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THESIS SUMMARY

Although the quantum era of natural philosophy dawned amid problems of
interpretation, it is widely believed that conceptual difficulties asao.
ciated with quantum physics were long ago resolved in Copenhagen. Thus
modern physicists have concentrated primarily upon applicetions of the
quentum algorithm and excluded from consideration deeper issues concerning
its logical and epistemological structure. However, there has recently
been a resurgence of interest in problems of this more philosophic kind;
and the center of attention has been the concept of measurement. This dis-
sertation explores problems of measurement in quantum theory largely from
the vantsge point of theoretical pPhysics, but due emphasis is also placed
on the philosophic aspects of any such basic inquiry. The work is divided
into three self-contained parts. -

Part I, "The Nature of Quantum States", carefully explores the rela-
tions among the statistical ensembles, systems, and states of quantum
theory., By systematically contrasting the classical and quantal resliza-
tions of a general paradigm for a probabilistic physics, important distinc-
tions are exposed both in statics and dynamics. It is concluded that the
conceptual gulf between classical states and quantum "states" is wider than

commonly assumed,

The overall purpose of Part II, "Quantum Theoretical Concepts of Mea-
surement", is to clarify the physical meaning and epistemological status
of the term measurement as used in quantum theory., After interpretive
discussions contrasting the quantal concepts observable and ensemble with
their classicel ancestors along the lines of Margensu's latency theory,
various popular ideas concerning the nature of quantum measurement are
critically surveyed. A careful study of the quantum description of real
experiments is then used to motivate & proposal that two distinet quantum
theoretical measurement constructs should be recognized, both of which
must be distingulished from the concept of preparation. The different epis~
temologicel roles of these concepts are compared and explained. It is
concluded that the only possible type of "quantum measurement theory" is
one of little metaphysical interest and that quantum measurement seems
problematical only when viewed from an overly narrow classical perspective.

Part III, "Simultaneous Measurebility in Quantum Theory", is a study
of what is sometimes regarded as the conceptual heart of quantum theory,
viz., the orthodox "physical” interpretation of noncommuting operators as
representatives of incompatible (non-simultaneously-measurable) observables,
It 1s demonstrated that the much quoted "principle" of incompatibility of
noncommuting observebles is simply false. The sxiomatic root of all incom-
batibility arguments is then identified; end it is shown thet, with a
slight modification of the basic postulates which affects neither useful
theorems nor practical calculations, quantum physics no longer entails
illogical restrictions on meesurability, Among the related topics touched
upon is the problem of quantum joint probability distributions.
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ABSTRACT

As a prerequisite to any meaningful understanding of the quantum mea-
surement process, Part I carefully explores the relations among the statis-
tical ensembles, systems, and states (pure and mixed) of quantum theory.

By systematically contrasting the classical and quantal realizations of a
general paradigm for a probabilistic physids, lmportant distinctions are
exposed both in statics and dynamics. Included are observations concern-
ing the intrinsic ambiguity of the quantum state concept and the peculiarly
quantum property of dynamic indivieibility. It is concluded that the con-

ceptual gulf between classical states and quantum "states" is wider than

commonly assumed.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Introduction

The dominant theme of the quantum theory--though many textbooks do not
sufficiently emphasize it--is that all its causal statements are probabilis-
tic. In other words, the epistemic rule of correapondencé?which provides
the empirical meaning of quantum theoretical states involves probabilistic
concepts in an essential way. This hallmark of quantum theory must be
constantly borne in mind if the physical significance of the theory is to
be understood at all. Moreover, it is of fundamentsl importance to recog-
nize that the probabilistic ruie alone is insufficient to link abstract
states with empirical experience., Indeed pure probability theory is itself
a formidable collection of abstruse constructs requiring further rules of
correspondence of its own. The situation is wholly analogous to that pre-
valling in geometry, where pure geometry is converted to physical geometry
by appending familiar operational definitions involving straightedge and
compasses, In the case of probability theory, the required connections
are implicit in established practices of experimental science. Especially
to be noted is the well known identification of physical probability as

relative frequency* in a statistical ensemble. Accordingly, i1f quantum

theory is to be understood as a physicael sclence, it is sbsolutely essen<"
tial to remember that ite primary connection to the empirical world is
through statistical ensembles. To ignore the statistical aspect of quantum
theory is to dismiss much of its relevance to actual physical experience,
Nevertheless, it has proved intuitively useful in ordinary quantum

theoretical applications to think of the state vector (or its wave function

*The appropriateness of the frequency definition of probability is an
old philosophic problem, but we are not concerned with it here. We simply
accept uneritically the fact that in all scientific applications of proba-
bility theory, the construct probability is epistemically linked to
statistics?
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representative) as belonging to a single system at a single time in the
same way that states belong to individual systems in classical mechanics.
Thus the jargon of modern physics easily induces one to regard the phrase
"an electron in state 3” " as merely the quantum analogue to the classical
expressien "an electron in state (%,’ﬁ) ", in spite of the fact that the
former refers physically to statistics of measurement results upon an
ensemble of identically prepared electrons* whereas the latter Just means
that a single (classical) electron has position 2& and momentun179 .
Superficially, this common phraseoclogy seems innocent enough; ihdeed ona
might be disposed to think that a theoretician could use it unreservedly
without contradiction so long as he remembered to switch to the correct
statistical meaning of gb at the conclusion of his arguments and calcula-
tions.v

It is the purpose of the present study to expose certain logical
weaknesses inherent in the drawing of structural parallels between cles-
sical and quantum physics and hence to demonstrate that s quantum theor-
ist may not in every context relate state vectors to single systems in the
classical manner described above. The linguistic extension of ?L from its
role in describing ensembles to its further function as the state of a
single system has given birth to monumental barriers to the understanding
of quantum theory as a rational branch of natural philosophy. Problems
connected with the general theory of measurement--the nature of quantum
measuremeni, wave packet reduction, concepts of compatibility and simul-
taneous measurement--are especially aggravated'by this popular convention
that the state of an individual system is represented by"yb.

Thus in our opinion the material to be surveyed below forms the

*The ensemble may consist of many independent electrons at one time,
one electron sequentially measured and reprepared, or any combination of
these two extremes?
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essential prelude to any serious study of the basic philosophic issues

associated with quantum theory. We shall attempt to show elsewheré*that
problems concerning measurement in quantum physics can be sharpened; and
sometimes resolved, by according proper attention to those basic physical

characteristics of quantum states with which the present essay desals.

2. The Minimal Axiomatic Structure Of a Probabilistic Physics

Rather than devising in the customary way artificial verbsal analogies
between the constructs of classicael and quantal physics (e.g., the afore-
mentioned statecy@,ja) and "state" ;L ), we shall contrast the two kinds
of theories in a manner which reveals formal differences as readily as the
standerd comparisons indicate formal similarities. To facilitate such a
comparison of classical and quantal statistical physics, it is useful to
consider an abstract paradigm theory representative of a probabilistic

physical theory in general. As in all physical theories, the primitive

idea of this prototype theory is the study of the numericasl results EZL*£37

Zbﬁz y s «Of measurements of observables a‘.’) @ y...performed on a physi-

cal system §§_. It is the goal of the theory to incorporate these messure-
ment results into a causal framework, i.e., information about present
measurement results should determine similar information sbout future
measurement results. The defining property of the present model theory

is the fact that this information has a form related to the probebilities

of the measurement results. Hence what is actually studied is the statig=

tics of the results of measurements on the member systems of ensembles of

identically prepared replicas of the physical system of interest S .*

In the theory, an ensemble is characterized at a given time by the

*Cf., fn. on p.2.
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arithmetical mean values (expectation values) of measurement results for
the various observables, i.e., by the "functional" <:ZJQ)> whose "domain"
is the set of observables. In such a theory the causal nexus links the
values of <:22L>> at different times for every CZI.

The essential axioms which typify e statistical physical theory may
be summarized as follows:

Pl: Mathematical objects A, B,...correspond to observsbles Czu,GS,...

P2; For every ensemble of identically prepared systems there exists
a functional an(A) such that for every pair (A)a)’

My (A) =<3 »
the arithmetic mean of the results of a-measurements performed
at time t relative to the preparation of each member system.

P3; For every kind of physical system (i.e., system of interest plus
1ts re;evant environment) there exists a ceusal law relating the
forms of the mean value functional at different times.

Later more definite content will be ascribed to these rather vegue
statements, First, howevef, we must review an important scheme for the
classification of statistical ensemhles especially emphasized by von NeumannFr
This classification hinges on the concept of ensemble homogeneity, a
property which ultimately depends on the mathematical character of measure-
ment statistics associated with the ensemble, In particular, it is always
poesible to conceive of many subdivisions of a gliven ensemble into sub-
ensembles*; the homogeneity of the original ensemble is determined by com-
paring thé statistical characteristics of such subensembles. This process

of subdivision is of course a mental operation based on statistics of mea-

surement results; indeed it should élways be remembered that the ensemble

*These subensembles must themselves be bonafide statistical ensembles,
l.e., they must each contain en "effectively infinite" number of systems so
that the frequency definition of probability may still be used.
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concept includes even the case of a single system in a temporal sequence
of measurements end repreparations. Most ensembles are mixed, in the sense
that the subensembles into which they may be grcuped are statistically
distinct; the;e exist, however, completely homogeneous, or pure, ensembles
for which every subdivision yields subensembles all statistically identi-
cal to the original. Mathematically, a mixed ensemble is charscterized by
e meen value functional M (A) such that there exist di»stinct functionals
m‘(A-) >ma (A) in terms of which m647 may be expressed as folldws:
m(A)= wr m (A) + wg my (A), wpw; >0,
where Oqatbg denote the respective fractions of the systems in the origi-
nel ensemble present in subensembles 1 and 2. (Clearly, W +uf=|.) If,
on the other hand, for a given m(/D there do noé exist distinct m,[A),Mz(A)
such that Vh(A)::lAf' m,(A>+M/£ MM) » the ensemble characterized by
that n464) is of the pure, or homogeneous type. As we shall see later, it
is the latter type of ensemble which, due to its maeximal order and uniform-
ity, may in some cases provide a méans to extract from an initielly proba-
bilistic theory (one dealing basically with ensembles and statistics) a
plausible Btate concept appliceble to single systems in the classical
sense, i.e.,, a state concept such that any physical system considered at a
glven instant may be regarded wiﬁhout contradiction as having a definite
state at that ins%ant.

To exhibit a simple realization of the general paradigm above and to
exemplify the concept of ensemble homogeneity, it is instructive to examine
classical statistical mechanics from an unusual berspective which disre-
gards the original purpose of that classical theory as & mechanical expla-—- -
nation of thermodynamics. That is, we are not interested in the Gibbsian
imaeginary ensemble of replicas and do not adopt the usual postulate which

connects averages over that ensemble with thermodynamic parsmeters
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associated with the single system of interest. Instead, we consider a
real ensemble (either an aggregate of identically prepared systems upon
which measurements are performed or an alternating temporal sequence of
preparations and measurements upon a single system, or a combination of
both) end the collectives of measurement results obtained by real measure-
ment operations upon its member systems. Moreover, assume that nothing is
known asbout Newtonian properties or states of single systems. From this
point of view, the sole purpose of classicel statistical mechanics is to
regularize within a causal framework purely probabilistic information
about measurement results; hence the theory is a realization of the sbove
paradigm and may be summarized as follows:
P1C: TFunctions A(?_,»P)D B(Z)r),...whose domain is phase space corre-
spond to observables aa s+..(Phase space has for coordinates
the position (q), and momentum (p) components of the system of

interest. )

P2C: For every ensemble of identically prepared systems there exists
a mean value functional m/f‘m (} 70)] Every My may be
expressed in terms of a corresponding function 6_(7,70) (the
density-of-phase) as follows:

me(A)= 3*7— gdr’ (QJ% #IA (7.>1o)
(It can be shown that Q> , and J}Solfe =/.)

P3C: For every kind of physical system, there exists a function /—/(},r)
(the Hamiltonian) which determines the causal evolution of W
via the following law (Liouville's equation)

< POH 20 _ 9 9 =$H, 03>
- 97_ 2 20>
where = denotes summation over all con,jugate pairs (?_ —}o )

The pure and mixed ensembles of this theory are easily identified by

combining P2C with the generel definitions of pure and mixed. In terms of
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the density-of-phase function, an ensemble characterized by (Z,f) is pure

if there do not exist distinct (nonzero) functions F%)r)’ F(,ty'?f)suCh that
() @)
\ = A . - " /~
P4, WO G+ WPl p), un >0,
Now, it 1is obvious from analytic geometry considerations that any function
ec;‘)f) whose support (i.e., that part of the domain for which the
function is nonzerco) mey be divided into two regions R‘ and chan indeed

2
be written as a linear combination of distinct functions ; ( )by letting

€">((;’(2’) be proportional to P for points (7_)79) in R(Ed) and zero for
points in R:a(ﬁ) Thus the support of a pure 6(7')77) must be indivis-

ible, i.e., a single point of phase space, say (}o)%)' The generalized

function which satisfies this requirement plus the normalization condition

( ,f):-.[ 1s Just the Dirac delta:
5”1?91”(’? PGP)=05(2-2.05(p-p).

This is therefore the genersl form of P for the pure ensembles of clas-
sical statistical mechanics; particularly to be noted is the correspond-
ence between these pure ensembles and the points (ﬂa "ﬁ) of phase space,

& correspondence which will play a central role in subsequent development
of a state concept applicable to a single system at a single time. Finally,
the mixed ensembles of classical statistical mechanics are simply those

represented by density functions not in the gbove pure form.

3. Augmentation of the Model Theory to Include & State Concept

The minimal axiomatic structure (Pl, P2, P3) outlined above for an
intrinsically probebilistic physical theory does not mention the concept
of state. The omission was deliberate, for the usefulness of the state
concept in physics lies in its reference to individual systems and its
participation in the scheme of genersl causality (initial state of a sys-

tem implies final state of that system via physical laws). Within the
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purely statisticel model alone, such states Play no role, There is, how-
ever, the possibility that they might be added somehow to that paradigm,
provided the supplementation ylelds a consistent logical structure. It
will be demonstrated below that the concept of ensemble homogeneity pro-
vides both a suitable means for generating such a supplemental postulate
end a touchstone to check for ambiguities or inconsistencies within a
theory thus modified.

To motivate this general supplementation procedurg, let us first recon-
sider classical statistical mechanics in the special form given above,
where the axiomatic structure (Pl, P2, P3) does not involve & priori any
state concept for singlevsystems. It is, however, well known that such a.
concept can indeed te consistently appended to this structure. In fact,
the usual theoretical development of statistical mechanics begins with the

classical states (i‘bﬁ) and the Newtonian laws which govern their causal

Fa

P
evolution; Q(Z_ér) is then defined so that 5&%7_90 9(7_37&) equals that

fraction of an ensemble whose systems have erassigal states (. 34/) in the
phase space regiong(?of)/ze (7”%2))705(74770_03 s &and Liouville's
equation (P3C) is derived by applying classical mechanics to each member
system of the ensemble.

In the present context, we are interested in the opposite procedure,
viz., extracting from an originally statistical theory a consistent state
concept fo_r single systems. Thus in statlsticel mechanics the 6(7’70) is
to be thought of initially only aé characterizing an ensemble in toto and
not as being formed by counting numbers of elements "really in" various
classical states (% 379) - The latter interpretation is what v;re' want to
"discover" from en analysis of measurement statistics associated with the

ensembles. The fundamental question to be posed, then, is the following:

Cen an ensemble, described by P(;,?Q) » be construed unambiguously as
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consisting of elements to which some meaningful state specification may be

assigned individually?

For classical statistical mechanics, the affirmative renly comes

about as follows. Consider first the pure ensemble. Since, by definition,
every division, or selection, produces subensembles statistically identi-
cal to each other and to the original, the pure ensemble provides the
natural starting point for any additional postulate sbout individual étates.
Indeed, the homogeneity under division exhibited by the pure ensemble
e(?:%)-_—:g(%.zo)é(f-ﬁ) strongly suggests a supplemental postulate
which assigns to each member system of such an ensemble a state gzo,fg),
which may be thought of as possessed by the individual system. In classi-
cal statistical mechenics, the fact that observables are represented by
functions A(q,p) strengthens this suggestion; for thoughtful analysis
clearly indicates that if for every A(q,p), M(A)-'-‘—A(;o)ﬁ) (as is the case
when e = S(9- ‘) S (,V...%) ), the only reasoneble definition for
the possessed’ state of an individual system is the traditional phase space
point (20374,) (or an equivalent specification in terms of the associated
values of other phase functions),

This observation is, however, not yet sufficient to werrant inclu-
slon of the proposed supplemental postulate; mixed ensembles have yet to
be considered. Since mixed ensembles are characterized by reducibility to
distinct subensembles and pure ensembles permit the unambiguous assignment
of individual states, the fundamental question posed earlier may be replaced
by another: Is the reduction of a mixed ensemble to a set of pure suben-
sembles unique? If so, any ensemble may be consistently interpreted. as a

collection of systems individually described by definite states; if not,

the proposed assignment of states to single systems is ambiguous and there-

fore physically meaningless,
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In classical statistical mechenics, this reduction to pure subensembles
is represented methematically by expressing a genersl 6(7579) as & "sum"
of 'S(Q[ ¢Z ) SlC4¢-7¢77

P, = ., «ﬁfc( W) 5@, 5(2-12).

Necessarily, C(?,; 7)) = ;Z”?a), & unigue solution Therefore,

every member of a classical ensemble may be unambiguously assigned a clas-
sicael state (%LDS7Q) at any given time,

As noted above, the present discussion of statistical mechanics has
proceeded retrograde to the traditional development. The ensemble snd
measurement statistics have been regarded as primitive, while the notiocn
of state has been sought through an analysis of the oversll theoreticsl
structure of the ensemble, in contrast to the standard procedure of form-
ing ensembles from systems in mechanical states defined from the beginning.
What has been done might be described rather crudely as the extrsction of
classical mechanics from statistical mechanics, instead of vice versa.

More accurately, a study of the structure of classical statistics has shown
that the state concept of classical mechanics may be "derived" by supple-
menting statistical mechanics with an additional state specification pos-
tulate, as opposed to the historic procedure of constructing statistical
mechanics as the union of classical mechanics and stétistics. To Justify
fully the identification of phase space points Q?°éfa) as states, it is of
course also necessaery to prove that pure ensembles evolve into pure ensembles
through Liouville's equation. This will be done subsequently in connection
with a systematic comparison of classical and quantel dynamics (sec. T).

To summarize, the concept Btate (of & single system at a single time) may
Be unambiguously attached to statistical mechanics as & fourth postulate:

PiC: Every system is always in a state represented by some point

(7_0 57Q) of phase space.
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The preceding discussion of classical statistical physics was given
to illustrate the possibility of and the method for extracting the indivi-
dual state concept from a theory initially concerned only with ensembles.
As explained at the outset, the motivation for such an analysis comes from
quantum theory, a discipline for which any sensible discussion of the
state concept must proceed from the root notion of statistical ensemble
owing to the intrinsic probabilistic nature of the theory. Thus the pro-
per approach to the meaning of states in quantum theory is along the lines
of the foregoing "reverse" development of staxistical mechanics.

To study critically the nature of quantum states, we must therefore
ascertain whether or not quantum theory, like statistical mechanics, is a
realization of the genersl model given earlier (P1, P2, P3) augmented by a
fourth postulate of the following form:

P4k: Every system is always in a state represented by an element be-
longing to a set of mathematical obJects which correspond to the
pure ensembles of the theory.

The logical admissibility of P4k to any given theory always depends on the
exact content of Pl-P3. In particular, the state concept will be unambig-
uous if and only if the resolution of a general mixed ensemble into pure
subensembles is unigue.  Moreover, if the state identification is to be
physically meaningful, initially pure ensembles must retain their homo-

geneity under causal evolution,

b, 1s Quantum Theory & Realization of the Augmented Paradigg?

At first glance, the augmented model seems tailor mede for quantum
theory; this should be no surprise, since it was obviously inspired by the
standard axiomatic pattern of quantum mechanics texts, However, to avoid

Jumping to conclusions, a stepwlse analysis of the strictness of analogy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

between quantum theory and the general paradigm is in order. Accordingly,
the postulates of quantum theory will be scrutinized one by one and with
an alertness to their consistency and interdependence.

F1Q: The linear Hermitean operators A, B,...on Hilbert space which
have complete orthonormel sets of eigenvectors correspond to
physicel observables a,@,... If operator A corresponds to
observable C;i, then the operator€3:64) corresponds to observ-

 sble ZF(a,), whereg: is a function,

P2Q: For every ensemble of identically prepared systems there exists
& real linear mean value functional ”i"(A) defined on the
Hermitean operators.

Superficially, P1lQ and P2Q seem almost too vegue to have significant
consequences, The vagueness is an illusion. In fact, P1Q and P2Q imply
many well known features of quantum theory. In particular, it follows*
that every /7) n (A) may be expressed in terms of a corresponding opera{;or

@ (the density operator) as follows: h’)j(A) o TF(@A),
(It can be shown that () ié Hermitean,'positive semidefinite, and that
;ﬂF ) / .) Moreover, PlQ‘ and P2Q imply that the probability for an
Cx;-nmasurement to yield a result other than an A-eigenvalue is zero,

There are several ways to express the dynamical postulate of quantum
theory; perhaps the following version is best in the present context since
we are specificelly interested in contrasting quantum theory with classi-
cal statistical mechanics.

