceed it should be kept in mind that, according to orthodox 
quantum mechanics, X ~ cannot distinguish among the three methods even 
though he has the empirical means to measure every quantal observable of 
YfL His density operator pX completely summarizes all information of the 
kind he can measure; yet each of the three methods we shall discuss would 
provide X ~ with the same state (3). Like any quantum mechanician, X 1 
only knows that which he can verify--the mean values of all the obser- 
vables of his system orgy. Thus for X 1 the distinctions we shall explore are 
seemingly in a black box beyond his reach. 

Whether these illustrations of distinct canonical state preparation 
methods are taken as sublime mysteries of nature or as evidences of a 
repugnant theoretical incompleteness, they surely disclose some intriguing 
features of contemporary quantum theory. 

2. AMBIGUITY OF MIXTURES 

The canonical state (3) is of course a mixture, and as such the ensem- 
ble presented to X 1 could have been manufactured simply by mixing pure 
states in the manner suggested by the spectral expansion 

fll Hl 

p ' :  y(a'  : 11 > (6) 
J 
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where 

HlO)=E)@, and ~61=e-~e)/Z(fli) 

(The @ and all other vectors appearing below are assumed normalized to 
unity. ) 

This scheme may be described metaphorically as follows: whenever X 1 
requests an ~ 1  from the black box, the preparing demon within always 
ejects to X 1 a system prepared in one of the eigenstates 0);  which one is 
selected randomly for each run but relative frequency overall for O) is 
maintained at/~j. Such a construction of the canonical state is compatible 
with the common view in statistical thermodynamics that mixtures are 
merely representations of human ignorance. Thus each system .gg~ that X 1 
inspects is "actually" in some pure state @; but since X 1 lacks such 
detailed knowledge, he expresses his ignorance by assigning jug* the mixed 
state (6). 

There is a curious sense in which this ignorance interpretation of 
mixtures is flawed. Suppose the demon in the box has available instead of 
energy eigenstates {@ } a completely different, not necessarily orthogonal, 
set {<p]}. If these are provided to X* according to a certain probability 
distribution {wi}, X 1 will conclude from his quorum measurements that 

p'  = Y, w,l~o; > < ~o~l (7) 
i 

But suppose further that {w,} and {~o]} are carefully chosen so that pl in 
(7) is identical to the canonical pi in (6); i.e., 

pl = 2 fiJl~) ) <~)1 = ~ W,I~; > <~O;I (8) 
j i 

For X 1 this is nothing more than two mathematical expressions for the 
same quantum state pl, which in itself completely summarizes all statistics 
for all data sets X ~ can measure. In other words, for X 1 the distinct struc- 
tures of the expansions themselves have no physical meaning and are in 
fact undiscoverable. 

Against this background, the ignorance interpretation of the density 
operator as used in information-theoretic statistical thermodynamics seems 
shaky. If one really wants to express the idea that a system is definitely in 
some energy eigenstate but which one is unknown, then two lists must be 
given: the states {~b)} and the corresponding subjective probabilities {fij}. 
Only then has it been recorded what one is ignorant of and the extent of 
that ignorance. Similarly, the specification ({ ~o~}, { wi} ) would indicate that 
the system is in some unknown state from among the {q~ }, the extent of 
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ignorance as to which state being measured by the {wi}. In the 
mathematics of quantum theory, multiple expansions like (8) are quite nor- 
mal, and therefore pl itself simply does not capture the idea that subjective 
probabilities have been assigned to an underlying list of pure states. 

The statistics of all the ordinary quantum observables X 1 is equipped 
to measure are all accounted for by p~; if X ~ is to believe that the structure 
of the expansion of p l is meaningful, that there is something more to be 
known than p l, he must be provided with additional observables whose 
measured values are functions not just of pJ as a whole but of lists like 
({cp]}, {wi}). We shall return to this point in the next section. 

To demonstrate that the ambiguity suggested by (8) actually obtains 
for the canonical state, we shall apply a procedure adapted from 
Schr6dinger's general analysis of mixtures. What Schr6dinger proved was 
that any mixture p can be regarded as containing as one of its constituents 
a pure state ~0 that may be chosen almost arbitrarily, the only restriction on 
~o being that it must be orthogonal to the eigenspace of p belonging to 
eigenvalue zero. 

If X 1 applies Schr6dinger's procedure to the analysis of (6), the 
following steps are involved: 

(1) Arbitrarily choose a pure state ~0~ that is to be considered a 
constituent of the mixture pJ. Note that unless/P --. co (absolute zero), the 
canonical p1 has no zero eigenvatue; hence ~0~ is completely arbitrary. 