P3Q: For every kind of physical system, there exists an Hermitean

*For a full discussion of this and other theorems, see ref. + Inci-
dentally, it should be clear that the various sets of postulates under con-
slderation presently and in preceding sections are certainly not complete
in any rigorous logical sense. Rather attention is purposely directed to
what might be termed "physical" postulates to the exclusion of such neceg-
sary supporting axioms as those of function and functional analysis, linear
algebra, probability calculus, statistics, etec.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

operator H (the Hamiltonian) which determines the causal evolu-

tion of Myvia the following law:
AH %%_:H*—(_QHE-E [_-,L—-,’.)F_,

FlQ, P2Q, and P3Q mske up the axiomatic core of quantum theory; all
the statistical results of quantum physics are derivable within this frame-
work., Thus while a rather Procrustean reversal of fqundations and conse-
quences was required to force classical statistical mechanics into our
model, quantum theory fits naturally. What seemed to be a "reverse" devel-

opment in the classical case is the only sensible one in quantum physics,

for there is no nonprobabilistic "mechanics" applicable to individusl

quentum systems. Since probsbilities are present in quantum mechanics from
the very outset, statistical ensembles are the physical objects of study
from the very beginning.

Nevertheless, it is conceivé.'ble that some abstract object related to
the pure ensemble might be theoretically attached to every quantum system
as its state by an analysis parallel to that which led to P4C in the clas-
sical case. In short, quantum theory might be a realization of the aug-
mented model (Pl, P2, P3, and P4). To investigate this possibility, the
pure ensembles of the theory must be found. In terms of the density opera-
tor e » an ensemble characterized by E) is pure if there do not exist dig-
tinct (nonzero) positive semidefinite Hermitesn operators (': ea)such that

€=M€(1)+ /,(/;e(:;) Wi, wy >0

The desired identification of the pure ensembles of quantum theory is
accomplished by the following theorem due to von Neumann:

(H) is pure if and only if F = P}‘* s whereg is a projection

operator onto the Hilbert vector qf

Because the proofé is seldom repeated and may be unfemiliar, we shall digress

briefly to outline the argument.
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(#,) 1Ir f) is pure, P: Ef'

Proof: Let X be a unit vector such that e%#@ and define

W (2)
Hermitean opera.tors 0\ as follows:

ppp \ (@) LW
WP = Lo > Ui = p =

where ww" 20 W’-I-M/"—- 5 (p(’) 7; @ / (L, > denotes the
scalar product.) Since is positive semidefinite, <X, (V) >0 3

(0
. Wps = <BPBPpP> _ |« E‘X)z
e UFLY, ¢ ¢2 <K, pX> <95 x> >0

for every vector t? s Ll.oe., ?" is positive semidefinite

Now, every definite Hermitean operator D satisfies the follow-

ing inequality*

[<80, D B D€ <dy, D> <o, DB tor overy 8,

Hence, for every CP ’ 2
) & <X, pX>— K9P, p Xl
w'<49 P> = hpd2 <°xp€9<> R
i.e., P A g positive semidefinite.

() 2)
Thus a.nd (0 are admissible density operators, and the expres-

sion e"‘bl/’ f + Uy (0 represents a subdivision of the origina.l
ensemble ()) into subensembles characterized by € and 6 Wy and M/"
being the respective fractions of the whole ensemble present in the

two subensembles,

()
Since F is pure, by definition € cannot differ from P ; hence

for every ‘-P P
) ¢ L LpX,pX> o
=¥ =i &bl — b el
; then

f
()Cp <1*,‘::; g Cp , for every CP Therefore,

o= ST e =1, 0= .

(H) It {0_ gL) F represents a pure ensemble,

*For a proof of this lemma, see Ref. 5 , p. 101.
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Proof: Let 7] be a vector such that <'§L’ 7 2=0. Consider
_ W (@)
en expansion P—M/,'(o + Wy Wi, Ul ?05M—+%=/)

)
W (2
vhere (0, lp are density operators. Since ou.:) 2™ are positive gemi.
definite,

o< w<?, Fa)z>é M<7Z,€(')7>+W_{<’/, cz)7>
=<1 01> =<7, f7>= 08>,
il.e., <')Zs 60)7>(,)==0' ?

Applying to the inequality introduced above, viz,,

¢
/<49,\,D¢Pm>/zé A 9D<p,\><49,,~-, Dfﬁ,_> , D Hermitian definite,
we obtain |< /5, (0“)?')/15 <A, (0")9><% (00)7> =0, for each 8 ,
Hence £ 6, 0)?> =0 for each & .
Now, any vector % which satisfies <1;L° 72 =0C nmey be

expressed in the form (1— g ) T. Thus the preceding equation may

be written as follows: for each Qg’f; <67 ({/)( 1“5) T>-’—"-— 0,

() o)
This implies that P = E . From matrix considerations it is

then fairly easy to see that 0)= 5 = f ; hence by definition F

represents & pure ensemble, Q.E.D.

To summarize, the foregoing theorem establishes a correspondence
between the pure ensembles of quantum theory and the points (vectors*) of
Hilbert space, a correspondence strikingly reminiscent of that betweéh
classical pure ensembles and the poinf.s of phase space, Thus once egain
it seems netural to teke advantage of the full homogeneity of the pure
ensemble--the defining characteristic that every subensemble is indistin-
guishable from the origingl by any measurement statistics--and assign s

state to each individual system. In the present case, the vector /%is

*Strictly spesking, since P = EI,L for any complex number &, the pure
ensembles correspond to rays rather than specific vectors, where a ray is
& collection of all vectors expressible in the form a,'l}' i.e ell vec-
tors "pointing in the same direction," ’ I
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clearly the appropriate representative for such a state., The stage is thus
set for the seemingly harmless and perhaps intuitively useful Jargon which
makes statements of this type: "Suppose an electron is in the state'?L o
Formally speaking, it seems reasonsble to supplement P1Q, P2Q, P3Q by =a
P4Q which would assert that every quantum system is always in some state

It would, however, be premature at this point to make such an addi-
tion to the quantal framework; first we must determine whether or not the
proposed state specification scheme makes sense, i.e., whether or not it
is amdiguous. As explained earlier, unambiguous individusl state specifi-
cation via the pure ensemble is possible only if the resolution of a gen-
eral ensemble into pure subensembles is unigue, Just as in classical sta-
tistica; mechanics, this is a mathematical question strongly dependent on
the precise content of FPl, P2, P3. Since the pure form of the density
operator has been identified as the projection F%L » What is in question
is the uniqueness of the sum,

e= %%@z

The surprising answer, which quantum theorists must face with all its
ramifications, is the negative one. A general quantum ensemble can be sub-
divided in an infinite variety of ways into pure subensembles. As a resﬁlt,
the analogy between classical and quantal statistics breaks down. Quantum
physics is not a realization of the foregoing augmented paredigm. There
cen be no "P4Q", Especially noteworthy is the consequence that it is gen-
erally improper to assign quentum state vectors to individual systems, To
do s0 ultimately leads only to paradoxes, as will be illustrated below,

If all theoreticsel considerations in quantum theory could be carried
out using only pure ensembles, the rather natursl assignment of state vec-
tors to single systems would be quite inconsequential. Thus, for instance,

no bewildering paradoxes arise in the traditional applications of quantum
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mechanics wherein individual state specification is a commonplace notion,
However, mixtures cannot elways be circumvented; in particular, even if a
set of given systems constitute a pure ensemble, the ensemble formed from
specified subsystems of these is in general mixed*, Hence the most general
quantum ensembles-~the mixtures--cannot be ignored,

To demonstrate that the assignment of state ve;tors to single quantum
systems 1s essentially ambiguous and therefore improper, it suffices to
glve a simple illustrative éounterexa.mple.

Consider en ensemble of "spins", i.e., the associated Hilbert space
is the familiar two-dimensional spinor space. Let O, é, $.,77 dencte
eigenvectors of Paull spin operators as follows:

Oy & =& . 0—;@:—?3 O';S—.:S - G;Y"'DA:‘—’—-?",

»
Let the statistical operator describing the ensemble at some given

time be Pm-'—"- % E + '4‘.’/% . It is obvious from the structure of
ew that a proper selection will yleld two subensembles divided as fol-
lows: one consisting of 3/4 of the originel systems and charascterized by
oL » snother made up of the remaining & end characterized by @ « One is
inclined to describe this character of f.he ensemble by the statement that
3/k of the original systems are "in state oL ", 4 "in state % ", It will
now be shown that such an extrapolation from ensemble to single system

leads to a paradox,

Consider a second ensemble of "spins" characterized by the statistical
@__ 3 ;:7 Ce [:7 )
operator = = — where —_—— S+ 7. This
P g% " 87> 7 43—"( 7).
ensemble may be partitioned by selection into two pure subensembles: one
made up of 3/8 of the original systems and characterized by S » the second

consisting of 5/8 of the initial ensemble and characterized by "Z .

*Cf, sections 5 and 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Following the natursl procedure for state specification, the ensemble
might then be described as a collection of systems 3/8 of which are "in the
state & ", 5/8 "in the state 7 ",

It is use:t‘ul at this stage to exhibit the matrix representative of

the operator e in the SOZ @3 -representation. The matrix elements are

easily calculated: using 5'— (ot+ ); 4,’_.-3-(0(— @) , 1t follows that

B> <L P@> %
,5, Va
(P) (( ,P0<> <€, > (‘3/0 /o) P) )7‘
and w______?/:o"';fo /ﬁ/__%o
(f)_ % 4 *L(/a /j ~lo
(Pm)" ’2’(0 o) (

or P -+ ,V P
e 4- o 4 B 0
Comparison now shows that € e 5 1.e., the statistical operators

14

characterizing the two spin ensembles considered are equal. Since the

statistical operator completely deécribes all measurement results for an

( *)
ensemble, the .equality of P and F implies the physical identity of the

ensembles they represent. Such an occurrence is by no means echeptiona.l;
this example is not a mathemetical freak, or, as physicists sometimes say,
a "pathological" case. Rather it i1llustrates a typical pro_nerty70f quantum
mechanical ensembles, viz., that they are generally resolvable into pure
subensembles in many ways, & property which was given above as the funda-
mental reason why quantum theory is not a reslization of the augmented
paxradigm.

The basls for that conclusion may perhaps be clarified by further
scrutinizing the present example: 6 E + ,*, P -i P -}- 77 From
the structure of these resolutions of e into pure subensembles, it fol-
lows that there exist member systems which may belong either to a E‘—
ensemble or a ;E -ensemble, The following picturization of the ensembles

!
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involved is helpful in understanding this, Let each member system be
denoted by a box so that the ensemble msy be pictured as a row of boxes.

The resolution \P:—:%g-}—-ﬁ: g means that the boxes may be re-
arranged and partitioned .into two ro:ns » one containing 3/4 of the original
boxes and physically describsable by X ? the second containing the remain-
ing + and physicelly describable by P .

Re-arrangement must not be confused with physical interaction processes 3
vhat is considered here is the theoretical and conceptual stI;ucture of the
f) -ensemble,

Similarly, the resolution (D::%E -f‘%:% means that the boxes

L

may also be re-arranged and partitioned into two different rows, one con-
taining 3/8 of the original boxes and physically describable by e » the
second containing the remaining 5/8 and physically describable by F,Z .

A comparative examination of the two arrangements mekes intultively
clear the sbove assertion that there are systems in the F ~ensemble which,
without physical change, may belong to either a B -ensemble or a g —
ensemble., Now suppose for a moment the language of individual states is
applied to these ensembles., Immediately a quantum monster is born: a
single system concurrently "in" two states O and & . To be explicit,
the "state" of the system would have to be simulteneously an eigenvector
of 0;;_ and Jx , which is simply & mathematical impossibility. Thus the
concept of individual quantum state is fraught with ambiguity and should

therefore be avoided in serious philosophic inquiries concerning the nature

of quantum theory.

5. The Process of Selection: An Examgle

The counterexample used in the preceding section was treated from an

abstract viewpoint; in particular, ensembles were represented as collections
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of "boxes" subject to "re-arrsngement"” and "pa.rtitibn" into subcollections.
To demonstirate that the foregoing enalysis does indeed have physical sig-
nificance, a gedankenexperiment will now be outlined to illustrate the
process of selection of pure subensembles and its inherent ambiguity.
Consider an ensemble the typicel element of which is & pair of dis-
tinguishable, noninteracting atoms; let the initial density operator for
this ensemble be €°= E‘L 5 4’ 2#?&'@&1 -—é,@ 0('3) , where od,? denote

eigenvectors of U7 , and vectors belonging to the spin spaces &e 1 &Q,‘

assoclated with atoms 1 and 2 are identified by subscripts 1, 2. Such an
ensemble might be prepared by taking unstable molecules sbout which it is
known with certasinty that total 5'-23'- and 0;; -measurements would both
Yield zero and that the disintegration process conserves spin. The pair of
noninteracting atoms which results from such a disintegration would be s
typical element of an ensemble described by #=¢+f(0f,®@"é,@%). For’

convenience let the "spins" move freely, i.e., assume @_=@ = ﬁ, for

all t* prior to the performance of certain operations to be specified below.
ﬁow, consider the ensemble comprised of one atom from each pair, say
atom 1. To determine the density operator for this ensemble, note that
only Hermiteen operators defined on 'ge, will be relevant when atom 1 is
considered alone; i.e,, we are now interested only in operators on %@ W,‘
wvhich have the form A '® 1 » The mean value functional for such opera-

tors has the following structure:

m(A@1)=Tr(RABL) =<} A®LY>
=G MOA O, 52 (Ad 0f —A f, 0 %)
=J2’(<°(I 2A 0 > +<F’ »A) €' >>= -"{7,? (A')
=4 T (1A)=Tr [#(E+B)A -

*For simplicity, configuration space parts of ? have been suppressed.
The spinor structure of ’}L is unchanged during free evolution.
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Thus the density operator P =-""LE 'I’f[g describes the ensemble of
atoms 1.* Note that f is a mixture.

By exploiting the physically plausible method given sbove for the
empirical preparation of such an ensemble, an operational meaning cen be
attached to the process of resolution into pure subensembles. The experi-

mental arrangement to be used is of the "coincidence" type, i.e., measure-

ments made on an atom 2 will trigger a device accepting or rejecting the

corresponding atom 1., The measurement apparatus to be used on atoms 2 is

& "spin-meter" (Stern-Gerlach magnet and detection screen) which can be
A .

set to measure any spin component ag- Nn by adjusting the apparatus

A
orientation /L . The complete setup is schematized below:

atom 1 ‘ atom 2
‘ (+)
Molecule ‘::;7 Detector
\ G A 2
disintegrates (=)
. . Detector
Gate
_ S-G Magnet
Coincidence device

The method of selecting subensembles involves the following steps:

(a) A measurement of the observable 5§? . fﬁ is performed on atom 2; this
consists of its passage through the Stern-Gerlach magnet and detection in
either the (4-) or (-) region. (b) If detection occurs in the (-) region,
the coincidence device triggers a mechanism which “opens.a gate", thereby
accepting the corresponding atom 1 as an element of the.subenseuble being
selected,

. Of considerable interest is the fact that an atom 1 which is accepted

undergoes absolutely no physical interaction with the apparstus, the same

*This P, was not d.erived by a method which always works. The general
procedure for obtaining from an f> describing an ensemble of composite
systems 1 and 2 is to trace over '521 sy 1.e., :57? . To prove this,
it suffices to show that

Tr(fA 21) = 'T,'n[(-r(g) Al (cf. sec. 8.)
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property attributed to the "re-arrangement" process of the preceding sec-
tion. Moreover, it is easy to see that a given atom 1 would have been
accepted for more than one setting ﬁ of the spin-meter, ,

Consider the structure of the vector 7% = —,),L:—.z-(q/,@@ - @ @%) ; it
can be shown from P1Q and P2Q that to the results (/,1),(/,—1), (~h1), (~-I)
of measurements of 05‘, and 05'2 performed on the ensemble -Of atom pairs, ?’
glves the respective probabilities O, -:’2' 5 '!_2’ 9 o. Thus, if only the
932 -result is given, the potentiel 0'5, -result is known nevertheless,
Since the 05;'— and 0%3_ ~-measurements obviously do not physically interfere
with each other, if a C73';_-measurement yields (-1) thereby triggering the
acceptance of the associated atom 1, it may be concluded that a 0%', -meﬁsure-
ment would have ylelded (+1). Hence, the (sub)ensemble selected in- this
manner is of such a nature that U,a'f'l-measurements would yield (4-1) with
relative frequency (probability) unity. From P1Q and P2Q it may bé proved
that the unique density operator which assigns probability one to 3,—-
measurement result (4 1) is ]'3' %*; hence the selected subensemble has density
opersator Bl « A glance at the étructure of 6 indicates that the sub-
ensemble selected in this way consists of % of the original atoms 1.

Because the basic form of 6 is Just (0‘ _-.—..éi , the ensemble of

atoms 1 may be resolved into Uy, -eigenvectors as foll : =4 L
X ows: 6-1@;}'2 P%«,
This means that a selection entirely different from that Just described

must be possible. The foregoing selection procedure involved C%’,_ -measure-

ments, 1.e., the orientation of the Stern-Gerlach msgnet was presumed set
A A A

st X1 =R. . Suppose now that VL-':A/J so that the "spin-meter" now

measures Oy, . If there is a correlation between Jyi and Uy~ -— measure-

ments analogous to that between 0—; ;- and %-measurements » then the same

*This is Just the well known theorem that an A-eigenstate implies cer-
tainty that an (], -measurement will yield the corresponding A-eigenvalue.
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method used for selecting the B' -subensemble may be adapted to the selec-
tion of a 5 or Bﬁ -subensemble. To see that such a correlation between
Oﬁ, and ze. does in fact exist, 1l/nus’c be expressed in terms of S and

Y . Using the expansion of spinors <&, in terms of § and Y, i.e.,

"‘—"‘CS")"T) é—"'—"‘l—'(g"‘?)) we obtain

t= ﬁ(w @8, ﬁ@o«) ,—[#(5 BB (6 E)~(5-1)8 6%
7% (785 —587),

Hence by setting n = /L and nttaching the coincidence device to a suit-
ably placed detector, selection of either a S °F /?97 -subensemble may
be accomplished.

Now, there would obviously be atoms 1 in a P, - or g;\ -enseible which

would have been in the ‘2(' -ensemble had that selection been made. But

these atoms 1 are in each case physically :Lndegendent of the devices which

select them, If 1t were meaningful to speak in a normal way of the physi-
cal "state" of a single quantum system, an atom 1 certainly could not be

in a different "state" merely because a different operation was performed
on & physically independent atom 2. Thus the "state" vectors of quantum
theory should be ascribed no deeper significance than their role as repre-
sentatives of a certain class of ensembles. Quantum systems sre Just never
"in physical states" in the traditional sense of the phrase. We shall
discuss this conclusion further in section 8.

Finally, the conirasdictory state assignments employed in the forego-
ing arguments are essentially equivalent to those made famous by the cele-
brated paradox of Einstein, Podolsky, and Roseﬂ? However, the present
development differs from that paradox both in purpose and manner of deri-
vation, Einstein ﬁas concerned with the quantum theory relative to a pri-
ori notions sbout physical reality. This interesting realm is not being
explored here., Moreover, the contradictions central to the Einstein-
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Podqlsky-Rosen argument emerged with the help of the postulate of wave
packet reduction, which was not used sbove. It may be that the sbove deri-
vations using ensembles also lend themselves to Philosophic analysis of the
Einstein-Podolsky-Rosen type, but that is far afield of the present study,
which is concerned with understanding quantum states rather than question-

ing on metaphysical grounds the completeness of the description of nature

they provide,

6. The Indivisibility of Quantum Systems

"A new epoch in physical science was inaugurated...by Planck's dis-
covery of the elementary quantum'gg action, which revealed a feature of
wholeness inherent in atomic processes,...'/ -=-Niels Bohr

These words of the pioneer quantum philosopher from Copenhegen con-
cisely exprees, by his own italics, the germinal idea from which the
famous thesis of complementarity was born. Intrinsic wholenegg--the indi-
visibility of quantum systems--is the essential ing:edient of Bohr's
philosophy. For almost 35 yeers he repeated the elements of his doctrine,
at least part of which has come to be called the "orthodox" interpretation
of quantum theory. However, Bohr was always content to philosophize in an
almost wholly qualitative vein; even his illustrations from physics itself
largely avoided the mathematics of quantum theory. Thus, in particuler,
the notion that quantum systems exhibit a peculisr indivigibility was
always pleaded by deft application of uncertainty relations to primitive
gedankenexperiments., Moreover, Bohr's depiction of quantum interaction
depended strongly on an intuitive understanding of the behavior of "quanta"
from the semi-classicel perspective of what is often called the "Old
Quantum Theory". It seems desirable therefore to provide the physical
aspect of this indivisibility with a mathematical meaning in abstract
quantum dynamics. First, however, in order to establish the origin of

Bohr's idea of "wholeness", we review briefly some relevant points on the
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philosophic side of the indivisibility concept.

As we have seen, the laws of quantum theory do not and cannot refer
to anything like classical states; quantum physics is in fact characterized
by an extreme ronpicturability. Put simply, quantal lsws govern the sta-

tistics of measurement results, and that is all. Obviously, such a theory

is not immediately reconcilable with classic aspirations of natural philos-
ophers for an exhaustive understending of nature.with "Cartesian clarity".
Prominent among'the dissenters was Einstein, who regarded the irreducible
probabilities of quantum theory as an intolerable weskness, a glaring sign
of incompleteness. Bohr combated this feeling for decades, often in spe-
cific encountersmkith Einstein; sgain and agein he argued that quantum
theory, understood in terms of his complementarist philosophy, is indeed
exhaustive, |

Bohr's elaborations of that claim typically depart from the simple
philosophic observation that science is concerned with intersubjective

data. Thus, however bizarre the laws of microphysics may seem, experimental

contrivances must themselves be described wltimately in some communicable

menner. In actual practice, classical physics provides this language in
which laboratory information is phrased in objective,unambiguous, communi -
caeble facts., It is a moot point whether this use of classical constructs
is necessary or conventional; Bohr seemed to favor the first alternative,
In any case, the requirement of intersubjectivity is in itself not peculiar

to quantum theory.

Whet Bohr saw as an essentially quantum feature was rather "the intro-

duction of a fundamentel distinction between the measuring apparatus and

nll

the objects under investigation”,” a property which he regarded as a con-

sequence of describing the apparatus in a language applicable to ordinary

perceptions. As for the objects of study, quantum theory, the language
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suited to their description, defies visualization, as remarked earlier.
Hence, s&ys Bohr, the interaction between apparatus and object in quantum
physics is an "inseparable part of the phenomenon. Accordingly, the unam-
biguous account of proper quentum phenomena must, in principle, include

a description of all relevant features of the experimental arrangement."hz
No longer does physical theory either permit the neglect of or offer the
means to compensate for interactions with the objects; yet all knowledgev
of quantum objects is obteined through interactions, From this concept of
indivisibility, Bohr created the principle of complementarity, according
to which the totality of results of different kinds of measuiements on &
quantum object exhausts all conceivable knowledge sbout such an object,
even though these results cannot be combined to form a consistent picture
of that object. Further elucidation of this principle would teke us too
far afield, since our present subject i1s not complementarity itself but
the related conceptual indivisibility of interacting quantum systems,

The foregoing synmopsis of Bohr's idea of the "wholeness" of quantum
phenomena was errectivcly & paraphrasing of his views with no intentional
distortion. Surveying his argument, one wonders whether Bohr has outlined
a descriptiom or a derivation. Indeed a first impression might suggest the
latter, as though the general requirement of communicability of data in
conjunction with the quantal property of nonpicturability, i.e., the failure
of classical microphysics, could imply a conceptual indivisibility of
interacting systems. If such an implication were truly intended, then
those critics of the Copenhagen interpretation who think of Bohr and
Blshop Berkeley as two of a kind are correct, for such a "derivation" of

indivisibility would indeed reflect the ideslist dogma, esse est peré{g&.

There is, however, a more favorable appraisal of Bohr's conception of

wholeness in quantum theory. It is the understanding of his indivisibility
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notion as & philosophic description of the nature of quantum interactions,
and not as a derivation of their nature from vague generalities.

To defend this proposal, let us consider the aforementioned gedenken-
experiments which are typically used to enrich Copenhagen arguments by pro-
viding physicel examples, Most famous of these thought experiments is
Helsenberg's scheme for measuring electron position with a ?f-ray micro-
Bcopeis & token discussion of which is given in most elementary quantum
mechanics textbooks. The electron position is to be observed microscopically
under minimal illumination, i.e., by providing just one photon for the
electron to scatier into the objective lens of the microscope. Physical
optics requires short waeve length illumination if a decent imasge of the
electron is desired; but short wave length means high frequency, hence s
highly emergetic photon. Upon collision, such a photon would of course
transfer considerable momentum to the electron; thus it ie said that the

position measurement affects the electron momentum in an unpredictable and

uncontrollable manmer, limited only by the uncertainty relation A% A1-9

('é%ré— (h;lne)-_—_ h » where A signifies the width of the image, Af
the unknowable momentum transfer,*

Now, it is precisely this type of demonstration that Bohr takes as
physical counterpart to his philosophical argument summarized above. The

unpredictable effect of a position measurement on momentum suggests that

the very concept of electron momentum should not even be contemplated for
an electron imteracting with a position~-measuring device, Electron plus
epparatus constitute a comceptual whole; to think of the electron indepen-
dently is to divide the indivisible. So goes the complementarity argument.

Once again we ask whether this demonstration purports to derive or to

* @ is the angle with vertex at the electron which the scattered
photon's path mekes with the perpendicular from the electron to the lens,

M
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describe, More quantitatively, does the microscope experiment explain on

general grounds "why" AXAf’V}" or is it only a picturesque illustration

of the uncertainty relations for which quantum theory'ig assumed at the

outset? The key to this question is the term unpredictable, which sup-

posedly characterized the momentum transferred to the recoiling electron.
Why is this quantity unpredicteble, hence uncontrollasble? Indeed 4319 is
calculable from the expression z&?ﬂru'éf%sz.. The answer is simply that
the quantum-theqretical approech has already been assumed; a gﬁantal analy-
sis of fhe pertinent collision problem could not predict 6 . Therefore

a logical textbook of quantum mechanics would not place the Copenhegen
gedankenexperiments in their traditional first chapter home, but include
them rather under applications of the theory (or perhaps in an appendix on
the history of quantum mechanics.) Fock”;s correct in pointing out that

the mysterious term uncontrolleble which is common in Copenhegen writings

means nothing except that classical physics is inapplicsable.

Thus it seems to us that what 1s reelly conveyed by Bohr's conception
of indivisibility is a property of interaction in quantum theory, a pro-
perty which can be clarified by proper identification of certain more
abstract mathematical features of the theory and thereby comprehended in a
manner more precise than crude inductions from gedankenexperiments. 'The
following sections undertake such a program. First, classical statistical
dynemics of interacting systems will be formulated in & manner suitsble
for comparison with its quantum enalogue, which will be developed subse-
quently. Finally, from the contrast between the classical and quantal

cases, there will emerge a mathematical meaning for quentum indivisibility. .

T. Statistical Dynamics of Interacting Classical Systems

The basic structure of classical statistical mechanics was reviewed

in sections 2 and 3. There the delts function densgity-of-phase,
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€=S (?— %)g(f%) , wes identified as describing the pure ensemble of
that theory. In the following analysis of interaction, we consider ensembles

£ composite systems, each consisting of two interacting subsystems. The
dynamical evolution from two types of initisel conditions will be examined:
(1) both systems initially in pure ensembles, (2) one system initially
pure, the other mixed. The fundemental problem here posed is to determine
the character (pure or mixed) of the ensembles to which the two systems

belong after interacting for a time. Mathematically, interaction means

that the Hamiltonien function H(}, 24> $2,f3) ie not additive, i.e.,

there do not exis‘.b \/,(7,,7@) R %(}a)ﬁ)such that H:\{-}" \4 ’
(1) Ensembles of systems §, and _._s_aboth initially pure:
§l : e L?.; ,70‘ 52":’-"—0): 5 (?;“7/0) 8(70. ”‘ﬁo),
..S_gf @2 (7-1 )7@3’7‘_”‘0): S(?-z—?:?o) 5(7’&"740).

S+5,¢ p(r.—.o) = P,(J‘:o) @(4=0),

It is perhaps intuitively obvious to physicists accustomed to the
normal development of statistical mechanics that, under the transformation
generated by the Liouville equation,

Pit=0)—> eleg =8(2,-Q) $(-Fer)s (2,-Qu+) Sy -+,
where Q. (—f’).’ .P()‘ )., 1@9, E (a") ere the vaelues of the canonical variebles
which evolve from their initial counterparts via Hamilton's equations,

Nevertheless, to facilitate comparison of classical and quantal dynam-
ics, it is appropriate here to continue our "retrograde" development of
statistical mechanics by deriving Hamilton's equations from Liouville's
equation plus the concept of pure ensemble. Incidentally, although this
will be done for an ensemble of pairs of interacting systems, the same
method of proof 1s immediately adaptable to establish the simpler .theorem
mentioned in section 3, viz., that an initially pure ensemble of single
systems evolves into a pure ensemble via the Liouville equation.

_T——
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We shall now demonstrate, by direct substitution, that

P = S(}z ~Qe) $ (- P(w)S(/zz Q) §Gp-E0#)=5$.5,5
wmere Q) =2, , Plo)= 44 , Re00=12,, » Blo)= =,

and Q-& 5 E — -—-QH (Hamilton ) equations), is the solu-

tion to Liouv-i_l‘?:_ 8 equation, _% 2( ——H' %L )"“5/‘4f3
subject to the initial condition P(f o)-—S(;l ;,a) 5(7, 400) g(ﬂ: % )S( 7? _7&)

Because confusion easily arises over the arguments of H, we establish

these definitions: H /—/ ( ? ; 7 5 )
H l , H _ J 74 N o 7/ 9 /_/
?7 E Y= 910, 7 ¢, 2 A T2
Hamilton 8 equations may then be conclsely expressed as

Qﬂ—’ Hj«”&(Q‘JP Qﬁo }2)3 P“'"H <Q“J/[D-,Q-’{)P)
o, 26 = 28 (a, 0.> 9] 5(70, -F)s (1-@ )£

I

_/_gas(% ; 93(754’)335 ..
—250-8) . P) 2B s,
— g;. c}g Hy @R, Qs B )[5:555,+5 4, @.,P@ Jw%a&
ng@_si(yf)g,‘ + 515253 A/f 5
ma  §H, 63' 2 [Hf(7”70 feop)l5: ggg‘*

S (%77” ?'13740 '939- P 54

+$, s;; (~Hg)Sy +55KaH, 2

f2

Since these expressions for —é%_ and E-/-/ eginvolve a generalized

function (§), their equality must be esteblished in the sense of distri-

bution theory. For this purpose, let %[ﬁ) gﬁ(ﬁ) ;Z (7 )J[ﬁ be testing

functions. Then,

(riplgdp et 4l = —Hy Sy 4D 4R ).

Mnan...
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= (8,8, Q) H @) B(R) 4 (0)IA(R)
_H?KQH E:stE) %(Q,)Cﬁ/(?) %(Q)é (Z) |
FH B H G~ F A%,

where primes denote deriVativre—s', and

(g, dp i SH,03% 4 7%,
tcﬁ(ﬁ)@%[@) C%(g) FL?’ %%[_Hﬁ(?,,a@ >E)JZ'§(?:)
+% (@) % (@) (BN 3 (@ 1,8, )4
Q) ROIGYR) 28 - Hy (4,7, 7., 2] %2

2

T O, (7) (005 584 Hy. (8, F, 60, ) hip

=C€¢’~C&S’£}l 3, T?T" Hﬁ (7:)E>@as E) %
M—;ﬁ.% 3 ;%-H;. @ B4+
= 4%t 74, Qi»ﬁ:&z 2 %:L[Q/)‘)' 142 H,(@;;'%Q‘ug)%? )
- %2}14& )z"f' (,Q') ?; P25 B) ‘ﬁ(ﬁ) _%Q‘ﬂz}-’?—@b p"»@" "34'9/(,'9)*'"
— %%, Hp(8,5,00, R~ 4R H, 0,7, 0, 2)8
+ 2;649,@/7’7%%/ A Hﬁchzg

which is the same expression obtained sbove for S .iﬂ 4( Eg_%zp 44? ,
Hence %Ef‘ = 5”3 ( z for the € defined afzre. ?2274 Z

Density functions ()' and @ for the _..f,'a.nd _52-ensembles are now

determined by integration:
PGt = [9,-Q] s Lp-Ral 5
b (Fa, o 50 = 5[ 9= Cu®] SLa- Ber].
Both represent pure ensembles; therefore two initially pure ensembles
remain pure regardless of mutuel interaction, as expected,

(2) 5| -ensemble initially pure, _5 &-ensemble initially mixed,

S G Gupst=o= $(1-2.)5 G-
2} @ <;z>7asa‘=o)—_—. W0 b)$ (92-0) § (a-b) olodl b,

vhere (y(a . ) = % (@, b4 #=0) 1sThe initial probability density

———
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thet an O, is in classicel state ( “7@.)= (a..b).
S+ 8y 1 PA=D= 53~ ) $p= ) (dhdb wiab)s Gemsey
= (do.db wra, ) 8-, 50095 (a,- 225 1)
which is Just a superposition of pure s,ubensembl’es. r
Using the linearity of Liouville's equation, we immedie.teljr obtain
e(,f') for the present case by superposition. From case (1) we have
3(49.0) SY~:) 5 gera) 50> § (3-8 s - ) § (3.-02)§ (14-F).
Now, each of the functionms, Q,>E> 2, {2 s depends in general on

the initial parameters 7_‘ o”ﬁ»?a"bb' Therefore, none of the S 's can be

removed from the integral over a.,b which superposes these pure densities.

Hence P G = SJ&, a’b Mf‘(a-:'b> S(?,'Ql)g(ﬁ'?) g (7:—Q2>S(70.2"E)) |

which, as is evident from its structure, represents a mixture. Moreover,

both g”and _Sienseqbles are now mixtures: 6(;#):9@& W‘(a.,b)g(}r@:) S(’Ff—l?) voo
'Of special interest, the initially pure S, -ensemble has been con-

verted to a mixture by interaction with the initially mixed S i—ensemble.

This property of interaction, to be discussed later, will be called clas-

sical entagglemenf.

8. Causal Evolution of Interacting Quantum Systems

We next consider the quantum theoretical treatment of an ensemble each
member of which is a composite of two interacting systems, S' and _52.
Mathematicelly, Hilbert spaces ’ﬁ{’, fmare associated with these systems

and ’3&@ % is the total Hilbert space for S | + _5-2, . The statement

that §. and §,_a.re interacting here means that there do not exist operators
\/I @1 ana L®V, such thet H, the total Hamiltonien operator for
§l+§-2 maybewrittenas H‘—'—\/,@i'f'j@\é-

From P3Q, the basic dynamicel law of quantum mechanics is J ?—@
=EH 5 Pj. The temporal transformetion induced by this dii’ferentiafj

—...
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equation may always be succinctly expressed by a unitary operator T(Z‘j
such that e(i)zﬁf) P(o)ﬂ) . Formally, | (# )=W(— %-SM,@)
or when H is indeperdent of t, ‘T_(,f‘) ::-W(-—ér /-/ ) . To prove this,
it suffices to show that D(H=T(HI0) 71('}:) satisfies /dr% =IH, (0_7'

zfr% = A ZLZ pe>T ) 700 pee) 2L
=K [ HTW p(o) Tl + T4 f@ﬁ:‘) (%)j
= Hptt— peH = [H, o], |

In terms of the evolution operator 7(#), the statement that S , end S N
are interacting means that there do not exist 77@1)1 ®7{ such that

For the present problem, 1s of course defined on éip_—.—. % ®ﬂi'

S

To obtain Fl') @. , the density operators for subsystems ‘)__._5_:{, a "par-
tial" trace operation is req_uiréd. For exemple, 6 —__-,7}_72" F » which simply
indicates a sum over those matrix elements of whose two indices corre-
sponding to ﬁz are identical., Let 54\ 3 3 {%m_ be complete orthonormal
sets in fP,_, y,_, respectively; then the set chA®Xm3 spens ‘ﬁe @'ﬂ) ,
A typical matrix element for () is then QQ‘QM——: <C€K@7(é} I CPM® %n>>
and (6) :-':-Z @enmw ; or = 2<¢;\/ / /%'>___-7E€, symbolically,
. R T T (p
To prove that 6:——7726 is the density operator for an ensemble of
subsystems _S_ | ? first note that all Hermitean operators representing observ-
ables belonging exclusively to _5' have the form A ) @ i + Accordingly,
the mean value functional for _S_ | has the following form:
mA®L)=Tr(,A®1) = Z<4@%.IpA®Ll40%.>
== L6 0% I2 |4 4.0%>
= Z <2< ) p1 Hn > A) 10>

= T LT, @)A1 =Tr, (p. A)

Hence, e-__-_-_- ] G. is the density operator for the _é | ~ensemble,

A detailed exposition of the theory of composite systems may be found
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in von Neumann's treatise{‘l’r There the following theorems, the first two of

which will be used below, are proved:
(a) I P and Pz are both pure, P = f @@ uniquely.
() Ir either e or 6 is pure, \P -._-.-.‘Q @\ F"“ uniquely,
(e) Ir F and ez are both mixed, e is not uniquely determined.
Now, working in paral;gl with the preceding section we shall deter-
mine the character (pure.oé' mixed) of ensembles of interacting quantum
systems _5' and § 2
(1) Ensembles of systems O , and S, both initially pure.
(7, CZL=-"O) = cﬂ
[
pet-0= gz
5 + S ! P(,f-= o) —_— P
§,8o

The evolution opera.tor 7/(7‘-) tra.nsrorms ,7",_.0) into —

e(a") 7’?")/?@% T(?“) /T($W)>< (f@%} 7799@%>
Thus, as in the classical case, the overall homogeneity of the ensemble is
not altered by causal evolution, The density operators for the -S-)- and éz
ensembles are now determined by the partial trace equations., For this

calculation, consider the expansion

T4 X)) == Con §, 8K, =7-.

oo Qe =Tq P
=< ¥l | Z-Cr B @Ko ><ZCar B %>

; E”Q?S,ek S% C-d Cam /‘P ><4)
-:%A_C’A-kch-k I CP,‘> <Q ) » & mixture

(since this is not in general a projection operator),

Ir S, end S did not interact, i.e., M — \/@1 +4 ®\/ , then
o[- EH]AOX,) — enp(-4V) &) W(M‘)é) X, , since
—W (/44" B> WA %’f B if [;4,5_]" . Hence (C,,, would have

the product form Cm C*w » and then

e
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A= Cf Che Cn Car |14.><Da |
= [%Cwq%> <= Cudf (%/CPL’)
vwhere @ = ZCA.CQ —'W 6“'0’*——4/)4@

Similar results hold for e ).

To summarize: unlike the classical case, two initially pure quantum
ensembles are generally converted to mixtures during interaction; however,
in the absence of interaction, both remain homogeneous. In the following
section, we shall refer to this peculiarly quantum mixing as quantum
entanglement,

(2) §,-—ensemble initially pure, _S_i-ensomble initially mixed.

§l ’ @(j‘:—'—op %

227 (e Gheo) =2 V& ’M%W&:L .
Si+8, =0 = g @ wy

As in the classical case (2) ’ 1inearity of the dynamical law enables

solution by suporposition. Thus, from T()“) < a®P )T(,,L) __6(2‘)__ P ;
where é Z Cm c? & X, , it follows that e(,f-_. 0) —> F(#
HP

,.Zw.z

geneous.

3 :L.e., 6 » initially a mixture, in general remains inhomo-

Of great interest here is the effect of interaction on the initially
purcs ~ensemble, Taking the appropriate trace, we find, using the result
from case (1), e (#) = T’S’(f) — %WW @,

=R (E; ¥ 145 <)),
wvhich in general represents a mixture.

To clarify the nature of this latter transformation, 6 —_

ZW/ (i—— (M) }CP ><Cﬁ_l) s let us s&ppose quantum

enta.nglement did not exist. Then case (1) would have yielded

tif wePob;;: PWM%:) @ P((P 7{0  pspesine

o) = Z U ’?P(ca,vz ) © F’f(%,m
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I

<% B oR %>
5(«&,7&) A Z 45 B 70,

which we recognize as analogous to the effect previously called classical

Thus GZ(JL)

S &

=
R
entanglement.
Returning now to the correct result ,
_ RI¥ | (R
fen = Z g (Z 007 14><4l),
we ldentify the mixtures in parentheses as & consequence of quantum

entenglement, while the further mixing by the sum over k corresponds to

classical entanglement.

9. Classical Divisibility and Quantum Indivisibility from a Dynamical
Viewpoint -

In a certain sense, the foregoing deductions (sec. T7) concerning

classical interactions are paradoxical. For any Hemiltonian whatsoever,

even one which includes interaction terms, the homogeneity of an ensemble
of systems interacting with members of a second initielly pure ensemble is
preserved throughout the motion; nevertheless, by arradging an interaction
between the members of an initially pure ensemble and those of a mixture,

the initially homogeneous ensemble in general changes into an inhomogeneous

ensemble after a time, a process we called classical entanglement. There-
fore we confront a strange dilemma, for in classical entanglement mere
Juxtaposition epparently achieves the impossible, viz., the destruction of
homogeneity, which no Hamiltonian, hence no force conceivable within this
theory, can accomplish, To explain this seeming discrepancy, consider a
simple problem in classical physics,

Let §, and _§zeach be a particle of mass m, interacting via a connect-

ing spring of stiffness k and equilibrium length‘e. The Hamiltonian

function is therefore H=‘QL;,‘L<-’}0,&+7QQ) + %“ (?g_‘ 7,—’2)2;
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where ﬂ, 3 denote linear momenta and %,71 are position co-ordinates for
5,,’ —'52.‘ From Hamilton's equations it is easy to obtain Newton's lav:
L ] (X 4
m;l' - ‘k(?.z- ?,_j) 3 7 ?9_—_ -‘92(?,1— ’z, -16),
When the latter pair of coupled differential equations are solved subject
(] )
to the initial conditions ,(0) =0, ?‘, (0) = 72 (0) = o, 3_2 (O>=%-b
— -

the result ts g, (a")—-—i-(?“ L)1 — coadT wWt], = {..55_5: .

Now, a relevant question is whether there exists some force which,
when acting on §, produces the same motion %(}f) as did the above inter-
action. Certeinly. , 17 fact the Hamiltonien N

e A
Ho=$e + 4 (2% (g,— F5—
: me < ! <
produces the desired motion. (Physically, _5_‘ could be at one end of a
spring of stiffness 2k and equilibrium length _?_&é_:.@- which is rigidly
mounted at its other end.)

Consider an initial §—'L -ensemble mixed by being distributed over the
values of %o « By classical entanglement, an initially pure S' -ensemble
interacting with this mixed one will itself become inhomogeneous. The
reason for this is now easily explained by the observation that the Hamil-
tonian HI depends on ?‘m . Thus the _S_, -"ensemble", when considered by
itself, is not an ordinary emnsemble at all; for it does not consist of a

collection of identical systems but rather of a distribution of different

kinds of systems, characterized by different Hemiltonieans H(720> . (Phys-
ically, the various §| could be attached to springs with differing equi-
librium lengths.) It is therefore not alarming that this "ensemble"
behaves in a manner contradictory to the Liouville equation,

The paradox of classical entanglement was illusory; the "impossible”

disruption of homogeneity in the S

-ensenble ha.h & theorstical explanation.
Thus, the existence of classical entanglement 1s no reascn to declare

interacting systems 5' and _5_ to be in any sense indivisible.
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where ﬁ,ﬂ denote linear momente and ?,,}z are position co-ordinates for
é517~;513 From Hamilton's equations it is easy to obtain Newton's law:

Mg, =(g,=9,-L) , mi,=—H(g,~9,-L),

When the latter pair of coupled differential equations are solved subject
to the initiel conditions ?' () =0, ) (00 = ;‘2 (0) = o, ?".2 (O>=%2°
the result is ?' (a")::-i-(?“-,e)[/— MWJ"} . W= Ehﬁ:"

Now, & relevant question is whether there exists some force which,
wvhen acting on §, produces the same ﬁotion (1) as did the sbove inter-
action, Certainly. N In fact the Hamiltonian Y 2

Hi= % + £ 2% (3~ F225)
produces the desired motion. (Physically, __5__, could be at one end of a
spring of stiffness 2k and equilibrium length Z&% which is rigidly
mounted at its other end.)