(2) Define the unit vector 

(3) Beginning with ~ ,  construct a complete orthonormal set of 
vectors spanning ~,~1: {el,..., e] .... }. 

(4) Define the unit vectors 

= O) (10) 
J 

Note that ~p~ is the vector chosen arbitrarily in step (1). 

(5) Canonical state pl may now be expressed as 

pl = ~ w, lq)] ) (q~l (11) 
J 

where 
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Thus, based on his measurements that determined p~ and the above 
steps of mathematical analysis, X t can just as reasonably believe that the 
canonical ensemble was prepared by a demon using the prescrition (i 1 ) as 
by one using the conventional spectral expansion in (6). Given the total 
arbitrariness of ~0~, a parsimonious X ~ would surely conclude, as 
emphasized earlier, that only p~ itself-~not its expansion--is physically 
meaningful. 

Nevertheless, it remains true that the ensemble provided to X 1 and 
from which he deduced p~ could have been manufactured by any one of an 
infinite variety of statistical mixing schemes, most of which involve as raw 
material states {~0~ } that are not eigenstates of energy. We face therefore a 
strange antimony: the canonical ensemble, so commonly and successfully 
employed to study systems in thermodynamic equilibrium, may itself be 
constructed from nonstationary constituents! This suggests that perhaps 
there is more to the concept of thermodynamic equilibrium than can be 
captured in the canonical density operator itself. 

3. EQUILIBRATION AND AVAILABILITY 

From the standpoint of thermodynamics, the canonical state is par- 
ticularly significant because it is the unique solution to two constrained 
extremum problems. If one specifies the mean energy 

~#(p ) = Tr(pH)  (13) 

then the unique p which maximizes entropy 

5o(p) = - T r  plnp (t4) 

is the canonical ¢3(fl), where fl is determined by (13). On the other hand, if 
one specifies 5O, then the unique p which minimizes q/ is the canonical 
p(fi), where fl is determined by (14). These singular properties make p(fl) 
the only quantum state that can be associated with the thermodynamic 
notion of stable equilibrium with all the practical consequences that entails. 

Equilibration, the process wherein a closed physical system relaxes to 
a state of maximum 5 ° compatible with its conserved value of ~//, is a 
commonplace phenomenon, though the details are hardly understood at 
all. However, the fact of equilibration permits us to invent a second method 
for generating an ensemble to which X ~ would assign the canonical state 
(3). Returning to the metaphor of the black box, we imagine that the 
preparing demon within engages in no statistical mixing whatever. Instead 
he has in his cellar numerous replicas of Wa, each having the mean energy 
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~//~ associated with the desired value of ill. Whenever X 1 requests an ovfl 
from the black box, the demon ejects an Yf~ that has been properly aged, 
i.e., permitted to equilibrate. 

Once again it is clear from a strictly quantum-mechanical perspective 
that X ~, despite being able to measure all quantal observables, cannot dis- 
tinguish the systems 3if1 that originated from statistical mixing from those 
that emerged from equilibration since both methods produced the same p~, 
and p l contains all quantal information. However, if one accepts thermo- 
dynamics as a fundamental physical science and not merely as a branch of 
statistical inference theory, then there are compelling reasons to believe 
that X ~ ought to be able to distinguish somehow the cases of mixing and 
equilibration. 

The pioneer effort to make this distinction was made by Hatsopoulos 
and Gyftopoulos, (4) who introduced and attempted to formalize the notion 
of ensemble ambiguity. In this language, all of the statistical mixing 
schemes considered above would provide X ~ with an ambiguous state p~ 
while the equilibration method would generate an unambiguous p~. 

It is apparent that if X 1 is to be able to discern ambiguity through 
measurements, he must be endowed with a larger universe of observables 
than that normally contemplated in quantum mechanics. One possibility, 
mentioned previously, would be observables whose measured values were 
functions of mixing structure ({~o~ }, {wi}). Although such observables are 
not recognized at present in normal quantum theory, it is noteworthy that 
their existence is in effect tacitly acknowledged in quantum statistical 
thermodynamics. For instance, if we take it as meaningful to speak of 
measuring the entropy of a system yf l ,  then the average entropy that 
would be measured by X ~ on an ensemble generated by statistically mixing 
subensembles characterized by density operators {p)} according to 
probability distribution { Wj} would be 

{ wj})= Z (15) 
J 

Since 5 # depends on the structure ({p)}, { Wj}) and not just on p~, it exem- 
plifies an extraquantal observable of the kind we need. It should be noted 
especially that if X 1 can, as we have assumed, measure 5 p on each J f  ~, then 
he can certainly measure 5# for the ensemble even though he is ignorant of 
the structure ( { #  }, { W j}); to do so, he need only measure 5 p on each y f l  
and then average his data. 