Consider an initiel §2 ~ensemble mixed by being distributed over the
values of %o « By classical entanglement, an initially pure‘§‘ -ensemble
interacting with fhis mixed one will itself become inhomogeneous. The
reason for this is now easily explained by the observation that the Hemil-
tonian H' depends on ?:Zo + Thus the _S_, -"ensemble", when considered by
itself, is not an ora.inary ensemble at all; for it does not consist of a

collection of identical systems but rather of a distribution of different

kinds of systems, characterized by different Hamiltonians H(720> . (Phys~
ically, the various §| could be attached to springs with differing equl-
librium lengths.) It is therefore not alarming that this "ensemble"
behaves in & manner contradictory to the Liouville equation.

The peradox of classical entanglement was illusory; the "impossible"

disruption of homogeneity in the S

-ensemble hali & theoretical expleration.
Thus, the existence of classical entanglement is no reason to declare

interacting systems _S' and §&to be in any sense indivisible.
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For quantum entanglement, the situation is quite different. Here no
explanation parallel to that given for the classical case is possible,

Quantal entanglement occurs under conditions of maximsal homogeneity ( S,

and §2_both initially pure); but it was the inhomogeneity of _Sza.nd its

reflection in /—/' that made classical entenglement "divisible", hence explic-
able, In the quantum case there is no way to explain eway the basic para-
dox of entaenglement, viz., that interacting systems S, and S a2 c&ch from

initially pure ensembles develop temporally into members of mixed ensembles,

Since there does not exist an evolution operator T such that 7’3 7’;@
where 64_ is not a projection operator, no physical environment coonceiv-
able within quantum theory has the same effect on the initially pure _S’—
ensemble as quantum entanglement with the _S_—i-ensemble. Thus, in an
explic:j.t dynamical sense, interaction in quantum theory exhibits a remark-
able property of "wholeness", to use Bohr's word.

It § ) is an atomic system and _S_a.the measuring device through which
_S_, is studied via interaction, then it is in fact a quantum dynamical

property of this imteraction that it becomes impossible--even with quantum

theory--to give an independent account of the temporal development of S 1*

The composite system _5‘ + _§_¢ » Quantaelly entangled, may therefore be
regarded as dymamicelly "indivisible". With this mathemstical interpreta-
tion, perhaps Bohr's concept of "wholeness" » & fundamental attribute of

quantum theory and & pillar of complementarity, obtains a more definitive

meaning.,

;O. Summary: The State Comcept in Quantum Theory
Ever simnce Borm first provided quantum théory with 1ts fundamental
link to mature via statistics, controversy has raged over the extent to

which this immovation modifies the basic classical structure of physical
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sclence., Since the only quantal constructs which participate in a causal
law relate to nmeture solely through probabilistic-statistical rules of cor-
respondence, it is obvious that amy "state" concept im quantum theory must
refer empirically to statisticel ensembles instead of individual systems.
By this we mean simply that the "stgﬁeg" of quantum theory are related to
statistical collectives of measurement results emerging from measurements
upon identically prepared systems., The only semse in which such "states"
might be comstrued as referring empiricelly to = single system is in the
case of an ensemble comsisting of one system sequentially measured and
reprepared; however, this is beside the point in the present inquiry,
which has sought to ascertain whether or not one may consistently regard
quantum "states" as belonging to physical systems in the classical manmer

wherein évery sjstem is thought of as always being ir some definite (pos-

sibly umknown) state. The fact that quantum states refer empirically to

ensembles does not preclude the theoretical possibility of restoring a

causal nexus for individual states, as was demonstrated above for the case
of "retrograde" classical statistical mechanics. However, that possibility
was found to himge upon (1) the question of uniqueness in the problem of
resolution of general ensembles into pure subemsembles, since the pure
ensemble is the appropriate construct from which to develop an individual
state specification for an initlally statistical theory; and (2) the quesgtion
of "comservation of homogeneity" for an initially pure ensemble under
causal evolution, since any meaningful ihdividual state concept should be
applicable to a system at all times, i.e., it should be possible to follow
the temporal development of the state via the causel law of the theory,

The preceding sections sought the meaning of quantum states within
the minimal logical framework of quentum mechanics; accordingly, the analy-

8ls centered on the emsembles which give rise to the statistical collectives

.
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of measurement results actually studied in quantum theory. No quantum
state concept was assumed a priori; instead we began only with the element-‘
ary assumption that there are syst;ﬁs ﬁpon which measurements of observables
are performed according to esteblished rules of correspondence, and that

the statistics of the numerical results which emerge from such measure-
ments upon an ensemble of identically prepared systems are governed by
quantum theory, (P1Q, P2Q, P3Q). Against this background the logical
standing of the usval theoreticel quantum state concept was assayed using
the sbove criteria (1) and (2).

The results of the analysis, with comparisons to the analogous clas-
sical situation, may be summarized as follows:

(1) Decomposition of the classical density-of-phase into representsa-
tives of pure subensembles is unique; thus single classical systems may be
assigned states q;aﬁﬁz)unamhiguously. - On the other hand, resolution of
quantum ensembles into pure subensembles is not unique; hence, as illus-
trated earlier, the assignment of a state vector ;D to a single system at
a single time is an ambiguous procedure which can lead to theoretical
paredoxes,

(2) A class;cal pure ensemble, even when interacting with another
bure ensemble, remains at all times bure; it makes sense therefore to
assign a temporal seQuence of states (ﬂ%ﬁ),;ﬂ(f)) to any classical system,
On the contrary, although a pure ensemﬁle of closed quantum Eystems does
conserve its homogeneity, a quantum pure ensemble interacting with another
pure ensemble becomes entangled and is converted to & mixture; thus it
is in general impossible to assign a temporal sequence of state vectors
7%(19 to a quantum system,

In short, quamntum theory satisfies neither of the two criieria neces-

sary to Justify the supplementation of an initiaelly statistical theory by

k . )
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a state comcept in the classic sense, Although classical statistical
mechanics admits of am umambiguous assigmment of individual states, quantum
theory fails to satisfy the necessary criteria. Hence the simplest, and
most natural, conclusion i1s that the pure "state" vector 3b'of quantum
theory must not be interpreted--even theoretically--as referring to the
physical state of a single system at a single time. This does not imply
that the basic meaning of causality is lost in quantum physics. Although
the classical ideal of determinism as applied to single physical evente is
not valid in quantum mechanics, the behavior of quantum ensembles is pre-
dictable in the semse that future measurement statistics are determined by
past measurement étatistics. Thus, strictly spe‘king, the state concept in
quantum mechanics belongs to the ensemble instead of the system. Indeed

quantum systems should be regarded as never being in any physical state

(except in the aforementioned statistical sense where the "state" refers
to a single system because the ensemble consists of one system sequentially
measured and reprepared). To use a terminology sometimes used in statis-

tical theories, quantum'mcchanics msy be characterized as & theory with

macrostates (g£ ensembles) for which there are no underlying microstates

(of systems).
A highly metaphorical illustration of this conclusion may be obtained

by contrasting the classical and quantum descriptions of the following
gedankenexperiment. Let the object of study (the physical system) be a
"tossed coin" prepared for measurement by feeding it into one of several
different kinds of tossing devices mﬂ;,..., each of which ejects it onto
& tabletop divided into two regions. Consider the observables@ andilg-
associated with the tossed coin and defined by the following qpestions;

Q{_: Did the coin land in region 1, or in region 27; .3.: Did the coin

land "heads up" or "teils up"? Now, if we select one of the tossing
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devices, say 77,’, then feed the coin into it, measure the observables of
the tossed coin, and repeat the procedure many times, we can obtain proba-
bility distributions W@LV‘éitbr @md g-measurements upon & tossed coin
prepared by method 77-’. (The results will be the same regardless of whether
one coin is recycled or many identical coins are fed through.) If another
2 2
tossing device, say TT, is used, different distributions V\[K’i%will result.
If the coin were classical, the measurement statistics for &, ,X could
be summarized by a "density function" W(«, -&), where k =1, 2,...
refers to the method of prepb.ra.tion m. Since the experiments which
\/\/-%@‘ ﬁ.} describes may be performed by recycling Jjust one coin, in
a certain sense W( bz)may be assoclated with a single coin, or more
preﬁ.sely, with a single coin plus a definite method of preparation 77:ko
W ( «3 A) is, s0 to speak, the "state" of an ensemble prepared in the
manner m. However, V\/( ag)ctnnot be regarded as the physical condi-
tion, or state, of a coin, for apart from the context of an ensemble pre-
pared by repeated application of m 1t would be meaningless to say that
every tossed coin is in some unique "state" W?&)&). To find an accept-
able state concept for individual systems, the pure ensembles must be iden-
tified and thelr properties snalyzed in the manner described in preceding
sections. For a classical coiln such an analysis would show that every
tossed coin may without contradiction be regarded as always having defi-
nite values (perheps unknown) of @and ,3. » i.e., as being in either
region 1 or 2 with either heads up or tails up. Some pair of @’ﬁ- values
could therefore represent the E.Pi*i?. of any classical coin.
1f, on the other hand, the coin were a guantum object, the measure-
ment statistics ror'@eoi could be summarized by a "density operator" P?

As in the classical case, there is a certsin sense in which ‘D&may be

associated with a single coin (plus 77; ); but once again it would be
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meaningless to say that every tossed coin is in some unique "state" F

unless this statement were qualified by reference to the ensemble pro-

duced by repeated application of 77; . Thus Pﬁ represents the "state" of
an ensemble prepeared in the manner TZ;‘ Now,\ the remarkable feature of
quantum theory with which this paper has been concerned is that the latter
"state of an ensemble" is the only possible quantum state concept. Although
there are pure ensembles in quantum mechanics (represented by the well
kmown state vectors, or wave functions) » these pure ensembles do not lead
to a comsistent state concept applicable to single systems. Not only is

there no classical state concept in quantum theory, i.e., the notion of &

tossed coln hevimg definite (Qbé values does not appear even among the

pure ensembles (assuming Eﬁgs_‘]#a ), there is no individual state con-

cept at all in quantum theory. It is not even permissible to regard

every tossed quamtum coim as havimg a definite, but perhaps unknown, state
vector. State vectors merely correspomd to a certain kind of density opera-
tor amd as such represent "states" only in the statistical sense in which'
all demsity operators représent"states" of ensembles prepared in some

glven manmer 77—.

To summarize, a classical tossed coln has both (1) a probabilistic
"macrostate" W,X) which depends om the mature of the experiment used
to study the coin, i.e., upon TZ;, and also (2) a definite state, the
"microstate" expressed by a pair of values for Qa J- vwhich represent the
imtrimsic physicel comditiom of the coim., A quantum tossed coin, on the
other hamd, has omly (1) a probabilistic "macrostate" P%, which may be
pure ( €&= Eﬂ ) > but there is no quamtum snalogue whatsocever for (2).

Finally, perhaps it should be emphasized that the purpose of this
analysis was mot at all semantic; i.e., no attempt was being made sbove to

provide pkysicists with a better Jargon for their workaday activities,
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Everyday statements made about individual syateﬁs are usually harmless
since they are easily translateble into the broper corresponding assertions
about emsembles. However, im deeper theoretical and philosophical comsid-
eratioms, the problems raised above comcerming the meaning of quantum
states do tramscemd mere verbal maneuvers, In particular, a satisfactory
understending of the state comcept in quamtum theory is pre-requisite to

any ratiomal study of general quantum messurement theory amd to amy

thoughtful evaluation of gemerslized quantum ideas at the contemporary

fromtiers of physics.

N
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ABSTRACT

The overall purpose of Part II is to clarify the physical meaning and
cpistemological staius of the term measurement as used in quantum theory,
A general introduction to the measurement problem is followed first by a
review of the essemtial logical structure of quantum physics, with due
emphasis on the comclusioms of Part I, and by interpretive discussiors con-
trasting the guamtal concépts Observable amd ensemble with their classical
amcestors alomg the limes of Margemau's latency theory. Againét this back-
ground various popular ideas concerning the mature of quantum measurement
are critiéllly surveyed. The analysis reveals that, in additiom to inter-
mal mathematical difficulties, all the so-called qQuantum theories of mea-
surement are groumded in umjustifisble, classical presuppositions., After
a sequemce of critiques, the remainder of Part II seeks to develop an
acceptable quamtal understamding of the concepts measurement and prepara-
tiom.

A careful study of the quantum description of real experiments is
used to motivate & proposal that two distinct quantum theoretical measure-
meat comstructs should be recognized, both of which must be distinguished
from the comcept of preparation. The different epistemological roles of
these comcepts are compared amd explaimed. It is then concluded that the
only possible type of “qﬁlntum measurement theory" is one of little meta-
physical imterest amd that quantun'ggasurenent seems problematical only

when viewed from am overly merrow classical perspective,

N
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l. Measurement

Theoretical physics draws its remarkeble potency for explanation and
predictior chiefly from its fusion with mathematics, a union which confars
upon physics the notable advantsges inherent in the logical manipulation
of concepts within a deductive framework. Such deductive machinery work-
ing in tandem with inductive experimental methods epltomizes the scientific

method. It is the process called measurement through which the theoretical

and empirical aspects are linked, Accordingly, that process must never
be forgotten in stating the postulates for any physical theory.

Prior to the quantum era, the measurement concept was philosophically
innocuous; it displayed a certain obviousness of meaning which occasioned
little controversy. In fact, the postulates of classical theories made
reference to it only implicitly. dowever, for reasons to be discussed
below in connection with the related concept of observable, quantal Propo-
sitions cannot suppress direct use of the term.

In spite of its great strength as a bulwark of theoretical physics,
mathematization is ever haunted by the ghost of potential logical incon-
sistency; it is quite possible to form from & glven set of physical con-

cepts some plausible axioms which Yield numerous empirically verified

deductions yet lead also to logical contradictions, in which case the

explanatory value of the theory is sharply diminished,

Because quantum theory involves radical departures from classical
modes of thought regarding nature and nstursl law and, more explicitly,
because its statements use old scientific terms in new combinations, the
logicel consistency of the quantel elgorithm may be reasonably challenged,
Roughly speaking, such objections fall into two categories which we mey
call mathematical and philosophicel. The former embraces such important

technical difficulties as the old problem of rigorous Justification of
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Dirsc delta-functions and the newer perplexities of renormslization in
quantum field theory. Such problems are not, however, peculiar to quantum
theory; classical physics had, irdeed still has, 1ts own mathematical
blemsihes, e.g., the many body problem of classical mechanics, renormeli-
zation in classicel electrodynamics, and the ergodic problem in statisti-
cal mechanics., At any rate, we are not here concerned with problems of
this type but focus instead on the second category of logical challenges,
the philosophical ones. Generally, these may be expected to persist intact
regardless of whafever progress is made toward resolving the téchnical
mathematical dilemmas. What are here called philosophical challenges are
by no means nonmathematical, however; the essentisl point is that they are
not merely mathematical. For example, we shall work with vector spaces

end associated operators, although the precise mathematical foundations of
these theoretical structures as employed by quantum theorists are not yet
rigorously grounded. There is a growing literature in this realm of
"quantum mathemetics", but we shall be concerned only with those logical
features common to all such enaeavors, i.e., with general postulates which
reflect the essence of quantum theory independently of the choice of wmathe-
matical background,

As noted above, quantal postulates differ from classical ones in that
the formerly tacit concept of measurement has emerged to teke part expli-
citly in physical statements., It is natural, therefore, in probing the
quantum framework for logical inconsistencies, to seize upon this novel
feature by demanding a consistent quantal description of the process of
measurement; the replies given to this logical challenge are called quantum
theories of messurement. Because measurement is not a concept in isolation,
the study of such theories reveals diverse ideas concerning the nature of

other quantal constructs. Hence the quantum theory of measurement offers
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a portal to philosophic understanding of the meaning and goals of quantum

Physics as a whole,

2. Msathematical Foundations of Quentum Physics

To provide a fixm basis for our analysis of measurement, we first
review the fundamental axioms of quantum physics. In the spirit of the
foregoing remarks, our postulates attempt to capture the essentisl charac-
ter of a quantum theory, not to enumerate every single mathematical assump-
tion., This is standard practice in physics; we force an admittedly arbi-
trary distinction between unstated background postulates, which encompass
much logic and mathematics, and physical postulates, which serve to deline-
ate the rudiments of a particular branch of physics. Such a cleavege
enables us to direct our philosophic inquiry more acutely to crucial physi-
cal points lnstead of detracting from that purpose by citing numerous

minor exioms in the meanner of the more tedious excursions into "quantum

mathematics"l

We now state and discuss three:postulates whith uriderlie all: forms of
modern quantum theory from wave mechanics to field theory, postulates which
reflect the essence of the quantum approach to natural philosophy. From
these we shall extract the primitive physical terms employed, and our
analysis of measurement will then revolve sbout those basic constructs,

Pl: (Correspondence Postulate) The* linear Hermitean operators, A,

B,..., on Hilbert space which h&ve complete orthonormal sets of

eligenvectors correspond to physical cbservebles as @, The

*To accommodate superselection rules?’principles which in one form
prohibit certain Hermitean operetors from representing observables, the
initial the in Pl might have to be replaced by some (cf. sec. 19).

) . . . . .
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function q:(/}) corresponds to observable ‘Qr(a] if A corresponds
to CAL .»
The correspondence postulate is often stated in the converse form:

to every observable there corresponds an operator. However, we have shown
elsewhere3 that such & formulation leads to physically untenable consequences
and must be rejected. The term Hilbert space appears due to established
physical usage; no stricture is intended on the application of newer mathe-
matical constructs which may eventually provide the mathematical background
for quantum thebry. This exemplifies a point made at the outset: regard-
less of the precise mathematical schema which becomes the "Hilbert space" s
the physical and philosophic meaning of the correspondence postulate remains
the seme,

P2: (Mean Value Postulate) To every ensemble of identically prepared
systems there corresponds a real lineasr functional of the Her-
mitean operators, m(A), such that if A corresponds to an obsery-
able (L, the value of m(A) is the arithmetic mean of the results
of a-mea.surements performed on the member systems of the
ensemble,

P3: (Dynamicael Postulate) Every type of quantum system is dynamically
characterized by a linear unitary operator T (the evolution operg-
tor) in the sense that the mean value functional m&(A) at time

j.’;. for an ensemble of such systems which at timeZL, had mean

value functional %(A) is given by

My (A) = My [ Tl DA TCR, ).

P2 and P3 together indicate that the concept of physicel state in

quantum theory is repres'ented by the mean value functional, the only quental

* The observable Q—’-@) is measured simply by measuring Q and substi-
tuting the result a into the function? 3 the range value, q:(a,) s 1s then
the result of the q?(a,) ~-measurement.

— .
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construct which relates to measurement results &and obeys a causal law,
Classically, this is perhaps the most objectionable feature of quantum
theory, for m(A) refers empirically only to an ensemble whereas a state
representation traditionally béioﬁged to individual systems in = nonsta-
tistical sense. However, a cursory examination of these postulates does
not immediately show that the older understanding of the state concept
cannot gomehow be extricated from them, although this is in fact the case?L
We shall return to this point later.

To make contact with femiliar elements of the quantum formalism, we
next state a few key theorems which follow%from P1-P3,

&
Thl: For every mean value functional m(A) there exists an Hermitean

operator f) such that
m(A) = 7P(PA),
For mathematical convenience, it is fruitful to shift the emphasis
from the functional m(A) to the operator e related to it by Thl. Thus,

the statistical properties of an ensemble are embodied in e , which is

called the density operator.
Th2: We =/.
CRY))
Th3: The probability ‘K‘F that an a-measurement on a system
from an ensemble with density operator e will yleld eigenvalue

ao.& 5 AQ/ME:@%%“ is given by
W (23 ) =Tr(p f2,.),

where E}Q is the projection operator onto the subspace %VL
belonging to eigenvalue O.pg, ¢ ‘-—E? /9 . .
e 5 ctgoraion 0 : B = F Ry
Thh: The only possible results of a, -measurements are the eigenvalues
of corresponding operator A.
Th5: The density operator P 1s positive semidefinite.

Of tremendous significance in the theory of measurement is the concept
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of ensemble homogeneity, emphasized by von Neumann? For the present;, we

merely define it, deferring philosophic analysis to later sec.;tions.
Defn: An ensemble is said to be pure, or homogeneous. if every re-
arrangement and partitiming of member systems results in sub-
ensembles physically identical to the originel. An ensemble
which is not pure is said to be mixed, or a mixture.
In terms of the mean value functional, if m(A) is pure, there do not
exist m,(A), Wy 04) satisfying M (/4) =wrm(A) +uxg M-Z(A)J
where M/,;W{ are the fractions of the original ensemble contained in the
two subensembles; clearly, (/| + UL = /, W >o, UWF>0 . In the langusge
of density operators, we then have the following theorem:
'l‘h6;’ P is pure if and only if e =P,where 5 is the projection
operator onto the span of Hilbert vector ;11 .

( 4L is usually celled the "state" vector.)

ThT7: For pure ensembles with state vector gL 5 1.e., P =‘€)
m(A) = é_’(_/i____w, where <> denotes scalar product.

<Y >
By convention, ’;//is generally normslized so that<¢, ZL)'-'—-'/ y hence

m(A) = L& Ay

The theorems above comprise the basic ingredients of quantum statics,
80 Called because all statements essentially refer to a single instant of
time. Quantum causality is embodied in the temporal development of m(A)
according to P3. From Thl, we have m(A) =7F(€A) ; hence, temporal
changes of the functional m may be represented by transformations either
of the density operator (SchrSdinger picture) » Or of the operators repre-
senting observebles (Heisenberg picture) s Or of both. In what follows,
quantum dynemics will be cast in the Schrgdinger picture,

me: 0% )==T (s, ) U4 T ki, 1),

Th9: If e(,i‘,‘):—_ B’(«f,) , then e(,fi)—__-_- E}'()};) 5 where
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ThT and Th9 provide the Justification for the common neme "state".vec-
tor'forA“%L', since knowledge of gﬂ'and T enables calculation of all
measurement statistics for any instant.

Dominating the contemporary frontier of theoretical quantum physics
is a construct not yet mentioned, the quantum field. Its omlssion from the
foregoing postulates should not, however, be construed as any serious limi-
tation upon their domain of physical relevance. Actually, quantum field
theory is easily subsumed under these general quantel postulates which, it
will be recalled, were intended to reflect the skeletal structure of any
"quantum" theory exclusive of the details of a particular realization.
Thus, for example, under the Correspondence postulate (Pl), statements of
the various commutation relations whicﬁ serve to define and interrelate
the more common operators were not given. Similarly, the notion of quantum
field is, philosophically speeking, a detail belonging to the Dynamical
postulate (P3). It enters the general scheme as follows. The basic types
of quantum systems are classified using relativity-inspired assumptions
ebout symmetries of the physical universe. By "basic types of quantum
systems", we mean the so-called elementary particles. However, since none
of them is especially particulate in the classic sense, it seems desirable
to avoid the term particle with its classical connotations and to replace

it by the appelation quantum system. Each type is group theoretically

associated with an operator on the Hilbert space., The operator is s
function of space-time, and is accordingly called a field. In a popular
form of quantum field theory, these local field operstors are combined to

form Legrangian operators which characterize the physical system in the

¥If we formally define the Hemiltonian operator H by"Tzzgaap- :S
then 9(}) satisfies the Schrddinger equation, HY @) =.h %(*g %’ Habf‘,

.
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sense that an aection principle together with field commutation relations

leads to dynemical equations for the field operators. Lagrangian invari-
ance principles generate key observables as functions of the field opera-
tors; hence causal development of the observebles is calculable (Heisen-

berg picture)., In particular, this complex scheme produces an evolution

operator so.that P3 and related theorems come into play as stated. (In a
relativistic theory, temporal development must of course always be under-
stood relative to some given frame._)

Apparently because of its historic development as & "second quantiza-
tion", modern quantum field theory is seddled with a notation which can
easlly mislead anyone accustomed to using only the function space repre-
sentation of quantum theory, i.e., wave mechanics. In the latter, for
example, an electron state vector 'I,L is & Dirac 4-component spinor 7#(7]’,4“)
which satisfies

(1) HD Z,L(;(,’,f):;,&# 9/7,,( ) 5  where HD is Dirac's electron
Hemiltonian operstor. In the field theoretic approach, as Just expléined,
a certain spinor operator-function is associated with the electron, viz.,
the Dirac field, conventiocnally denoted by 7/’(1’., Jf‘) » & l~component spinor
operator which obeys the operator relation

(2) Hp#’(«pff) ’—=4W?-%g—?'ﬁ‘2 .

The identicel form of (1) and (2) is most unfortunate from a conceptual

viewpoint; for while the #({,4") of (1) is a state vector characterizing

measurement statistics of a certain electron ensemble, the ZL( ’,Y‘-, »7" ) of

(2) i a field operator, representing only general dynamicel properties of

the electron but carrying no information about the measurement statistics
for any specific experiment. In short, the difference between ’l//( 2’,#)
of (1) and ;L(af, 4) of (2) is rather like that between (the methematical

representatives of) the concepts state and system. To avoid confusion,
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. field theorists usually denote the state vector by s Dirac ket } ;;>;
however, since the concept of quantum field is not required in general

measurement theory, it suffices below to use the less cumbersome ?L to

denote the vector.,

3. Primitive Terms of Quantum Theory

Scanning the foregoing postulates for those physical constructs which

- play major roles in general quantum theory, we find seven requiring care-
ful study: system, preperation, ensemble, observable, measurement, result
(of measurement), and state. It should noticed immediastely that none of
these terms is intrinsically quantal; all of them have meaning, perhaps
trivially in some cases, within the methodology of classical physics, How-
ever, within the quantal framework, some of them acquire extended signifi-
cance and important subtleties of meaning.

Although our presentation of quantum theory mimics such rigorous
mathematical systems as pure geometry by referring to primitives, postu-
lates, and theorems, several distinctions must be recognized. When geometry
is carefully exiomatized, the primitives are truly undefined; point, line,
congruence, etc,, are totally devoid of experiential meaning. Every rela-
tion among them 1s stated in the axioms, and these connections embody all
properties to be associated with the terms., This information alone coupled
with pure logic then leads to numerous initielly hidden interrelationships
emong the terms, viz., the theorems. When the primitive concepts are pro-
vided with empirical counterparts via operational definitions the totsl
scheme becomes physical geometry, the science of space, Ideally, perhaps
every sclentific discipline, including quantum theory, should be cast in
this mathematically utopian form; but in fact even the relatively feﬁ physi-

cists coomitted to logical rigor do not generally employ postulational

———
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schemes so pure as the rather exceptional case of geometry. Unfortunately,
the construction of such mathematical systems is predicated ubon consider-
able hindsight and is therefore inapplicable in the formastive stages of a
theory.

Returning now to quantum theory, we do not claim that the postulates
of the last section embrace every relation among the seven primitives
which might be invoked while deducing their consequences, nor can we assert
that the selected list of basic terms is complete, Furthermore, none of
these primitive constructs will ever be regarded as absolutely undefined;
and in some cases their root physicel definitions to be reviewed below
will later demand further qualification. In spite of these departures
from mathematical propriety, it is still possible to test quantum theory
for logicel consistency by following a program which parallels similar con-
siderations in more rigorous logical systems.

Because the primitive constructs mentioned above are not a priori
independent and undefined, it is necessary to begin with explanations which
convey their minimal physical meanings. Such accounts will suffice until
tensions in the logical matrix of primitives and postulates induced by the
problem of measurement create the need for further explication.

The concept of system is understood throughout physics as the actual
object of study; epistemologically, it is posited as the bearer of observ-
ables and hypostatized to become said object. A mathematician might be
disposed to define a system as a set of observable-symbols, but such purity
misses the point. An example of a quantum system is an electron in a |
given environment, or equivalently, a Dirac field in a single electron
state interacting with other given physicel systems. Since the concept of
quantum observable is philosophically more sophisticated than its classical

progenitor, we postpone the detaills to the next section. It is sufficient
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for the moment to state that whenever a system is subjected to the process

called measurement of a given observable, there emerges a number, the result

of the measurement. Thus observables serve to provide quantitative infor-
mation about systems; every cbservable is endowed with measuremenﬁ proce-
dures which, if performed upon the system, yleld the numerical results.
Accordingly, observables are also called physicasl quantities. For reasons
to be discussed later, we have purposely described these clessicelly trans-
parent concepts in what seems at first to be an overly cunbersome manner,
In accordance with the emphasis in physics on reproducibility of
phenomena, & single measurement carries little significance. Systematic
study of a given type of system therefore requires a well;defined, repeat-

able process of preparation. In general, what is of interest in pPhysics

is a éet of measurement results for several observables, where the measure-

ments are all performed upon identically prepared systems. Since acts of

preparation are themselves physical processes under the governance of
quantum theory, an interesting exercise related to the theory of measure-
ment is the quantal description of a preparation. We shall return to this
idea subsequently (section 19).

The collection of 1dentiéally prepared systems upon which the various
measurements are performed is called the ensemble; more than one philosophic
stand has been taken by physicists regarding the exact status of the quantum
ensemble, It turns oﬁt that the different requirements placed upon the
measurement act depend strongly on difrerentlmeanings attached tq the
ensemble concept and the related construct, physical Btate, A later sec-
tion will contrast the various kinds of ensembles used in physics in order
to identify the rather unique character of the quantum ensemble,

In all physical theories, the state of a system refers to its momen-

tary physical condition; it is the seat of causality in physics in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.

12

sense that some law of motion controls its temporal evolution. By "physi-
cal condition” is meant that states are related somehow to observables,

and to measurement results. In the form given above the quantal postulates
seem to correlate the state concept to a system only through an interven-
ing ensemble of such systems identically prepared. Only the statistics of
measurement results obey a causal law. Thus, in effect quantum theory
seems to shift the reference of the state concept from the single system
to the ensemble,

It might be objected that this modification is illusory, that the
postulates were stated with distorted emphasis on ensembles which hides
the true meaning of state. Thus, classical statistical mechanics might be
axiomatized in a similar format; but the classical individual state would
be. lurking in the shadows and could be exposed with the proper logical
1llumination. Elsewheré*ﬁe have carefully examined this question and
demonstrated that, while such is indeed the case for classical étatistics,
no such analogous reduction to individual states is possible within the
quantum framework.

A quantum state refers to an ensemble; an ensemble is defined by its
mode of preparation and characterized by the statistics of measurements
performed upon its member systems, and these statistics determine the state,

Thus it is often convenient to speak of a preparation of state, & concept

emphasized by Mhrgenad% to delineate a class of physical processes often
erroneously called messurements, This completes our preliminary survey of
the key terms of general quantum theory; but before attempting to describe
quantelly the process of measurement, we shall undertske deeper analysis

of the constructs observable and ensemble.
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4, The Nature of Quantum Observables

To those physicists who teke mathematics to be in the seme category
as metal-working lathes and vacuum pumps, the subtleties taught by modern
mathematicians often seem inane. Among these is the difference between g
function f and its range value at domain point x, f£(x). Even in classical
mechanics, however, there are two instances in which this distinction is
physiceally meaningful, for it represents a philosophically important
dichotomy among physical constructs. Consider first the case of the Hamil-
tonlan H, a function of phase (q,p). Here the value of logically distin-
guishing H and H(q,p) is eventually recognized by anyone thoughtfully
studying analytical mechanics. In fact, the term functional form is often

used to stress that the function itself, not its value, is under consid-
eration, H itself is the mathematical representative of the system of
interest; 1l.e,, "the functional form of H(q,p)" contains the dynamical
characteristics of the system and represents it in the law of motion. The
numerical value of H(q,p), on the other hand, is usually just the result
which would be obteined if an energy measurement were performed on the
system, (For the sake of familiarizetion, we continue to use this tedious
phraseblogy introduced earlier for minimal descriptions of measurement, )
Failure to teke note of the difference between H and H(q,b) can actually
lead to faulty reasoning of physical significance, For example, consider
& mechanical problem with initial conditions H(q,p) = E and 7,—_:.- ;o .

(E and ?,bare constants.) Hamlilton's equations, used properly, will deter-
mine the motion. But consider the following reasoning: since H(q,p) is
not explicitly time dependent, H(q,p) = E not Just initially but through-
out the motion, according to a basic theorem., Hemilton's equations there-

fore become especially simple if the constant E is substituted for H. The

immediate results are 75':—%%”:—'—%;-— 7_— Q_H. 95:::. 5
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hence ?_(#‘)= 7,,“}9(#)=0. The particle Jjust sits still! That this solu-
tion is wrong is easily seen by considering H-_-.-: %_:;_L -+ -_%Z‘_ﬁl s the
simple harmonic oscillator, which under initial conditions of the type
given is not in general immobile, The error lay of course in neglecting
the distinction between a function and its value.

There 1s a second instance in classical mechanics where this methema-
tical point could be stressed; it was not, however, until the advent of
quantum mechanics that its message became apparent. Because of its dynemi -
cal significance, the function H is rather special; but in classical mechan-
ics, every function of phase has physical meaning. A function corresponds
to en observable; and the value of a function for a state (q,p) is, egain
in our "minimal" phraseology, the result which would be obtained if & meas-
urement of the observable were performed upon a system in said state.

Since the state uniquely determines the measurement result for every observ-
able through the corresponding function, the natural classical manner of
describing the situation was not a minimal account but rather the simpler
assertion that in a state (q,p) the system had an observeble A of value
A(q,p). For example, "the oscillator has an energy of 30 ergs"; and, of
course, if an energy measurement is performed, the result would be 30 ergs
~=-but to state this explicitly seems pointless. Thus with the notsable
exception of H, classical mechanics did not require rending the function
from its value, nor the observable from its measurement result; and the
concept of measurement entered only implicitly into physical discourse.

A glance at the postulates and theorems in section 2 shows that no
such departure from the minimal terminology is admissible in quantum theory,
There the constructs observeble and measurement result are related only

via probabilistic connections, and measurement thereby emerges as a con-

struct which must appear explicitly in quantal propositions.

M,
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| ﬂhis.separation of the concepts observable and measurement result is
of considerable importance to the philosophic understanding of quantum
physics. The peculiar nature of quantal observables has been depicted in
several ways, three of which we shall briefly review: Bohr's complemen-
tarity principléz Margenau's latency theoryioand Helsenberg's “"potentia"

doctriney*

Compiementarity is accorded st least token recognition in virtually
every introductory quantum text. Its basic premise is apparently that the
nature and results of microphysical research demonstrate thast what we
called a minimel account is also a maximai account, The utter impoééibility A
of direct perception of atomic objects suggests the separation of observ-
able and measurement result; the failure of all attempts to preassign
unique measurement results to all observables by careful preparation of
state renders the separation finsal. Thus, given an atomic object (includ-
ing a mode of preparation), there is the choice of measuring any observ-
able and a theory which provides probabilities for the possible results;
but to say that the system has position ?_ 0? momentum??, » energy E; s ete,

is physically meaningless. Accordingly, Bohr coined the term complementary

to describe this characteristically quantum relationship among the observ-

ables,

Margenau's latency theory classifies observsbles by the terms pos=~
\

sessed and latent. In the classical proposition that a particle has s

certain energy, the energy is clearly understood as a pProperty possessed
by the system. Similarly, any classical function of state--mechanicel,
electrodynamic, or thermodynamic--denotes an observable sttached posses-

sively to a system, Nevertheless, in classical physics there are ﬁlso

*Qutside the present context, the divergence of these three viewpoints
far exceeds their similarity, as later sections will 1llustrate,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i
:
:
]
L
¢
J
y

16

observebles associsted with systems not possessively but responsively; i.e,,
if subjected to & certain environment, a system displays & property not
constantly exhibited. For example, the acoustic "observeble" pitch is
inepplicable to a vibrating reed in an evacuated box; but if the enclosure
is opened to the atmosphere, a "value" of the pitch emerges. Such is the
nature of a latent observable. Because it i1s impossible to assign values
t0 all the observables of a quantum syétem in a possessive way and because
quantum theory unavoidably deals only with statistics of measurement results,
most of its observables are latent. It is strictly improper to speak of a
quentum system's having energy E;;; the strongest admissible statement is
the conditionel one that, if an energy measurement were performed, the
result would, with some calculable probability, be £, . Quantum observ-
ebles are thus latent in the sense that their values appesr only in response
to measurement. Quantal latency for a given observable is represented
mathematically by the existence of physically realizable state vectors
which are not eigenvectors of the corresponding operator, i.e., states for
which measurement results for the observable in question are irreducibly
unpredictable., Hence, almost all quantal operators correspond to latent
observables.* Currently one exception is the mass, a defining parameter
for a given %ype of quantum system, but conceivebly an ultimate quantum
theory might deal with a single kind of system for which all the "elemen-
tary particles”" are but states belonging to the eigenvalues in the mass
spectrum. In such a theory mass, too,‘would be a latent observable (pro-

vided superpositions of different mass eigenvectors were physiceally realiz-

able),

*Perhaps those which generate superselection rules are an exception:
in one form, superselection rules exclude pure states which are not eigen-
states of certain observebles (cf. sec. 19); therefore it would always be
possible to regard such observables as possessed., & . .

—
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Anothervdescription of the nature of quantum observaebles appears in
Heisenberg's discussions of the Copenhagen interpretation. The state of a
quantum systeﬁ before measurement is envisaged as a set of tendencies lik-
ened to Aristotelian potentia. Upon measurement one possibility is ful-
filled, as an actual, perceptible event occurs, culminating in the extrac-
tion of a number. Measurement of an observeble is thus depicted as a
"transition from the possible to the actual", which is but another way to

' ‘state .the latent character of the construct observeble in quantum theory.

5. The Nature and Purpose of Ensembles

In any physical theory which assigns probebilities to possible meas-
urement resulis, use of the construct ensemble is unavoidable, simply
because probability in physics means reletive frequency. This is not to
say, in sterile operstionist fashion, that through this empirical definition. .
pfdb&bility acquires 1ts total significance. The situation in probability
theory is no different in this respect from the rest of physics; i.e., con-
structs are endowed not only with empirical definitions but also with
theoreticel ones. In the case of probability, the theoretical side has
long been in controversy; rival mathematical schools lay the foundations
in different ways. As with other mathematical choices, physicists adopt
the most naively intuitaeble version cepable of meeting their needs. How-
ever, in any case probability, as drawn from mathematics, is logically a
primitive term defined implicitly by the axioms in which it is embedded,

It obtains physical meaning only when the rule of correspondencenis invoked
which correlates it to the relative frequency of measurement results.

Although the foregoing remarks correctly portray the epistemological
status of physical probability, the historical development of course did

not proceed so logically. As CarnapE%as noted, the search for a good
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theoretical definition of probability is & problem of explication, i.,e.,
replacement of an old, vague concept by a new, exact one. Thus the logic-
ally prior mathematical theory wae itself inspired by common-sense notions
of prdbdbility'as & measure of tendencies or propensities for events to
accur. Undoubtedly such ideas likewise underlie--and Perhaps undermine--
the physicist's conception of probability.

Consider, for example, the following proposition: if s measuremgnt
of observable(CZ'is performed upon a‘system (prepared in a specified man-
ner), the probability of obtaining the result G is Y . Superficially, |
laymen and physicist alike construe\A{ as somehow reflecting a tendency
for the emergence of &, from that system at the instant of measurement;
but careful consideration reveals the rather mystical tenor of that view,
Actually W‘ is & clearly defined quantity, viz., the relative frequency of
the result A, arising from a-measurements upon an ensemble of identical
systems_;i ell prepared in the manner 77—. Whatever physical information
about the pair (5__ 5 Tf) probebilities like \M may carry, the connection
between system end probability is always through the intermediary construct,
ensemble; otherwise, probability is a concept too hazy to qualify for a
pPlace in physics,

S0 far we have discussed only the precise meaning of physical proba-
bility; that analysis now Jjustifies a shift in emphasis from probability
itself to the intimately related notion of ensemble, since a probability
without an ensemble is unphysical. Of special importance, the various ways
in which probabilities enter theoretical physics are mirrored in the naeture
and purpose of the associated ensembles. The relevance of a study of clas-
slcal and quantal ensembles to the quantum theory of measurement will be-
come clear in later sections,

A physical ensemble is basically a set of identically prepared

. -
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independent systems. 1In principle, measurements can be performed on the
constituents at any instant after preparation; and the set is sufficiently
large to warrant statistical analysis of the measurement results, includ-
ing meaningful identification of probability as relative frequency. How-
ever, the phrase, "a set of identicelly prepared systems", represents an
abstraction physically reelizable in several ways. The term "set" denotes
a mental collection of objects which need not even coexist; a set may be
an aggregation of elements all present at once, a temporsal sequence of
single elements, or any admixture of these two extremes. Similarly, "iden-
tically prepared systems" might refer to Just one system prepared and
sequentially reprepared. Whichever combination is selected, the member
systems are strictly independent; for example, the assemblage of molecules
constituting a real gas.is not an ensemble of molecules.

The physical significance of an ensemble depends not just on its
structure but also on its purpose, i.e., on the connection between the
ensemble and the actual physical situation to which it refers. In the
classical realm, perhaps the simplest ensemble imeginaeble is a collection
of coexisting, noninteracting mechanical systems, If their common prepar-

ation process consists of placing a system in & given dynamical state, the

resultant ensemble will then be hoqgggpeoﬁs, or pure, for obviously every
subensemble is identical to the whole ensemble so far as measurement sta-
tistics are concerned. However, if the mode of Preparation is less dis-
criminating, there will be a distribution of states over the ensemble, sets
of measurement statistics will vary emong subensembles, and hence the whole
ensemble will be mixed. Although.this simple ensemble thus illuminates

the basic physical meaning of ensemble homogenelty, defined methemetically
in section 2, 1t leaves the impression that the homogeneity concept is all

too trivial to be of any value. However, this seeming triviality is but a
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manifestation of the classical context in which the example was given; in
particular, it was implicit in the language used that the observables,
hence the classical states, were possessed, a property which ensbles a con-
venient pictorial conception of the systems.

In Gibbsian statisticel mechanics, an ensemble of the type Just
described is employed; but it is not used directly, i.e., the physical sys-
tem of interest is not itself a collection of coexisting, noninteracting,
identically prepared systems. In fact, it is just one such system, related
to the imaginary ensemble of replicas by a postulated correspondence between
observed values and ensemble averages. Why, then, is an ensemble used at
all? From a strict mechanistic viewpoint, the reason might be simply that
thermodynamic systems, whose behavior Gibbs sought to comprehend mechanic-
ally, are incredibly complex. Actual knowledge of a precise mechanicsal
state for the septillion molecules in a mole of gas is a practical chimera.
Gibbs' virtual ensemble could be regarded, therefore, as a mathematical
representation of such ignorance, In fact, the scheme was later generalized
to become modern information theory. It should be stressed, however, that
we have asserted only that the Gibbsian ensemble permits consistent inter-
pretation in terms of ignorence, not that it must be so understood. Indeed,
s0 long as the physical significance of ergodic theory remains in dispute,
there is a possibility that even a complete mechanicsl state specification
of a complex system would not account for its thermodynamic behavior, in
which case the Gibbsian ensemble would he s physical construct far more
abstract and fundamental than its "ignorance interpretation” eﬁggests.
Gibbs' ensemble allows the ignorance interpretation chiefly because it is
framed within a classical metaphysic which provides something to be ignor-
ant of, viz., the values of possessed observables.