Now, in the specific cases of statistical mixing considered earlier, the 
canonical ensemble was mixed either in the conventional manner 
({~9)}, {/~j}) or in one of the infinity of variations ({q~]}, {wi})based on 
Schr6dinger's procedure. Since 5 p as defined in (14) vanishes for any pure 
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state, it follows that the average entropy in any ensemble generated by such 
mixing of pure states must vanish: 

5~({0) }, {/~;})= 5~({q)~}, {wi})=0 (16) 

In sharp contrast, the canonical ensemble generated by equilibration 
will have systems whose entropies are not only nonzero but in fact 
maximal for the given energy. Therefore, if X 1 can measure entropy in 
addition to the usual quantal observables, he can easily distinguish an 
ambiguous canonical ensemble from an unambiguous one. 

To appreciate this point more fully and in a sense more empirically, it 
is fruitful to consider the concept of adiabatic availability as defined by 
Hatsopoulos and Gyftopoulos. Thermodynamics has historic roots in 
engineering problems about efficiency in the performance of work. If .~1 
does work on another system ~ 0  (in an adiabatic process involving no 
other systems), then according to thermodynamics the maximum energy 
that ~ 1  can transfer to ~ o  is the adiabatic availability of ~1 .  Let us now 
assume that it is meaningful to speak of measuring the adiabatic 
availability of a system ~ .  The average adiabatic availability of an ensem- 
ble is then also well defined. 

For a thermodynamic system ~ in (unambiguous) quantum state p, 
the adiabatic availability is given by 

with/~ determined by 

d ( p )  = ~(p) - -  ~'(/5(fl)) (17) 

~e(p) = sP(~(/~)) 

The adiabatic availability of a system left in a canonical state after 
equilibration is zero; the adiabatic availability of a pure state O is 

d ( 1 0 )  (Ol) = (0 ,  H 0 )  - Eo (18) 

where Eo is the least eigenvalue of H. 
Now, if X 1 is presented with a canonical ensemble generated by any of 

the statistical mixing schemes described above, he will find that the average 
adiabatic availability for the ensemble is 

~({~o~}, {w;})=Y. w,d(l~o~ > <~0~1) 
i 

= Y~ w , ( ( q ,  lt H ~ tq,~ ) - E~) 
i 

= o//(p~) -- E~ (19) 
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Since Eg is the least eigenvalue of H 1, d is always nonnegative and is non- 
zero unless canonical state pl has/~ ~ ~ (absolute zero). We conclude that 
X I will be able to harness each system H 1 so as to perform, on average, 
positive work on another system Jut~°. 

Suppose, on the other hand, that the canonical ensemble provided to 
X 1 has been generated not by mixing but rather by the equilibration 
method. In this case the adiabatic availability of each ~ is zero and hence 
the average availability is also zero. Therefore, if X 1 can indeed determine 
whether the systems a¢ ~ that he receives can or cannot, on average, do 
work, then he can indeed distinguish an ambiguous canonical ensemble 
from an unambiguous one. 

Finally, there is another relation involving adiabatic availability that 
might serve as an analytical tool for an observer trying to ascertain the 
extent of ambiguity in an ensemble. In (19) we dealt with mixing cases 
where the constituents were all pure; interestingly, in this limit the average 
availability turned out to be a function of p~ rather than structure 
( { ~o] }, { w i} ), However, for more general mixing ({p j}, { Wj }), the average 
adiabatic availability has the form 

,.~7({pj}, { Wj))=~ WjEJ#(pj)- ~'(ffj(/~j))] (20) 
J 

where flj is determined by 5P(pj) = 5P(~j(flj)). Since J//(/~;(/~j)) ~> E o (equality 
only when /~ j~  Go)it follows from (20) that 

{ wj})  U(p) - Eo (21) 

where 

p= Z Wjpj 
J 

Comparing (19) and the r.h.s, of (21), we conclude that the average 
adiabatic availability of a mixture of nonpure states {pj} is generally less 
than that of a mixture of pure states. 