Consider now the transition to the latent observables of quantum
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theory and its impact upon everything said sbout classical ensembles,

That simple ensemble consisting of a simultaneous assembly of noninteract-
ing systems identically prepared now requires a "minimal" description,
Strict emphasis on measurement results and the correlation of their sta-
tistics to modes of preparation replaces the graphic account in terms of
individuel classical states, The first preparation instruction given
above, "place each system in a given dynamical state” is now quite mean-
ingless. In view of the latency of quantal observables, the most that can
be said ie to "use a method of preparation such that the associated sta-
tistics of measurement results indicate a homogeneous ensemble”. Similarly,
some preparation schemes will produce ensembles whose measurement statis-
tics are summarized by an inhomogeneous mean value functional. The essen-
tial point is that this latency-enforced revision of ideas destroys the
basis for interpreting ensembles as expressive of ignorance in the Gibbg.

ian semse,, for in quantum physics there sre no longer even in principle

any innate quantities of which to be "ignorant", In quantum theory the

actual object of study is effectively the ensemble itself; however, that
ensemble may be any of the types described earlier in this section, In
particular, it might even be a single quantum system in a temporal alter-
natiné sequence of identical jreparations and diverse measurement operations?’
As mentioned earlier, we have demonstrated elsewhere that, by contrast
to the classical case, in quantum theory the concept of homogeneity cannot
be used in a consistent way to assign physical states to single elements
of an ensemble. Although ordinary physical jargon speaks of "a system in
the state ’?9", that phrase can only mean either (1) an element of & pure
ensemble with density operator f>== Eﬁ » or (2) an element of a pure

subensemble ( 1-)) of a general mixed ensemble whose density operator may
ARy (1) (2) —
e S 4 e e =) wy >0, up>o, 5% 7,
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The fact that in case (2) the same element may equally well be called "g
system in (another) state CP " (since the expansion of P into pure sub-
ensembles is not unique) proves the edsurdity of literslly associating a
state vector with a single member of an ensemble. (For elaboration, see
reference L4.)

Nevertheless, because any mixed ensemble can in principle be subdi-
vided into sets of pure subensembles, there is a logically weak sense in
which the quantum mixture is often linked to ignorance: by analogy to the
Gibbsian case, the mixed ensemble is sometimes interpreted to mean that
there 1s ignorance as to which pure state the system is "really in". Indeed
in the rdiscipline celled quantum statistical mechanics, this fiction is
artifiéially upheld by conjuring up "two averages" from the quantal mean
value expression M(A)"—'-‘- 7?‘(6}4) . Suppose P.—_%Mfé % ‘is

one among the meny ways the ensemble at hend can be grouped into pure

’ subensembles, u@_being the fraction of the original ensemble in the Ep-sub-

,, ensemble, if this particular selection is made, Then, (A) -

: 7?( ( A )_—_-: %M&<§~LK5A%§> is the average result of a-measurements on
; the ensemble with density operator e . Now, despite the fact that this
expansion is not unique, it is standard practice in statistical mechanics
to declare, as for example ter Haarwc'loes , that ni(A) "is twice an average.
Firast we take the quantum mechanical laverage...in a system described by

the wave function 7_%,. » 8nd, secondly, we take the average over the ensemble,"
The introduction to the same chapter typically cautions that in quantum
ensemble theory, "one must be extremely careful to make s clear distinc-

tion between the statistical aspects inherent in quantum mechanics and the
statistical aspects introduced by the ensembles". Such statements sound

as though (1) % -statistics are not related to ensembles, end (2) that

mixed density operators always refer to ensembles made up of systems

..
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"really in" pure states ?éi .
Actually, (1) and (2) are both false; however, if we make the spuri-

ous identification of ;%i as the quantal analogue to a classical state

(as noted above, there is none) and interpret "ensemble" in (2) as meaning
"virtual assembly of coexisting, identically prepared systems", there
results a pseudo-ansalogue to Gibbs' method which is of motivational value
in quantum statistical mechanics. To make the analogy complete, there
must be a postulated connection between Y‘(fA) and observed values of
thermodynamic quantities, Such & postulate together with knowledge of
specific () 's is essentially the logical core of quantum statistical
mechanics; meaningless "classicael" analysis of quantum ensembles is not
necessary, although it may serve to suggest the formulation of useful fD 's,
However, its intuitive value in this context should not be mistaken for
rational physics,

This digression on quantum statistical mechanics was not made to con-
demn its heuristic methods but to repudiate the erroneous idea that the
general density operator represents ignorance in perfect analogy to the
Gibbsian model; the density operator is not at all the sole property of
quentum statistical mechanics but is actually a basic quantal construct.,

In fact, a mixed () cannot refer to an ensemble of systems each "really in"
a pure state since, as we have repeatedly emphasi zed, that'phraseology is
logically ambiguous. A mathematically parsllel situation in classical
optics arises for polarization of light. If a light beam is, for example,
unpolarized, we cannot meaningfully conclude that there are "really" two
incoherent "sub-beams" of equal weight each linearly polarized but along
perpendiculdr directions, for the analysis is not unique. With equal jus-
tification, many other such dissections of the unpolarized beam may be per-

formed, among these the assertion that the "sub-beams" are "actually"

Ny
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circularly polarized in opposite senses. Empirically, every unpolarized
beam can be split either way with the proper equipment; thus propositions
about the "hidden structure" of the unpolarized beam are physically mean-
ingless. Just as there are light beams which are intrinsically unpolarized
or partially polarized, there are quantum ensembles which are intrinsically
mixed; neither has anything to do with ignorance.

To complete this discussion of ensembles, we draw attention to a strik-
ing difference between the classicel and quantal cases. A classical
ensemble is described by the set of probabilities that member systems are
in the various pure subensembles, Because the latter correspond to clas-
sical states, they are not only statistically homogeneous (as defined in
section 2) but also dispersionless, which means that for any observable,
messurement results from a pure subensemble are all identical. The col-
lection of pure subensembles into which any given ensemble may be resolved
is uniqué?' Because it is physically possible to select the unique, pure,
dispersionless subensembles from the original ensemble, the above mentioned

probabilities may be called reducible, a term used in this connection by

Mhrgenauf5-

For s quantum ensemble, the reduction to pure subensembles is no longer
uniqug? nevertheless, similar selection processes are still possible,
Once a resolution to homogenecus subensambles hes been specified, the
total ensemble is then characterized in part by reducible probabilities
Just as in the classical case. However, by'a theorem of von Neunanng>no
quantum ensemble, not even a homogeneous one, is dispersionless. There-

fore, reduction to pure subensembles does not explain away all probabilities;

there always remain probebilities, called irreducible by Margenauf:}hich
reflect the intrinsic dispersion of homogeneous gquantum ensembles. Inci-

dentally, this property is the backbone of Heisenberg's Principle of
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Indeterminacy. To summarize: a classical ensemble may be reduced to a

unique set of homogeneous, dispersionless subensembles; a quantum ensemble

may be reduced to any one of numerous sets of homogeneous subensembles
each of which invariably exhibits dispersion in the statistics of measure-

ment results for most observables.

i 6. Outline of Standard Measurement Theory

To provide a skeletal basis for subsequent discussions of its many
ramifications, the "standard" quantum theory of measurement’awill now be
outlined in an abstract mathematical fashion temporarily avoiding all
philozophical problems of interpretation. Any actual measurement of an
observable a, on & quantum system §_ assumed to be an element of a known
ensemble, 1s performed with an auxiliary system _M_(a,) called a measuring
apparatus for observable a/ sy OT a-neter. This means that __5_ and M__
physically interact so that known correlations arise between the possible
measurement results of observable a, ané some observable é belonging to
M . Since M is an a-meter, these correlations are sufficient to

s

render a "direct" a-ineasurement superfluous, Thus a is measured by

“reading the a -meter", i.e., by measuring é on M
Let ’g/? and 8«? be the Hilbert spaces associlated with 5 and M

.

respectively., The tensor product space ’9?—*%@ ﬁ is then appro-
briate for the study of the __S__ - M__ interaction. As usual, the operators
corresponding to d and é will be denoted by A @ _L and 1 @ C.
To avoid burdensome notation, we assume for the present that A and C have
discrete, nondegenerate spectra. A, C satisfy *;46\/9L= Wﬂ)

Ch= 5 243 ovene FE, 5153 oomne 0, , ot St 9753
spens .

Nothing significent comes from considering mixtures as opposed to

_—_—
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pure states; we assume therefore that initially 5_ and ___/\_:1 are "in" pure
states“;% and % . (Having made the point that the ensemble must not be
forgotten, we shall henceforth often use this common expression.) It can
be shown that the composite system § e _M_ will then be in state '&@%

By Th9 the temporal evolution of the state vector is always expres-
sible by a linear evolution operator T: W)/;.) _— 7__(,7.%:3 /7;') %) ,

In the product space ﬂ g i § and __M_ do not interact, T is decomposable
to 77@7; 5 conversely, an indecomposable T expresses interaction.

Now, according to the general principles stated above, the measure-
ment process entails __S__ --__M_ interaction leading to the establishment of
correlations, Mathematically, this will be expressed as a condition on
-7A/ » the indecomposable evolution operator for a -measurement. That
condition, which we call the correlation assumption, i1s almost always
given o T (@ X) = o4, © T
from which it follows that

. . .
T (Yeox)= 7;(% <X > Xy, ®%)= %<°<¢g B4, Q%.
The desired correlation arises as follows: 1t can be shown from the axioms
that the final composite state vector%<%’¢>%z®?a means that, if

an a-measurement is performed on __5_ and a é -measurement on M s the

probebility thet the pair (d.%.)%)will result is Just Ko{&,.’{bﬂlgm ,

Hence, the & -measurement alone suffices,

Finally, it is customary to consider the post-measurement S -ensemble
independently; this 1s done by focusing on the measurement statistics for
; -Observebles only!qi.e., those corresponding to operators of the form

A
B & j__ . A simple calculation shows that the density operator ) of

that ensemble is given byf é?—“—-—ﬂ‘; % o> DT, = %]@(ﬁ?)[" EP:

* 77‘ signifies a trace operation involving only matrix indices repre-
sehting -3 Tor elaboration on this precedure for finding the density :
op¢rator for a subsystem, see Ref, U4, sec., 8,
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The structure of é\ lmmediately indicates one of the ways in which the

£ ~ensemhle after ~measurement is reducible to pure subensembles,
Eech subensemble in this method of selection is dispersionless relative to
a, -measurements since its state vector is an eigenvector of A. Moreover,
the subensemble for which an a,-measurenent certainly yields ﬂkis Just
the fraction [ = /(a_/ﬂ ’%}/ of the original ensemble, in perfect har-
mony with the basic quantum theorem (Th3, section 2) that a-measurements

on systems in state 1/’-‘ <4@_,'¢>Q/R Yield Ag with proba.bility

Walaes0=12) = THEBR) = I<aw, >

This completes our review of the mathematical skeleton of quantum
measurement theory. Ensuing sections will explore many controversial
facets of the theory which were purposely glossed over in this preliminary

outline. Such a critical survey will lead eventually to a clarification

of” the meaning and epistemological status of the two primitive constructs

: not yet fully analyzed--measurement and preparation,.

T. The "gptics" of Measurement

The preceding mathematical orientation to measurement theory cannot
be ftaken as the unique core of all philosophical and theoretical discus-
slons on the subject. As will become increasingly evident, there are many
variations on that principal mathematical theme. However, one key point
is accorded almost universal acceptance as the fundamental desideratum of
a quantum theory of measurement, vi Z., the proposition that a -measure-

: )
ments upon an ensemble whose initial density operator is = 4 5
n

4:%{4’9292,4\ > Q’q\ ’ where% are the eigenvectors of a,'s operator A,

will produce a post-nea.surement ensemble whose density operator is

?‘"’ = 1<, 4>/*P

From this it follows that d-neasurenents upon en initially mixed ensemble
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characterized by - )‘L' n induce this transformation in the
n A

density operator: = = W,{'(D )—-—? 6 = fn’.’ Wi P\U‘\)

r
“—’%W;§<O(&° EE_Q{K>A?/~99 . This may be expressed as ‘p—?

e

é\ — %Zo(n’ P O > %ﬂ N the form used by von Neumanns
or if BK is written jq/«><a(%) (Dirac notation), this " a-measure-

ment transformation" assumes another simple form, H—> 4::-2 p P
A R K X
Henceforth we shall frequently refer to ]D—» (0 simply as the (von

Neumenn) measurement transformation.

Thus the philosophical challenge of the measurement concept in quantum
theory is generally translated into mathematical physics as follows: prove
that the measurement interaction of a system with an & -meter transforms
the system density operator in the manner just defined. Sometimes this
problem is expressed in the colorful language of wavész:l prove that mea-
surement "destroys coherence" or "introduces random phase relations", The
origin of these phrases is to be fourd in the historic analogy between
quantum mechanics and classical optics, which is especially clear in the
familiar Schr3d.1.nger wave mechanics. In that analogy the pure state
1#.—: % <Q/QQ,¢> A/-VL corresponds to "white light", a coherent
superposition of the various "colors" %g which "interfere" in the sense
thet mean values generally involve cross terms. For example ’
m(B)=Tr(RB)= S <t ¥>I %t , B> + 25 > ¥, B
A measurement interactior;??.s then depicted somewhat 111?: passage of light
through a prism which separates the various "colors" so that there is no
longer any "interference" emong them, hence no cross terms:

M (B) = Z <t , - >"<tee, Bo>,
The last equation né.y be written as yﬂ(B):TF( A B) » Where
A |<ehe ohyn P ; theref - ¢
() % 5 O/% ; erefore, an measurement is said to

remove the "interference of probabilities” in the "coherent superposition"
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zfzzz 1%%.<ﬁ?@192}6> CR%L by a transformation to the "incoherent
" A — 2
superposition g = % /<0(0& N g ,

Another imsginative portrayal of the effects of measurement rests on
the contention that measurement introduces "randomtAuncontrollable phase
relations". Thus if 4: %%,¢>4& becomes ZL-:_ %%, §L>.£0F§\/_K
where z%%;g is a set of "random" phases to be averaged out, then effec-

tively the same transformetion is obtained, since the average 1is calcu-

lated as follows: 27t ,
};\L(B) = 77— %%r—<72 B£> =%/<°(&,Z/’>/z<°fea-,84/ﬂ>
n

Qmem
+ : f% oy > <A }> <4, 8"@%&%:. At J‘Fﬂ eu«‘;‘_f&)
::%. | <Ape, ¥ > L, B dp> o0 o
=T+ (7B), f= = | e, > 121, .

This phase idea is reminiscent' of the old description of an unpolarized
light beem as two beams linearly polarized in perpendicular directions but
haeving "rendom phase relations" between them; but it is noteworthy that
claessically this described only an algebraic trick, not the actual nature
of unpolarized light.

' Unfortunately, such picturesque analogies to classical optics can
never deepen our understanding of quantum measurement; indeed, they may
even becloud the real issues, Although it is undenisble that quentum

theoretical calculations often bear striking resemblance to those of clas-

sical optics and acoustics (for obvious historical reasons) and that work-

ing physicists therefore draw heavily on such mathematical parallels in the

course of everyday problem solving, nevertheless, as physical theories,
wave optics and "wave" mechanics are strikingly distinct. As a consequence
of this physical gulf, these mathematical analogies may offer more confu-
sion than illumination when epplied to a problem so fundamental as the

quantum theory of measurement.
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Regardiess of the description given the measurement transformation
(3-:7 69 » & basic question remains: why is this transformation so
often assumed as the goal of measurement theory? What properties does it
have s0 essential to the mathematization of the measurement process?

Those who have developed an intuition for the optical analogy aie
supposedly able to induce the principle of coherence destruction from
ldealized "electron interference" experiments, for which the empirical
warrant is the related work of Davissoﬁztnd Germer. An electron is pre-
pared for study by having en electron gun fire it at a barrier impenetreable
but for two slits; various measurements made on the side of the slits oppo=-
site the gun are then considered. A simple position measurement can be
made by placing a fluorescent screen parallel to the two-slit wall; the
co-ordinates of the glowing dot where the election is absorbed are the
results of the position measurement, It 1s well known that the arrange-
ment of dots associated with an ensemble of electrons identically prepared

and measured simulates the optical interference pattern of Young's two-

s1it experiment. However, if two devices capable of detecting the passage
of electrons through them are interposed between slits and screen adjacent
to the two slits, it becomes possible to measure the position not only at
the fluorescent screen but also at the slits. Now, the array of dots on
the screen caused by electrons after passage through these new detectors
is not at all iike a Young interference pattern but resembles instead two
overlapping one slit diffraction p#tterns. It is therefore tempting to
conclude that "destruction of interference" is an essential characteristic
of the measuring process, since the measurements at the slits have Just
that effect.

However, two cautionary remarks are in order concerning this argument:

(1) Anelysis of a single gedankenexperiment (or a single class of actusl
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experiments) is obviously insufficient to establish any universal property
of measurements; the quantum theory of measurement should not be founded
on specialized empirical knowledge. (2) We have here the first indication
of conceptual interlocking among the notions breparation, interaction, and
measurement--a theme te be developed further in later sections. There is
good reason to question the logicel appropriateness of saying in the above

gedankenexperiment that the position measurement at the slits affected the

coherence; indeed, even if no number emerged (hence no measurenent), the

interaction with the detectors would have destroyed the interference any-

how. In view of this physically obvious fact, is it not perhaps more rea-
sonable to interpret the foregoing discussion of electron interference pri-
marily as illustrative of the concept preparation rather than measurement?
Let ?'L‘., Z,L be the state vectors associated with preparations involving
Just one slit with no adjacent detector. Roughly speaking, the gedanken-
experiment actually proved only this: if there are two slits without

adjacent detectors, the apparatus prepares a pure ensemble with P -

E, ‘4« FC. 1’, 5 i1f the two slits have adjacent detectors, the total appa-
2

ratus prepares a mixed ensemble with F__u/" P -+ W" E}, . The conver-
sion of the pure ensemble to the mixture is fully explicable in terms of
its interaction with the detectors, whether the 1atter are used to perform
measurements or not., Thus such a demonstration does not necessarily reveal
any significant feature of measurement in general.

The literature of quantum theory abounds with mysterious interpreta-
tions of this electron interference gedankenexperiment; for example, the
presence and absence of the detectors at the slits has been said £o reveal
the "conplenentar&", "dual" natures of the electron as particle and wave,
respectively. We prefer to circumvent such terminology by regarding the

electron always as simply a quantum system and never as either particle or
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wave, (The exioms of section 2 referred to neither classical construct. )
In the context of measurement theory, preoccupation with the "undula-
tory aspect of the electron" leads to an especilally mystical derivation of
the measurement transformation. The common jargon of quantum physics, if
taken literally, welds the electron too tightly to the wave function (state
vector); thus the phrase "an electron with wave function 4%’" suggests more

the false plcture of some amorphous undulation accompenying the electron

than the correct meaning of‘?L in terms of ensemble measurement statistics

relative to a given preparation. In terms of these strange individual
electron waves, the interference gedankenexperiment may be explained as
follows: when no detectors are adjacent to the slits, every electron wave
has the form @:: C,' % + C._,_ ZL,_ ;3 but when detectors are included so
that measurements are performed, the measurement act introduces rendom,
unpredictable, hence uncontrollable, phase factors into the individual
electron waves. These random phases are averaged out in computing mean
values, a prodecufe equivalent to describing the post-measurement ensemble
by the mixture ﬁ-‘-"—lﬂ,lg 1"; -}—-,C‘,zla' P—g'L’. » 85 we showed earlier in this
section, Thus the introduction of random pheases is sometimes taken as an
essential propérty of measurement. Needless to say, within the quantal
framework developed in previous sections, the foregoing derivation of this
random phase principle is logically absurd; as e matter of fact, because
of its unteneble association of waves (state vectors) with single elements
of the ensemble, the proposition cannot even be rigorously steated,

This survey of the "optics" of measurement has not produced any con-
vincing asnswer to the question posed earlier: why is proof of the trans-
formation ():__-— P.#’-? é‘ = %KQ’QQ:#)'J. 12-99. s0 commonly accepted
as the goel of the quantum theory of measurement? Since the popularity of

this view is undoubtedly due to its compatibility with the Copenhagen
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interpretation of quantum theory, we turn now to that philosophy for a

deeper explenation,

8. Measurement in the Copenhagen Interpretation

Because of the explicitness of the proposition which ve are asking
the Copenhagen school to Justify, general epistemologicel considerations
like those of Bohr and von Weiszéicker are not too helpful, On the other
hand, Heisenberg tends to be more specific in his philosophic discussions
and has in fact given detailed expositions of the nature of measurement;
accordingly; we shall take him as spokesman for the so-called* Copenhagen
version of quantum measurement theory, -

Consider, as Heisenberg did in his early book?%n quantum theory, a
beam of atoms, "ell of which are initially in the state n" (i.e., a pure
ensemble with state vector ?ﬁv » 8n energy eigenvector) sent through a
force field inhomogeneous in the direction of the beam, If energy measure-
ments are performed on atoms of the beam emerging from this field, the
measurement results will disperse, the relative frequency of the result
Em being given by ]Syf_m’z y defined by Cﬁ: % Sn/ ® TR where

Ce is the state vector into which the initial z%’causally developed due

to interaction with the field. Heisenberg uses slightly different termi-

%
/
nology: "...ISMI is the probsbility of finding en atom in the state m

after it has emerged from the field..."%sand the latter is said "to cause

transitions 1o other states"?&* If such measurements are not made and the

*It might well be argued that there are many "Copenhagen interpreta-
tions” and that the present section deals with the Helsenberg "Copenhagen
interpretation" as opposed,. for exemple, to the Bohr "Copenhagen interpre-
tation"; however, we shall not enter into that debate, TIn the present con-
text, the term "Copenhagen interpretation" will be used in the same way
Heisenberg uses it,

*%None of the italics in the quotations of this section are in
Heisenberg's original papers.
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beam is once more sent through a similar field, the state vector develops
::E / :EE ::E
from to Cp — 5 ;L %( S );L

80 that energy nfasuremen"cs now yield é with relative frequency
/2 S:.m. S,: _g" » & situation agein expressible in the language
of "transitions".