4. ARBITRARINESS OF CORRELATIONS 

The literature of quantum mechanics abounds with examples of 
correlated systems that behave in perplexing, if not truly paradoxical, 
ways: system-apparatus relations in quantum measurement theory, EPR 
experiments both gedanken and actual, Schr6dinger's cat, Wigner's friend, 
etc. All of these are special cases of Schr6dinger's theory of probability 
relations between separated systems. 
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Using the latter we can design a scheme of amazing generality for 
delivering to X ~ a wide variety of ensembles, including the canonical 
one. The method involves a composite ~123 = ~ f l  ® ~ 2 ® ~ 3  of three 
distinguishable systems, ~ 1  being the same one discussed previously upon 
which X 1 measures quantal observables. The three systems need not be 
interacting; none of the results to be derived can be attributed to forces. 
The demons in this scenario are observers X 2 and X 3 who are equipped to 
measure all the quantum observables of Jt ~2 and .~3 respectively. 

We begin by writing an arbitrary state vector for ~ 1 ®  ~ 2 N j g 3  as 

7 .123 = ~ a~k,~) ~2@ (22) 
jkl 

where {c~}j j =  1 ..... ~ } is a complete orthonormal basis for Jt ~i. At first we 
are interested only in two systems, the composite Jq~12=~.ut~l®~2 and 
Jt~3; it is therefore convenient to relabel {7)~ 2 } as {~12} and a~, as a ' ,  so 
that 

I//123 ~'~ t 12 3 (23) 
= Z.a amlO~rn 0~l 

ml  

The reduced density operator for ~ 3  is defined by the partial trace 

p3 = T r  12(1~ ~-/123 ) ( ~¢1231 ) (24) 

and is nonnegative definite for any g,~23. However, /0 3 will be positive 
definite (all eigenvalues strictly positive) only for a subset of the vectors in 
Jut~123. We shall refer to any state 7 j123 for which p 3 is positive definite as an 
ovum state for ~;¢t ~12. 

Henceforth let ~u~23 denote an arbitrary ovum state for ~12. With 
Schr6dinger's technique we can show how observer X 3 can, without 
interacting with ~12, prepare 44 ~12 in any desired pure state ~2 .  By using 
this astonishing power judiciously, X 3 can generate for X 1 the canonical 
ensemble, but the new method involves neither mixing nor equilibration. In 
order to achieve this goal, X 3 first contrives to prepare ~ 2  in what we 
shall call the desideratum state 

~1' = 2 x/~j @ ~ 2 (25) 
J 

where /~; and @ are defined as in (6) and {~2} may be any orthonormal 
basis for ~ 2 .  Letting {q~3} denote a complete set of orthonormal eigen- 
vectors of p3, we obtain the spectral expansion 

p3 = ~ r ,  lq~3) (q~3~l (26) 
n 

where, because ~u~23 is an ovum state, r~ > 0, for all n. 
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When c¢ 3 is expanded using {~03~}, (24) becomes 

11[/123 ~ - . 1 2  . 3  ( 2 7 )  
~ -  ~ t r n n ' ~  m t}3 n 

m n  

where 

amn = Z ' 3 
l 

From (24) and (27) it follows that 

P3= ~ ( ~  a'na'*') Iq93) 

Comparison of (26) and (28) then reveals that 

(28) 

a l . a t * ,  = rn fin,' (29) 
l 

If we next define normalization constant a n and unit vector q)12 such that 

12 anq)12 = 2 amnO~ m 
m 

the arbitrary ovum state takes the correlated form 

(30) 

~t rJ123 =}'~, U. t e . -  .12 q'n'3 (31) 
n 

Using (29) to help find the normalization constant a,, in (30), we 
obtain the relation 

a, = rne ~ (32) 

where fn is an arbitrary phase. It follows also from (29) and (30) that the 
unit vectors {q~2} are mutually orthogonal. Since r n > 0  for all n, (32) 
implies that an ~ 0 for all n and therefore every term in the expansion (31) 
is nonzero. The orthonormal set {q~2} stands in one-to-one correspon- 
dence with the ~ut~3 basis {~o3}; thus the {q~2} as defined in (30) constitutes 
a basis for jg12. Accordingly, any vector in ~12 may be expanded in terms 
of { o12). 

In Section 2 we used a procedure due to Schr6dinger for expressing an 
arbitrary density operator as a mixture including any desired pure con- 
stituent chosen (almost) arbitrarily. A similar procedure, also described in 
general by SchrSdinger, can be applied in our present situation to express 
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the arbitrary ovum state (23) and (31) in a special correlated form that 
involves any arbitrarily chosen state of yf12. The following steps are 
involved: 

(1) Choose any desired state of ~12;  for the points we wish to make 
later, we choose the desideratum state defined in (25). Like any vector in 
ovf 12, it is expressible in terms of {q~2}: 

(2) 

g,1= = c .  
n 

Define the unit vector 

(33) 

712 = 2  gln(Pln 2 (34) 
17 

where 

gln ~ ( ~  tCII~2~ -1/2 Cn 
\ t  r/ / 

Note that ~)~2 is well defined since r. > 0, for all n, a consequence of the 
restriction that ~123 be an ovum state. Since all vectors are normalized to 
unity, we have also the relation 

(3) Beginning with ~,~2, construct a complete orthonormal set of 
vectors spanning yg12: {?]2,..., 7)2,... }. 

(4) Define the unit vectors 

r/3 = Z e/f, (~)21 lz 3 (36) 
n 

¢pt2 Since {7) 2 } and { ,, } are both complete orthonormal sets in ~ t 2 ,  it is 
easy to verify that {r/J}, like {q~3}, constitutes a new orthonormal basis for 
de ~3. Solving (36) for ~p] and substituting into (31), we obtain 

 ,123 Z,f j ,2.3 = ~b} V (37) 
J 

where 

wj=Z r,j< o 2I#2>i2 
! 
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and 

=E./r--" ) 
J . ~ ¢ w s  

Comparison with (33), (34), and (35) shows that 

and 

w, = ~ r zIg,z[ 2 (38) 
! 

45~2=~ c,, ~o ,,t 2 -- ~12 (39) 
l 

(5) The arbitrary ovum state is now expressed in a correlated form 
involving the desideratum state: 

~,23= ~ ~,2t/3 + 2 ~ 45)2@ (40) 
j ~ l  

Inspection of (38) shows that wl =0  would be possible only if all gl l= 0 
(since all rz>0). But according to (34) this would make c ,=0 ,  which in 
turn would imply via (33) that ¢'~2--0. This contradicts the original 
definition (25) of the desideratum state; hence w 1 ¢0.  

Unlike correlated forms most commonly encountered in EPR dis- 
cussions (e.g., the ubiquitous singlet state), the expression (40) involves one 
orthogonal set {~/3} and one usually nonorthogonal set {45)2}, which is 
therefore not interpretable as the eigenvector set for any observable of ~12. 
However, from (40) we can still compute certain interesting joint 
probability distributions. Among the observables associated with ~g(~3 and 
hence measurable by X 3 is one represented by the projector I~)(~1; 
similarly, a legitimate observable of ~12 is the projector 1¢ '12) (¢'12 I. Both 
of these observables are quantal propositions, whose eigenvalues (I, 0) may 
be interpreted as replies ("yes," "no") to the observable questions they 
represent. 

Because the propositions [~12)(~I21 and 1~/3)(r/31 are operators on 
)flZ and .~3 respectively, they obviously commute. We may therefore 
identify the mean value of their product as the joint probability W(1, 1) for 
obtaining "yes" answers when the two questions are asked simultaneously; 
hence in the pure state (40), 

W(1, 1)= ~ T~231(lC't2 ) (¢'~2t)(1~> (~21)t ~/123)  

= I( ¢'2r/~ I ~'23)12 = w, (41) 

825/18/2-9 
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Note that the last step follows entirely from the orthogonality of the {t/3 }, 
whether or not the {~)2} are orthogonaI. Similarly, we may easily compute 
the joint probability W(0, 1) that question I~/12) ( ~121 will yield "no" 
while [r/})(~/~[ answers "yes." In quantum logic, the negation of 
1~,12) (~121 is (1 12_ [g)12) (q,12]), so that in pure state (40) 

W(O, l)  = ( ~ ID'1231 (1 12 _ [ if/12) ( ~/12[ )([I'/~) <~113[)[ i/~123) 

= w, - w, = 0 (42) 

where again we note that the result depends only on the orthogonality 
of 

Using as raw material the arbitrary ovum state of ~,vf~z3, X 3 can exploit 
the probability relations (41) and (42) to generate an ~ t 2  ensemble of 
systems in the desideratum state ~t12 without interacting with any jr12. 
The procedure is simple: X 3 measures on j r3  the proposition Ir/~)(r/3t; if 
the result is "yes," X 3 accepts the corresponding Jt ~'2 into the ensemble 
being generated; otherwise, ~ , 2  is rejected. 