So far, the differences between Heisenberg's description and our mini-
mel account seem entirely semantic; but this is not the case, for Heisen-
berg goes on to make further generalizations which are deducible only from

his version. Suppose that between the fields, "the atoms...are. disturbed

by the performance of an experiment which would have made possible the

determination of the stetionary state. The result of the experiment is

not observed, however. The probability of the state .e 1s then

2’51 /z/ Sl / ".24 Mathematically, this i

= n L Y, 8 1s equivalent to the
statement that the between-the-fields energy measuring device brings sbout
the measurement transformation introduced in the breceding section. Thus
Heisenberg effectively endorsed the claim that this transformstion repre-
sents a universal trait of measurement processes. Unfortunately, the only
Justification he offered at the time was a semiclassical (hence unconvinc-
ing) analysis of measurement-induced phase uncertainties in deBroglie waves-
However, better arguments do eppear in his lster writings and will be pre-
sented below, but first a final general conclusion supposedly illustrated
by the atom beam must be noted,

The expression 2 ' SMI / l was sald to be the "probability of

the state ,Z provided an energy measurement operation was performed

between the fields without observing the result. From the general per-

spective on quantum theory advocated in our opening sections, such a pro-
viso seems utterly irrelevant; the relative frequency of a given measure-

ment result obtained from atoms prepared by passege through two fields
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with some apparatus between them can depend only on the physical nature of
that apparatus--not on its purpose, Yet Heisenberg says that if the result

of the between-the-fields energy measurement is observed, then "the atom

1s known to have been in state .. E)etween the field.s]. The probability of

the state £ is then given by l S:‘e/z b This manner of speaking is unfor-
tunate, for it suggests that physical probability is contingent upon an
observer's knowledge. To avold that conclusion, we are compelled to
interpret Heisenberg's last préposition as follows: if the original
ensemble is truncated by measuring after bpasssge through the second field
only those stoms which yielded Em at the energy measurement between the
fields, then the new probebility for the final result E, is [Sf,,g *
This 1s equivalent to attributing to the measurement process the property
that the subensemble of atoms which yielded Em has as its post-measure-
ment density operator % + It is interesting that this assumption is a
sui'ﬁ.cijnt c:ndition for the measurement transformation, Eﬂ —_

% lSM/ @‘ » To see this, recall that ‘£=;S"/”\¢;"’ so that Em
results with relative frequency ! S:.m/ 1. Thus, if the post-measurement
subensemble associated with result Emis assumed to have state vector %’
it follows that thz total post-measurement ensemble has deneity operator

é\ ::-%)Sn;/ 31& - In Helsenberg's interpretation, therefore,
the measurement trensformetion, the basis of which we are 'seeking, is not
itself fundamental. Thus the question we have posed may be reformulated:
why should a quantum theory of measurement assume that, after an a -ﬁea-
surement, the subensemble which ylelded yhas state vector N ,

AO(K = a.toq,\ ? For a "Copenhagen" explanation, we turn to Heisenberg's
more recent philoséphical works, '

A common method of elucidating a complex subject is by analogy to

something familiar, provided the analogy is not too superficial or purely
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poetic., Thus we have seen in previous sections that features of quantum
theory can be explained by drawing parallels to both classical optics and
statistical mechanics, In the case of optics, the possibility of confu-

sion loomed large; but the framework of statistical mechanics provided an

excellent analogue to that of quantum theory--up to a point. Heisenberg
has expounded the Copenhagen version of measurement theory by appealing
f to the latter analogy. Because of its evident impact upon quantum phil-
osophers and theorists, we now closely scrutinize his analysis.

With Heisenbergfbeonsider first from the standpoint of classical
Gibbsian statistics a hot metal occasionally emi#ting a thermal electron,
Near this emitter is a photographic pPlate which registers all electrons
emitted above some established threshold velocity. The temperature T of
the metal 1s measured, and its thermodynamic state is represented mechanic-
ally by the canonical ensemble, i.e., e(q ,10) oC p,-;g’g(_. H(?ﬂ%d’) 5
where H 1s the Hamiltonian of the metal. Now, as time passes, {){7_, 70)
develops in accordance with Liouville's equation; in particular, if the
composite system of metal plus plate is considered, it is in principle pos~-
sible to compute the probability that a given number of electrons have
been detected by a certain time. Now, as noted in the Preceding section
on ensembles, 1t is possible to regard this use of the canonical ensemble
as an expression of mechanical ignorance, Heisenberg clearly tekes this
position when he says that if an "observer is present, he will suddenly
reglster the fact that the plate is blackened, The transition from the
possible to the actual is'thereby'completed as far as he is concerned; he
correspondingly alters the mathematical representation discontinuously,
and the new ensemble contains only the blackened photographic plate...We
see from this that the cheracterizetion of a system by an ensemble not only

specifies the properties of this system, but also conteins information
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about the extent of the cbserver's knowledge of the sys’cem.":z‘7

To complete this classical analogue to the Copenhagen version of
quantum measurement, it is necessary to provide a counterpart to comple-
mentarity., Following an idea of Bohi%gthis may be done by recalling from
statistical thermodynamics that a closed system is properly represented by

a microcanonical ensemble, e(?’.’ )OC S (H(?_ﬂo)—Eo>, whereas an

open system (in thermal equilibrium with & heat reservoir) requires a
canonical ensemble, ?(?_ﬂp)o(; W(-—H(?:;f%‘r) . In the former
case, the energy is fixed but the temperature is not determined; to mea-
sﬁre the temperature, the system must be "opened" and put in thermel equi-
librium with & thermometer. But when that is done, the energy fluctuates
in accordance with the canonical distribution. Thus-a macroscopic descrip-
tion involving the concept temperature is more or less "complementary" to
& precise micromechanicsl description in which temperature is undetermined,

Obviously applying this "classical complementarity" to the hot metal
and photographic plate, Heisenberg reasons that complete knowledge of the
microstate of a closed metal-plus-plate system would permit exsct rather
then Just probabilistic predictions concerning the blackening sequence,
but "the statement of the temperature would then have been completely
meaningless"?b On the other hend, if that composite system i1s opened to
its environment (called by Heisenberg "the external world"), then temper-
ature supposedly becomes meaningful but precise knowledge of the micro-
state no longer eliminates probebilities, exact prediction being precluded
because "we do not know every detall of the externsl world" 2’

The Copenhagen interpretation is essentially an attempt to provide
exact quantal analogues for the concepts of statistical thermodynamics,

provided the latter are understood in ways Just explained.* A logical °

*It should be noted that several of the above statemeﬁts from classical
statistics as interpreted by Heisenberg are femiliar but not universally
agreed upon by theoretical physicists.
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first step would be to determine (1) what in statistical mechanics corre-
sponds to the demnsity operator, and (2) to what extent the analogy 1s cor-
rect. As we have already pointed out, as a mathematical object character-
izing statistics of measurement results for an ensemble, the density opera-
tor plays the same role as Gibbs' density-of-phase; moreover, a quantum
ensemble having a state vector (i.e., ():: E; ) is enalogous--so far as

hdmogeneity is concerned--to a classicel ensemble of systems all in the

same mechanical state, But we have also observed that state vectors differ
from classical microstates in ways (to be recalled as needed) which render
this last analogy ilmperfect. Copenhsgen theorists tend to ignore these
infelicities; thus Helsenberg carries the ignorance interpretation of clas-
slcal mixed ensembles over to quantum theory when he explains that "the
probability function combines objective and subjective elements'" with this
exception: "In ideal cases, the subjective element in the probability
function mey be practically negligible as compared with the objective one.
The physicists thé;"speak of & 'pure case'."Z7We have already called
attention in section 5 to the inconsistency of this viewpoint. To regard
a quantal mixture as expressing subjective ignorance of actual objJective
pure stateé is, in view of the essential latency of quantum observables,
physically meaningless. Any attempt to assign pure states to individual
elements of & mixed ensemble encounters hopeless ambiguity? primarily
because of a deep logical fissure in the analogy to classical statistics,
viz., the circumstance that in quantum theory homogeneity does not elimi-
nate dispersion. The Copenhagen interpretation therefore pushes the ansl-
ogy between density operator and density-of-phase beyond its proper bounds.
A second quasntal analogue to statistical mechanics is based on the
effects of interaction. We have systematically contrasted the dynamics of

classical and quantal interactions elsewheré? superficially the analogy
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seems & good one, for in both theories an initiwlly pure ensemble efolves
into a mixture upon interaction with s mixed ensemble, In accordance with
the ignorance interpretation of ensembles, Heisenberg therefore asserts
that & system open to the "external world” must be described by a mixed

ensemble, "since we do not know the details of the 'external world system!’ ".27

This reasoning is correct in classical physics but fallacious in quantum
theory. 1Indeed, in the latter case, even if the "details were known" so
thaf no "subjective" element entered the description of the "external
world", i.e., even if the "external world" were in an objective, pure
state, still the initially pure open system would evolve into a mixture!*#'
Once again, quantum theory proves incompatible with the ignorance interpfe»
tation of ensembles,

In any case, only a closed¥*¥system can be dynamically characterized
by & state vector; thus Jjust asﬂéemperature was declared "meaningless" for
a closed classical system, so apparently are all physical quantities for
a closed quantum system, As Heisenberg puts 1t, although state vectors
are objectlve, they are "ebstract and incomprehensible", and "do not refer
to real space or to & real property"?y To meke an actual measurement, sys-
tem-plus-apparatus must be open, for "connection with the external world
is one of the necessary conditions for the measuring apparatus to perform
its tunetion"?oﬁw Tollows of course that system-plus-apparatus can only
be an element of a mixed ensemble; and for Heisenberg this automatically
entails "statements about the observer's knowledge. If the observer later

registers a certain behavior of the measuring apraratus as actual, he

*This is essentially why in section 6 the use of initially pure ensembles
was sufficient to illustrate the basic features of quantum measurement theory,

**By closed we mean s system not interacting with its environment; i.e,,
the Hamiltonian for system plus environment has no interaction term.
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thereby alters the mathematical representation discontinuously, because a
certein one among the various possibilities has proved to be the resl one,"20
In mathematicel terms, the Copenhagen description of an a -measue-
ment on a system §___.from & pure ensemble therefore runs as follows, _5_
is initially closed snd in the state '4’—_.- %<0(_k’2'[,> g, which repre-
sents obJective tendencies toward the poss_iiale a-values Sag with
respective probabilitiesgl<d\’qa ,,gl,)l? However, éince _S_ is isolated,
no a-measurement cen be performed; for measurement requires interaction
with surroundings. Now, an open system must be described by a density
operator, i.e., by a whole ensemble of systems in various states. When
_5_ is "opened" for an a -measurement, its proper representative is there-
.fofe such an ensemble; but this introduces & subjective element, viz. 9
ignorance as to which of the a -values actually obtains, The density

operator afier the measurement interaction (but before the actual a -value

is observed) is accordingly 6_—;%}<0(%,4>,2@ , since a system in
eigenstate O(k is certain to have the (7 -value Oeps &nd lé{n.ﬂ/}}/ 2..18
Just the probability originally associated with that value. Finally,
observation of the actual a, -value eradicates the ignorance; and, if Oge,
is the result, the state O(“ is assigned to the system. The overall effect
of an a-measurement upon the state #.—-— 2(4@,4) g2, was therefore
contraction of 4’ to one temm Q{k » &an actkca.lle_d by Copenhagen theorists
"reduction of the wave packet".

There is the official answer to our question as to why derivation of
the measurement transformation is popularly adopted as the gosl of qua.ntﬁm
measurement theory. That transformation, originally formileted by von
Neumann, is indeed the correct mathematizstion of the Copenhagen philosophy

of measurement, If the latter were espoused, the postulates of section 2

would have to be augmented by some statement connecting the measurement
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concept to wave packet reduction in a definitive, analytic sense. However,
since the foregoing dissection of the Copenhagen interpretation has revealed
its foundation to be a set of overextended analogles to a highly subjective
version of classlcsl statistics, no supplemertstion of that kind seems at

all Jjustifiable,

9. Quantum Jumps

For historical reasons, the Copenhagen interpretation is effectively
the orthodoxy of modern physics. Of course, the majority of physicists
are not engaged in research so fundamental as that which originally moti-

vated the Copenuagen philosophizing, and they are therefore not greatly

interested in it. Nevertheless, when confronted with a basic theoretical

ié
1
4
b
X
;

o]

dilemma, such as the quantum theory of measurement, most quantum theorists

repeat at least some of the Copenhagen pronouncements, if only because of
the suggestive phrases of workaday Jargon. Perhaps the most common error,

a5 we have elready mentioned, is taking seriously expressions like "an

TR R S R v s e MO S R k2

: electron in the state ’y/", "the probability of finding an electron in the
; state /k_ ", and "the probability of a transition from state %" to state

1&; "y which, although of practical, heuristic value, have picturesque
connotations of describing a semiclassical microcosm alien to the spirit
of quantum theory. In fact, as we demonstrated in the preceding section,
the mathematical structure of quantum theory does not lend anylsupport to
a literal interpretation of such phrases.

Nevertheless, it is quite natural that most papers on the theory of
measurement introduce the problem at least implicitly in the Copenhagen
langusge, Hence, from our point of view, they are philosophically crippled
at the outset and stand little chance of illuminating the measurement con-

cept. The detailed criticism given in section 8 of Heisenberg's measurement
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theory in particular serves therefore to expose generally the inadequacies
of many discussionéagn quantum measurement,

However, we cannot yet completely dismiss the mathematical condition
pPlaced upon measurement in the Copenhagen interpretation, provi&ed dif-
ferent, and cogent, reasons can be given in its defense. A promising
source appears at first to be one of Copenhagen's critics, Blochintsevful
whose typical Russian approsch to quantum theory seems to have much in com-
mon with the early sections of the present work, In particular, he rejects
the ignorance interpretation of quantum ensembles, prefering to regard
membership in an ensemble as "objective". In an extrsordinary rebuttal for
someone who himself thoroughly dismantled the classicel world view, Heisen-
berg has described Blochintsev's "objective" version of quantum ensembles
as "taking us far--perhaps too far--from materialistic ontology“?sbecause
classically ensembles represented ignorance! At any rate, Blochintsev's
objectivity is really political rather than methematical, and the hypoc-
risy of his dialectical materialism finally emerges when he describes the
measurement process as effecting precisely the state changes that Copen-
hagen decrees?¢'Unfortunately, no reasons are given; it is as though we
simply need an additional exiom to characterize fully the idea of measure-
ment:

Ph: (Projection Postulate) If (f -measurements are performed on an

ensemble, the post-measurement subensemble consisting of those
systems which yielded % has density operator QQ 5 Ao( 44-:%0(9‘:

Pl has been stated in the strongest form that could possibly meke
sense; it is sometimes carelessly expressed in terms of "sudden, acausal
qusntum jumps" or "superluminary wave packet contractions" having some
vegue relevance to the cognizence of events by observers, all of which is

nonsense, Measurements themselves do not occur instanteneously, although
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their resulis are associated with the moment that the apparatus couples to
the system. PU only suggests that when the interaction ceases; a certain
selection of subensembles would always be possible, Together with the
other axioms, it implies the measurement transformation F£L~—i> 69 =

% J <042_,Z[->,2 @ » &5 has already been proved; but we have found no

reason to adopt either that traensformation or P4 as a necessary property
of measurement.

Occasionally, the classical proposition that an immediate repetition
of an C},-measurement which yielded czwtmust again yield Cthis invoked in
behalf of Ph?s-The only evidence for this assertion seems to be common
éense (intuition drawn from classical physics), Fairly typical of this
approach is a gedankenexperiment discussed by Heitler.s6 The arrangement is
'xhat of the electron diffraction experiment in section T, except that a
second flourescent screen is placed immediately behind the first one, now
agssumed to be quite thin., Suppose a glowing dot appears on the first
screen, indicating an electron position measurement. Shortly a dot will
burst forth on the second screen, but where? Heitler says it is "absurd"
to believe the second dot could occur anyplﬁce but directly behind the
first one; hence "it follows that through the sppearance ‘of the electron
on the first screen the probability distribution for the position must have

changed and contracted into one of certainty" .36

Superfically, this appears to be a reasonable argument in favor of
quantum jumps, or of P4, Closer examinstion reveals, however, that even if
such experiments were performed and the two dots were always together, the
explanation would not fall beyond the scope of Pl-P3; i.e., Pk would be
unnecessary: To see this, the electron, the first flourescent screen, and
the electromegnetic field must be considered as a single, composite quantum

system. Initially, the electron is in a "traveling wave packet" state,
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the atoms of the screen are in their ground states, and the electromegnetic
field is in its vacuum state. Aften the interaction associated with the
first position measurement, the state of this composite system is no
longer so simply described; but we can determine, using only P1-P3 » the
brobebility ;Pa, that the radiation field would appear es a glowing dot at
some point 7(; on the first screen and that a second electron position mea-
surement would yield a result X‘L . To explain the effect used by Heitler
to defend P4, all that would be needed is to show that ,B’ is venishingly
small unless '?(, /\/7\2_ » &n anselytic property completely derivable from Pl-
P3, This is reminiscent of the correct quantal explanation37of cloud cham-
ber tracks, as opposed to the fanciful quantum Jump version which inter-
prets the tracks as sequences of position measurements, each collapsing
the spreading wave packet to a point,

The ultimate appeal of this immediate remeasurement doctrine is to
classical intuition; hence, in view of the essential latency of quantum
observables and the concomitant nonpicturability of quantum systems, there
ls no a priori reason to believe that anything at all can be asserted
about immediate remeasurement., However, the possibility is open that some-
thing like P4 might be derivable from P1l-P3, since the latter have already
endowed the construct measurement with several properties; and indeed, as
we shall see below, such a theorem can almost be proved.

Since we are interested in the results of successive a,-measurements,
it would be convenient to have an auxiliary observable %whose operational
definition involves such a measurement sequence, If a, were & classical
space coordinate, the velocity would be & suitsble %; or, in general,
for any classical Q the time derivative %I&L: is evaluated by successive
a, -zeasurements, We therefore consider the quantal analogue of g,a%'- PR

attempting to make inferences from its operator and eigenvalues,
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To find the operator 0/’4 which corresponds to gf.‘—‘_- (1f any operator

does), it is sufficient to require that %’# satisfy the classically-

inspired statistical equation .f'r’-—m@}) = m (Qj/é_) . It is then
Vv‘:" Va1 i fi

a8 standard quantum theorem? based on P3 and Thl, that ==

LOAH]+ B4, were [AH]= AH-HA s 7 16 whe sam-

tonien of the system (c¢f. fn., p. 7). By definition, a is conserved
relative to H if 0‘ mﬁ) = ( , for every admissible functional m;
hence a, is conserved if 0’14 =0.

Ageinst this background, consider successive measurements of & con-
served observable a performed at #" and ,7‘,' -+ A/T‘T upon & system from an
initial ensemble described by P(,ﬁ) . Since a is conserved, 0/ =;
therefore Th4 implies that measurement of (/2 must yield zero. So far,
the assumed operational definition of _0_/_4_' has been drawn from the clas-
slcel case; thus, %:O must mean that two successive a, -measure-
ments at /7:" end 7 '+AA4; will both yleld the same result in the limit

dad.

Ayi —>» O , in accordance with the classical definition, W —

,&}m, Ati+at) — M . Have we therefore derived the projection
At >o AY;
“postulate"” (for conserved observables) from the basic quental axioms? If

s0, an interesting corollary would be that Ph is always false for systems
in which the observable of interest @is such that %E. has no zero eigen-

values,

However, neither of these conclusions is relisble. To see why, con-

slder carefully the reasoning which leads to %:M(A ) s m( %—) )

the defining equation for % in quantum theory. That equation follows

from the purely classical plcture of a function (classical possessed

. observable) evolving in time; the "measurements" of a(jf) anda(;f-f-A,f;)are

naturelly assumed not to disturb the causal development of (A, (F) , t.e.,

to leave the classical state unchanged. The foregoing quantum theoretical
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interpretation of % was therefore implicitly based on the notion that
successive a, ~measurements could be performed on the systems of an ensemble
without in any way disturbing its causal evolution, i.e., without signifi-
cant interaction. As might be expected, that assumption leaeds to a con-
tradiction, as follows. Suppose e(#;),_-__— p and d-mea.surements
)

are performed at /1'1' (A conserved). These two propositions follow: (1)
Since the a -measurements were assumed not to alter the normal temporal

development of the ensemble, P(j} +A%) = E}D(fi rad ) , 1.e., the ensemble

must remain homogeneous. (2) By the "theorem" just proved, any system

which yielded a._kin the a-measurement at »7;' must do so agein at :/;'-[-437)
AZ[—> © ; therefore, immediately after the first measurement, the
ensemble can be subdivided into subensembles, each having the property
that an a -measurement will yield a given result with certainty. These
subensembles are then distinct and homogeneous; hence the total ensemble

1s inhomogeneous.