To demonstrate rigorously (i.e., without recourse to such fantasy as 
wave packet reduction) that this repeatable procedure would actually 
produce an ensemble of jf~2 in the state ~12, we note first that, since 
w1¢0 ,  X 3 will definitely obtain "yes" answers on occasion; i.e., the 
procedure wilt generate an ~12  ensemble. From (42) it follows that each 
.gf '12 accepted by the procedure is in a condition such that a measurement 
of ]~a2) (~1~t121 cannot yield a "no," i.e., must yield "yes." Thus an observer 
of J~4, ~12 who happened to ask the question I~ t '2) (q**21 while attempting to 
determine the quantum state p~2 would necessarily obtain the condition 

1 = Tr,2(p'21 ~ a  ) ( ~ 2 1 )  = ( ~i21 p,21 ~ 2  ) (43) 

The only positive operator satisfying (43) is 

(44) 

Naturally an observer not so fortunate as to discover property (43) right 
away would eventually, after gathering much quorum data, also arrive 
at (44). 

Let us return now to observer X ~, who studies only Jf~. If (44) is the 
state of j¢,12, then the reduced density operator p'  for J¢~', the state that X' 
would find from analysis of his quorum measurements, is easily obtained 
from (25) and (44): 

pl = Tre pt2 = ~/~j  10) ) (@I = fi1(/?~) (45) 
i 
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the same canonical state (3) prepared in earlier scenarios (a) by mixing 
and (b) by equilibration. 

We describe the present method as (c) subensemble selection, since X 3 
has selected out of all jf~23 systems in the arbitrary ovum state a subset 
whose ~ I  components (undisturbed by X 3) will be found by X ~ to 
constitute the canonical ensemble characterized by (3). 

The thermodynamic implications of this selection method of 
generating a canonical ensemble are as bizarre as in the mixing case. If X 1 
applies normal thermodynamic reasoning, he will conclude from (17) that 
the adiabatic availability of the system ~ is zero; i.e., each system ~ in 
the ensemble can be harnessed to do, on average, no work on another 
system ~ 0 .  

It can be seen from the structure of (25) that there are correlations 
inherent in desideratum state ~1~ that would permit X 2 to make additional 
subensemble selections from the present canonical ensemble of systems J~f~. 
To be specific, it follows from (25) that the joint probability that 
measurements of t0 ) )  (0)1 by X ~ and t0~) (0~1 by X 2 will both yield "yes" 
has nonzero value/Sj, and the probability that X ~ would obtain "no' while 
X 2 obtains "yes" is zero. X 2 has therefore the power to filter unobtrusively 
the canonical ensemble being provided to X 1. The method is patterned 
after that used by X 3 to generate the desideratum state: X 2 measures on 
jgg.¢~2 the proposition [ ~ ) ( 0 ~ [ ;  if the result is "yes," X 2 accepts the 
corresponding 24,~; otherwise, Zt °~ is rejected. An argument parallel to that 
leading to (44) would show that the ensemble of systems ~'~ generated by 
this method would be found by X ~ to be described by the pure quantum 
state ~1, which was originally defined in (6) as an eigenstate of H ~, the 
energy of system Jf~. 

Consider the thermodynamic significance of this result. The systems 
~f'~ now being studied by X ~ comprise a subset of the very same systems 
that participated in the earlier canonical ensemble generated for X 1 by X3; 
X 2, like X 3, engaged in no physical interaction with ~1 .  But, applying the 
thermodynamic principle (18), X ~ would now conclude that the systems 
~ with which he now deals have adiabatic availability 

.~(It)) ) (tP)[)= E~- Eo (46) 

which is strictly positive unless ~) is the ground state, an exception easily 
avoided by selector X 2 in his free choice of Z Consequently, thermo- 
dynamic reasoning would here lead X ~ to believe that each system Jf~ in 
the present ensemble can be harnessed to perform, on average, positive 
work on another system ~ o  

From a slightly different perspective, we may say that X 2, without 
disturbing the systems ~,Y'~ in the canonical ensemble, can partition that 
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ensemble into pure subensembles with states {0)}, each of which contains 
systems ~ that must be regarded thermodynamically as being capable of 
doing, on average, nonnegative work on auxiliary systems H °. We have 
therefore a complete paradox: the same ensemble of systems ~ 1  that are 
capable of doing zero average work can be split into subensembles each 
comprised of systems capable of doing nonzero average work. 

It is as though the output F of a refinery consisted of N barrels of fuel 
with the following property: when used to power N cranes, F lifts N 
weights through an average displacement of zero;  but when the same  N 

barrels are partitioned into subsets {~}, where Fj contains Nj barrels, each 
Fj lifts Nj weights through a posi t ive  average displacement, with the 
contradictory complication that the F indeed lifted all N weights through a 
nonzero average displacement. 

Surely thermodynamic availability for ~,uf~ cannot depend so 
capriciously upon the whims of disconnected observers like X 2 and X 3. Yet 
this entire selection scheme has been constructed from standard principles 
of quantum mechanics and normal thermodynamic reasoning based upon 
formulas commonly used in quantum statistics to represent such thermo- 
dynamic notions as entropy and equilibrium states. It would seem, 
therefore, that some aspect of quantum mechanics or thermodynamics or 
both requires modification. 

5. THERMODYNAMIC CAUSALITY 

Whether a canonical ensemble of systems .3f 1 is prepared by 
(a) mixing, (b) equilibration, or (c) selection is not significant in quantum 
mechanics; for in all cases the density operator (3) is the same. Thus no 
data X 1 can accumulate by measuring quantal observables of ~ can 
distinguish the three cases. 

With respect to (c) selection, a process involving correlations between 
~ 1  and ~,~2, and between ~ 2  and ~3 ,  it might be argued that the 
canonical state determined by X 1 is "improper ''(5~ since only the whole 
composite ~a23 should be regarded as having a state. After all, Xl's 
attribution of state (3) to ~ alone ignores real correlations actually 
exploited by X 2 and X 3 in their roles as preparer-demons. These 
correlations were not discoverable by X 1 because of his limited repertoire 
of measurement devices. By contrast, if thermodynamics is regarded as 
fundamental, then in case (b) equilibration, there is nothing quantum- 
mechanical about ~ 1  that is hidden from X 1. The canonical density 
operator (3) would be indeed the true, unambiguous state of Jt ~1. 

Thus it seems that our quantal observer X 1 of system ~ who through 
quorum measurements of ~ 1  observables has determined the state (3) has 
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two ways--both somewhat unpalatable--to attempt to distinguish (b) and 
(c). He can try to determine whether the systems ,~'t ~1 can do work on 
auxiliary systems ~ 0  or he can try to ascertain whether -~i is correlated 
with any other system in the universe! As we have already seen, the 
thermodynamic availability approach would suffice to distinguish methods 
(a) and (b). 

Another possibility for escaping from these dilemmas begins with the 
recognition that they are but part of a more general theoretical tension that 
exists between quantum mechanics and thermodynamics. The standard 
quantal time evolution of an isolated system is described by a unitary 
transformation that leaves invariant not only the mean energy (13) but also 
the entropy (14). Such motion, a universal trait of quantum mechanics, is 
incompatible with commonplace irreversible processes in which entropy 
increases. If, however, the quantat law of motion were generalized to 
encompass energy-conserving, entropy-increasing state evolution, the 
generalized law would provide a foundation for a consistent quantum 
thermodynamics. A particularly comprehensive effort to construct such a 
theory is embodied in the Beretta equation/6'7) 

The details of quantum thermodynamics are presently unknown, and 
the very idea of taking thermodynamics to be so fundamental is contro- 
versial. Nevertheless, it is interesting to explore the consequences, for the 
problems raised in the present study, of a hypothetical law of motion 
featuring short-term unitary evolution but longer-term thermodynamic 
equilibration (entropy maximization subject to constraints). We proceed by 
assuming, as in Section 4, that H ~, ~2 ,  and j((~3 are not interacting. 
However, since in the selection scheme X 3 performs a measurement on ~,~3, 
we shall introduce an apparatus system ~.o4 with which JC 3 will interact. 
The energy operators for the whole system and its various subsystems are 
therefore related as follows: 

H 1234 ~-- H 12 + H 34 (47) 

where H 12 = H 1 n t- H 2, but H 34 is not an additive form due to the interac- 
tion between ~ 3  and Zf4. If jg4 is initially in the state Z 4 and, as before, 
~ 2 3  is in the arbitrary ovum state ~23, then ordinary unitary evolution 
of jf~234 occurring as ~ 3  interacts with apparatus ~4 leads to the post- 
measurement-interaction state given, using the notation of (37), by 

e_it(Hl2 + .34) ~rj123)¢4 ~-- E ~ J "  4 )  2(/') I//34(t) (48) 

J 

where 

~)2( t )  = e-i'Hz2 ~)2 
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and 

Since {~7]} is an orthogonat set, the reduced density operator for • i2  at 
time t takes the form 

P'2(0 = E WJ]~) 2(/) ) < (/)) 2(t)I 
J 

= e -itn'2 p12(0) e uHI2 (49) 

a form clearly illustrating that, absent interaction between ~12 and j¢~34, 
j/al2 evolves as though ~34 did not exist. 

As described earlier, X 3 uses measurement results (obtained in the Jt TM 
interaction process) to select out, via correlation, the j =  1 subensembte of 
the ~ J 2  ensemble described now by (49). That subensemble is charac- 
terized by the desideratum state (39) which is now seen from (49) to be 
evolving unitarily according to 

~P12(t) = e it(HI+ tt2) ~/12 (50) 

After substituting (25) into (50), we obtain as the reduced density operator 
for J,e 1 at time t 

e fl~Ht 
p ' ( t ) =  z(/~') = P'(/~') (51) 

the familiar canonical state, which is time-independent. 
Admittedly, none of this is especially surprising; as expected, it turns 

out in (normal) quantum mechanics that the actions of X 3 in performing 
the needed measurements are not detectable by X ~, who determines from 
his quorum measurements the stationary canonical state (51), the same 
state description he would have found had Jt ~ been prepared by 
equilibration. 

Suppose, however, that the conventional unitary time evolution were 
only an excellent short-term approximation, that the true causal evolution 
for any isolated system were instead an energy-conserving but entropy- 
maximizing (hence nonunitary) transformation. In such a world, the 
system aft 1234 would eventually equilibrate to a final state in the form of a 
tensor product of canonical density operators: 

p 1234(oo)= 6'(/J') ~2(1/2) ~34(/~3~) (52) 

where/qJ is determined by 

Tr , (y( f i  j) HQ = ( ~23 z g I H q  ~r_/123 Z4 > (53) 
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In other words, each isolated system Jt ~1, ~2, and ~34 assumes the state 
of maximum entropy consistent with its total (conserved) initial energy. 
From (52) we obtain immediately the reduced density operator for j~12 

p12(~) = ~,(/~1) t~2(/~2) (54) 

which is obviously very different from the usual result (49). Moreover, (52) 
embodies no correlations between ~12 and ~34, so that even if X 3, using 
apparatus ~4 ,  makes his measurements and associated selections, the ~ 2  
subensemble thus selected will be nothing but a random sample from the 
whole ~12 ensemble. Presumably X 1 would assign to such a subensemble 
the reduced density operator for ~ 1  implied by (54): 

pl(oo)  = pl(fl l)  (55) 

In stark contrast to (51), where fll was arbitrarily chosen when the 
desideratum state was constructed, in (55) fll was determined via (53) by 
the mean energy of ~ 1  in the initial state of ~1234. Such a comparison 
serves to underscore the peculiarities of quantal probability relations 
that Schr6dinger found repugnant. Given an arbitrary ovum state, X 3 
arbitrarily chooses to measure some observable that will enable him to 
prepare by selection any desideratum state of his choice. Never interacting 
with J4¢ ~, X 3 predetermines, by choosing a value for ill, the mean energy 
that X ~ will assign to the selected canonical ensemble of systems ~1.  
Though formally canonical, surely such an ensemble cannot reasonably 
represent the concept of thermodynamic equilibrium; but how can X ~ 
know this? 

If, as we are here conjecturing, the unitary evolution is a relatively 
short-term phenomenon, then the state (51) would not actually be 
stationary but would evolve eventually to (55), a process that would be 
detectable by X 1 exclusively through measurements within his repertoire. 
Through such studies X 1 could in fact distinguish a canonical ensemble of 
systems ~ prepared in the (unambiguous) manner (b) equilibration from 
ensembles prepared by the (ambiguous) method (c) selection. Similarly, X 1 
should probably be able to differentiate canonical ensembles generated by 
(a) mixing and (b) equilibration by waiting; the ensemble in case (a) would 
eventually relax to a collection of systems with many different tem- 
peratures, whereas the unambiguous ensemble in case (b) would be 
stationary. 

We therefore conclude that a generalized quantal law of motion, 
designed for compatibility with fundamental thermodynamic principles, 
would provide also a means for resolving paradoxes associated with the 
characteristic ambiguity of ensembles in quantum mechanics. 
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