The statements (1) and (2) obviously contradict each other; the
above "derivation" of P4 for conserved observeables is therefore illegiti-
mate, However, it is not entirely worthless; for it essentially affirms

that the "observable" 0{0— as conceived by classical intuition is unob-

servable in quantum theory. And this perhaps indicates that quantum me&as~

urements on an ensemble will in general cause its density operator to

L 2

deviate from undisturbed temporal development. However, instead of

attempting to draw basic conclusions sbout the quantum measurement concept

from the foregoing mathematical skirmish, it seems preferable to regard
it simply as an illustration of the difficulties inherent in the application
of classical pictures to quantum problems.

Lest the foregoing remarks be interpreted as an sssertion that velocity,

for example, is unobservable, we hasten to add a few remarks clarifying

) L
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the meaning of that construct in quantum theory. As just established,
velocity cannot have the same empirical meaning both classically and quant-
ally, beceuse of fundemental differences in the two disciplines. On the
other hand, neither should the construct be assigned a radically different
meaning for each of the two. The situation is rather like an old problem
in geometry, viz., definihg perallelism. In the Euclidean case, the con-
cept parallel is well entrenched, being endowed with a number of seemingly
immutable quelities. Generalized Riemannian geometries, among which
Euclid's is a special case, naturally should incorporate somehow a gener-
alized parallelism; but this is impossible if &all of the properties tra-
ditionelly associated with that concept are insisted upon. Accordingly,
only a few of them are used in the definition of equlpollence, which is
epplicable to all Reimannien geometries and which, in the Euclidean system,
reduces to parallelism.

Similarly, in quantum theory, velocity is introduced by seizing upon
e single property of the original concept: %-m ( X ) — m(dZXF)
where X is the position operator and 0_!‘5—_ , the velocity operator. Admit-
tedly, the relation between classical and quantum is not strictly the same
as that between Euclidean and Reimannian; the former connection involves
an approximation, the latter does not. However, just as equipollence must
become paralleiism in the Euclidean case,_%éir » to deserve the name
velocity, must satisfy appropriate equations in the classical 1limit. The
Ehrenfeségkheorems establish that it does, Thus our statement that the
classically defined dbservdble_%%?ﬁ is quantaelly unobservable does not
mean that velocity is unobservaeble; velocity is the quantum observable
whose operator is f%é; and which is equivalent to the classicel velocity
in every way only in the classical limit.

At any rate, our search for a formal derivation of Pk was unsuccessful;
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hence we still have no persuasive argument in behalf of its edoption as a

basic postulate,

10. An Untenable Consequence of the Standard Theory

In its crude form based on assignment of state vectors to single sys-
tems, the projection postulate is easily used to "prove" that simultaneous
measurement of noncommuting observables is impossible., All that is required
1s the observation that the post-measurement state, by virtue of wave
packet reduction, would have to be simultaneously an eigenvector of two
different operators. Unless the latter commute, such an eigenvector is a
rarity; in fact usually none exists at all. Now, we hold that any theorem
purporting to prove the impossibility of simultaneous measurement of two

observables is necessarily founded on a false hypothesis. This follows

from the fact that it is possible to construct within the quantal framework
given by Pl-P3 legitimate models* of simultaneous measurement schemes for
noncommuting observables. Thus from a physical point of view, to say that
the statement " a and @ cannot be measured simultaneously" is an analytic
truth simply condemns the axiom set from which it was derived. We have

then essentially a reductio &d absurdum argument against the fanciful ver-

sion of wave packel reduction, which has, however, already been rejected
§ earlier on other grounds.

This raises the question as to whether the wesker (but strongest admis-
sible) form of the projection postulate, stated in section 9 as P4, is also
subdeét to such a critique; the answer is that P4, as an isolated postulate,
is not directly assailable along these lines because of its cereful asso-

ciation of eigenvectors with ensembles rather than individual systems.

*Such counterexamples to the widely believed principle of incompati-
bility of noncommuting observebles are discussed in detail in Ref., 2,

’ . . .
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Nevertheless, it turns out that the measurement transformation, a conse-

quence of Pk, does become untenable when confronted with besic quantal
theorems; for like naive wave packet reduction, it implies that two observ-

ables (] and @ are simultaneously measurable only if EA) 8] =0,

To prove this, recall first that according to von Neumann's measure-

ment transformation, an a -measurement on a pure ensemble converts the

2
density operator from |;;, to the mixture 2 q/ /
p 3 } < ¥, [ %, -
Similerly, a -measurement would induce the change P >

e 2
s % l<€ey7/’>’ ée . If this transformation is a universal
property of measurement, a simultaneous measurement of a and @must

therefore be described by

A 2 2
A P-;L: Ft_—:th%‘f:i;f)/ @1:— %Kﬁe’ i Ll': 2)="TTr AP
ccording to the proba rules of quantum theo {0 )= -

g P y f quentum theory, V\@(\ 24 P V{P B, )_,

which 1s independent of the particular tgpresentation of f . Hence,

We(lvzs(é‘)=77((;‘j?2)=§l¢q,¢>l‘ MR R) = S |<tue, 4> I< g gl

but-alse ~ * - W@ (Q;/ﬂ'):ﬁ(f‘@)____ I<&9zj,>]‘z; thus we have
<G> = | < e > <, > [ S, 11 I, o]

Clearly, this does not hold for every ’lf,’ § q/«'i , and {ég . To find con-

ditions under which it is correct, note that

|Fe<Pe > <o 1= (B < A > )
2% 1<%, 3>l Kz %>+ n%f:”é e < A< Y A

The measurement transformation is therefore appiica.ble only to simultane-

ous a)® measurements such that

(1) %&<A{%J @,@> < ée ,qln>< 77L§NQQ> <°(;\.> ¢> = 0’

vhich means that the measurement transformation can describe simultaneous

measurements only for some palrs of observables, viz. » those whose eigen-

vectors satisfy equation (1) for all ?1’ .

To find the relation between the sets of eigenvectors %3 and Sg ? s
L

E
;
-
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we consider special ’l[f's:

Let 1/«-:_ —VL":f (ﬁ(y-i- O(K) s/\/;até K . Substitution into (1) gives

<, ) L
s BB > () (B + S0 G50

— 7 (<, G:> <€£,Q/K> + < ,&)(& ,oc,,})
= e (<°<A/a€£><ée 206> =0,
Similerly, let W— .in-_ g + “:NK>;. NAZK , to get
ZE e > < o 500> (Z) (Sgew LS ar ) E 45
= -‘:"2‘-(<O(N; _¢><€& 50(K> _<°(K: €e><é§o(/\/>>
=—In (<, B> <> =0,

Hence, equation (1) may be replaced by the simpler restriction
(2) <G\/n.., €g><€e30(m> =0, for every »Z,VL, mo, n #Em,
Since ?(_Qaand S&g are eigenvector sets, ‘neither contains the null

vector. Thus, any Q/Mhas the property that <€8>0(M> ‘.;Z.‘O for
some value of & , Bay O = L_ . Equation (2) then implies that

<°(,\,a él->= 0, ’L# M y L1.e., él- is orthogonel to every element of
2-043 except one, D(M . But{o(g is a complete set; therefore qj" and

6‘; must be equal up to a phase factor (i.e. s belong to the same ray in

Js

¥

Hilbert space). The same argument applies to all vaelues of L. Hence,
each element of complete set g@% 1s an element of complete set ga&% ; the
eigenvector sets for observables aa.nd @ are identlical (except foi' unim-
portant phases). It follows that the operators A, B corrésponding to

simultaneously measurable observables a,@ must commute!

We have therefore proved that the measurement transformation
EP*‘?%}<"(&}/‘>{1ER forbids the simultaneous measurement of noncome
muting ébservables.

Yet it is Just this transformation which is widely accepted as & uni-.
versal characteristic of measurement. Most presentations of the quantum

theory of measurement, including von Neumann's and London and Bauer' 8
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classic treatments, adopt it as & goal. A derivation of it typically
counts not only as a general explanation of measurement but also &as 8 dem-
onstration of the internal consistency of quantum theory. We now see that
this point of view must be rejected, for the transformation entails an
absurd corollary, viz., that simultaneous measurements of noncommuting .
observebles are impossible. Hence the transformation E’_’ %I(‘(K,Z/?) A

cannot be upheld as a defining attribute of the quantum emasurement process.

11. Inadequacy of the Correlation Assumption

An interesting consequence of the measurement transformation is the
stringent condition it places on a,-measurements performed upon a pure
ensemble with state vector O, i.e., measurements certain to yleld @, .
According to that transformation, such an ensemble is left unaltered by

. = A Q —_ - — P
measurement: if e-— aﬂ_, e__.% 6—& WBW, — *‘K?ﬁk S—kn"’ s
Consider sgain the general schema of section 6, where measurement was
depicted as an interaction between system _S_ and apperatus M_ . Let the
states of § and __M_ be qkandj(o at the beginning of the a-measurement
interaction. This dynamical process is represented generally by
K(%@Xb) — 9(0(%,’0)4)) ; but, since 9%51(0) must be the

'-Rth eigenvector of A (1] _1_ 5 1t follows that (e , %, ) —

% ®y(¥ﬂ)%o> . We have therefore proved the following theorem:

the correlation assumption, 7;(&«_@ %;) = % ® 7(@’9& )64) D

is a necessary condition for the measurement transformation.

i 1/»:—.%(4’9%2},> Olae, is the initial state of S , the

correlation assumption becomes

T (@ %e) =Z K0, > 24 @ X (e, %),

from which the post-measurement density operator 6 for the S -ensemble

is easily calculated. Let {36 be a complete orthonormal set in '5,?2. .
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The desired density operator is then given by
A

C =T %<“’wﬁ>%@%¢ 5 W= K (e, % ):
b =2 <3, | <ai,8> 0 @2> <<% 4>%@%] £ >

=Z LW, ¥><Y%q, > > | <K< 5>

= Z e B (Z <30 Ko DF)
LoV > <306 > > <P | K K, X, %

The factor in parentheses is unity since ¢ (%byo) is normalized; the
correlation assumption would therefore have the measurement transformation
as a consequence 1f the *K 75 ,é summaetion vanished. To 'eliminate the

cross terms it is adequate to require orthogonality of the M -states

——

ﬁ((q/%aq( a) which are correlated to different ___S_ -states A% . The

theory of measurement outlined in section 6 employed the even stronger
statement that S %(A’.& 37(0)3:2%? » elgenvectors of an observable
belonging to _M_ » Which is physically an essential requirement since with-
out it M could not play the role of an a -meter, Thug the correlation
assumption in the form —E(&Y_R @%&:q&@ﬂ&;{'fnz an orthogonal set,
is sufficient to derive the measurement transformation.

Combining this with the preceding theorem, we now see that the corre-
lation assumption is necessary and sufficient for, hence equivalent to, the
measurement transformation. Our recurrent question concerning the univer-
sal valldity of the measurement transformation may therefore be rephrased
as follows: does the correlation assumption describe a necessary attribute
of quantum measurement? This version will shortly become the center of

attention.

Incidentally, this efi:ctive equivalence of —];(QI-QQ@;(O):%@%’Q
and g-—} % j<ﬁ’9¢_, 2/«>’ @ enables the deduction of Pk as a

consequence of the measurement transformation, which seemed only plausible

until now. (The converse was proved in section 8.) To prove this, note
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that E(’% @ %a)_": %<q/‘9¢; '4'> a'/&@’a?z_ is supposed to

describe the a-measurement procedure in the sense that a é-measurement

on M is sufficient to predict with certainty what a concurrent a ~meas-

urement on S would have given. The certainty of the prediction is assured

by the correlated form of _5_:& Q/%>2A>% @ 'D:& which accords

'zero probability to pairs of measurement results C&lno Cm), if n -7-4 m,

This certain prediction is then called the result of an a-measurement at
the instant _S_ and M begaﬁ to interact. Consider now the §_ -subensemble
defined by the fact that a-measurements all "yielded" a* in the sense

Just explained. It follows that after the measurement interaction such a

subensemble would yield a’k with certainty if subjected to a-measurement,

hence must be assigned density operator Eiit o Within the standard frame-
work of measurement theory as outlined in section 6, we have therefore
established the equivalence of the projection postulate, the measurement
transformation, and the correlation assumption.

As in the case of the measurement transformation, there are‘severe
theoretical difficulties inherent in the correlation assumption, First,
it defies generalization to simultaneous measurements of arbitrary observ-
ables, as we have shown elsewhere¥49 Second, there is an interesting
theorem about the correlation assumption which proves that such correlation

cannot be a universal attribute of measurement because it requires an

extremely rare type of physical interaction. A special case was first dis-

covered by Wignel‘fl Nla.ter Araki and Yanaseméave & general proof, including
even the possibility of degenerate eiéenvectors in the correlation assump-
tion. However, the essential structure of the theorem may be understood

without the latter refinement.
The major point is that virtually every physical interaction displays

some kind of symmetry, with a conservation law as its dynamical consequence,



5k

In particular, it would be completely unreasonable to claim that no mea-

surement interaction could have a conserved observable. Accordingly, let

L.= L'® j_ + i & L__z be conserved relative to the correlation
process, 7;(% ®%°>—_—;Q/n® /f”\‘ . If L is not explicitly time

dependent, this means that E—,;: L]=0. The Wigner-Arski-Yanase theorem
may be stated as follows (omitting degeneracies):

WAY Th: If (1) 7;(0(,\® %OD—_;_-% @’fn‘ S <7$£3 T =8’M>
end (2) there exists | = L,@j_ +4®L, such that [T5,L]=C
wen [L,,A]=0.

The system observable a/ » which is being measured, must commute with
every conserved observable! For later reference, the essentials of the
proof will now be reviewed; however, to clarify the range of applicebility
of the theorem, we shall teke a slightly generalized form of the correla-
tion assumption, viz., 7;<q/n® :(a)"—‘- @,\_ ®?;: ;» which opens the
possibility thet measurement might leave a system initielly in eigenstate
06,‘ in 'a different state @n-

Outline of the proof: '

VL@ X, | L [an @K, > = <7;[°(n® %a), 7;[. (‘\/n\@yo)>
='-<<TA (oranz), LT e, 0%,)> =< 627 LIg.o7>
= én_a ] m><7?\.922> +<L B, m><’f; LT

@<, @] L )OE Ox, > = <ege, L, Nf;(%o %> S

- By Xy > LKy, Lo %>,

From (1) and (2) is obtained an expression for the matrix elements of

in the A-representation:

B, , L, e > =< 8, L §m> oum T LBy B> <R, L T >
- Sn.m. <%>: L-‘L?(O>'

Now, to prove that EL,’AJS“-O » it is sufficient to demonstrate

that L, commutes with the spectral projectors of A, i,e., with all the g{.

T
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Thus we must show that <0(r\.,6&)_| CVrr\> end (04._:) L, B‘K«m’>

are equal, for every k, n;, m,

(%) <X g B& L_! A/m> = g-@gy\_. <a(,m., 5 !..; Q/NB.

~rre g

O, L) b 06, > = Sim <ot Ly >

L) —
Subtract (3) ffm (W) 286, gn:.‘ﬁ]%>—<%> L 1%m>(Soan = Saem),
Clearly if W —m)<or,‘,[5mz_,]4¢” =0, For' s m.,note from (3) that

<"4\., LS =<€ng(§m><@;\uz-17,\,, > s A Zm,

In the original form of the correlation assumption, gn:.—. C\/,Hhence
<€u3 €m> == (0, n # m, and the theorem is proved,

For the generalized form, however, the theorem can be valid only if an

additional restriction is made which leads to 4@"” €m> <m LzT >=_0
) m 3

n 7! m, Oxrthogonality of the 5_ '\3 is obviously the most natural assump-
tion to mske, and that can be assured if ié's is regarded as the eigen-

vector set for some observable,

Hoir is the WAY theorem to be interpreted? What is its impact on the
standard theory of measurement? Strangely énoﬁgh, its authors have been
remarkably conservative in thei.r assessments of its significance by has-
tening to prove that, although the correlation assumption is rigorously

untensble, it can nevertheless be approximately validl/:/’q‘%hus Yanaseq’gegards

the theorem as a basls for classifying observables: (1) measurable (those

which commute'with all conserved quantities), (2) a.ppro:kimately measuraeble

(those which do not), and (3) unmeasurable (those conjugate to an observ-
able belonging to a superselection rule).” In connection with the postu-
late Pl(cf.fm:,p.T),3 may be expressed in another way: operators which
do not commute witi: 'Ehose belonging to superselection rules do not corre-
spond to observebles. This seems preferable to associating them with
"unmeasurable observebles”.

- ‘Moreover, we cannot accept the premise which evidently underlies
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Yanase's first and second classes, viz., the proposition that the correla-
tion essumption is still the "correct" theoretical definition of meassure-
ment even though that assumption is demonstrably false in almost all cases.
Rather than meintein the Copenhegen-inspired belief that the essence of all
true measurement is embodied in the correlation assumption (or equivalently,
the measurement transformetion or projection postulate), why not accept

the full logical force of the WAY theorem? That theorem simply proves

that the standard theory of measurement, i.e.; the one created by von

Neumann and reported by London and Bsuer and others, 1s wrong; the corre-

~lation assumption central to that theory does not define the term measure-

ment in general. The theory probably does of course apply to some meas-
urement processes, but it certainly does not apply to all. To contrast
Yenase's interpretation of the WAY theorem with thet given here, consider
an operator A which does not commute with all the operators conserved
relative to any interaction compatible with the correlation assumption,
Yanase would say that the observable Cz,is only approximstely measurable

in principle; we claim that all observables are measurable (exactly) in

rinciple, and that no theorem could possibly refute this elementary con-
nection between the constructs observeble and meassurement. What the WAY
theorem does affirm is a conclusion which foregoing sections have strongly
suggested: the correlation assumption and equivalent statements do not
express a defining attribute of the term measurement.

Let us now briefly recapitulate the mejor developments and conclusions
thus far. We are engaged of course in a study of the nature and meaning of
the concepts measurement and preparation in quantum theory, Having Observed
that the von Neumenn transformstion }é?~+> :;2;;1<@#@1°%P;>r1£%z1 plays
e central role in virtually all descriptions of the quantal measurement

process, we have sought in vain to justify its adoption as & necessary
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property of measurement. This search led to the influential Copenhagen
interpretation of measurement, which was therefore subjected to intense
scrutiny, but with the result that no palatable explenation was to be

found there. A temporary shift in attention from the measurement transfor-
mation to the essentially equivalent projection "postulate" also bore no
fruit. In section 10, however, we exposed a hidden consequence of the
measurement trensformation which entails a strong theoretical argument
egeinst 1ts universal validity; thus a demaging lacuna was revealed in the
standard form of quantum measurement theory in connection with its exten-
sibility to simulteneous measurements. Finally, the present section intro-
duced another equivalent formulation of our basic question in terms of the
correlation assumption., The WAY'theorem was then invoked to demonstrate
the inadequacy of that assumption as a universal description of quantum
measurement. We therefore conclude that the standard theory of measure-
ment, which is an outgrowth of the Copenhagen interpretation, is not of
genersl validity, i.e., it is not really the quantum theory of measurement
at all but at best a description of a relatively small class of possible

measurement processes,

12, Alternate Correlation Schemes

In one of the earliest treatments of quantum measurement theory,
Paulfﬂtecognized that not all measurement processes could be subsumed under
the same correlation assu,mption,l 72(/)(%&@?(0) = a/%@ f% . Those
thet did fit this pattern were termed measurements of the first kind;
their basic property was taken to be that the initial state of the system
was also its post-measurement state. Pauli apparently reasoned that other
measurements always involved a change in (pure) state from %( to @‘R »

for he defined only this one additional class, measurements of the second
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),
kind: 7;(2@\/‘% ® j{o);—_ @R@ 7% ; f&g is taken to be the eigen-

vector set ‘for some observable.

Supposedly the Franck-Hertz determination of atomic energy levels
exemplifies the second kind of measurement; however, this is quite impos-
sible unless that experiment is described in the subjective Copenhsagen
language complete with wave packet reduction,*

As proof of this minor point and as an iﬁporta;r_t eXxemple of a real
measurement process, the basic quantum mechanics of the Franck-Hertz
energy measurements will now be reviewed. It is assumed that the projec-
tile electron is initially in energy eigenstate 7(0 and the target atom in
(unknown) energy eigenstate 4/% . The purpose of the measurement procedure
is to find k. When worked out, the collision process has this dynamical
representation: 7;(4&& j(o) — = &f) 2 ® /02\ » where
f 22 is Just a different ordering of the energy eigepstates fq/_ng » and
5’025 is the set of energy eigenstates of the scattered electron. (In
this highly schematized discussion, no effort is made to distinguish sums
and integrals, or discrete and continuous indices.). The sum of energy
eigenvalues belonging to each correlated eigenvector pair ee X @2\ is
equal to that for the initial state Q/PQ@’XO 5 this is Just energy
conservation in a quantal context,**

Thus if the energy spectrum o;é‘.the atom is known, and an energy meas-

urement 1s performed on the scattered electron, it i1s possible to predict

*Pauli himself did accept wave packet reduction, hence was not forced
to flgfine his second kind of measurement solely by an evolution operator

« Nevertheless, the name Pauli is occasionally attached, as above,to
7;“3, although that operator is not to be found in his work. The present

“eritique thus refers to 7;(3", but not to Pauli.

”

**Incidentally, all quantum conservation laws are similarly derivable.
Occasionally one sees the erroneous contentiorf™that quantum theory implies
only that mean values are conserved, and thus needs an extra postulate to
account for conservation in elementary scattering processes.
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with certainty the potential result of a concurrent energy measurement on

the atom, The initial state Q_/e{ is then inferred from the conservation

law, and its eigenvalue is declared the result of this energy measurement.

As explained in detail in section 8, Copenhagen theorists would now say

¢ that the measurement of the scattered electron has revealed which of sev-

eral possible "trensitions" from state % has actually occurred, and the

(%)
wave packet %o{ g 6& @ '32\ is accordingly reduced to &@’f ,

Only with this unwarranted interpretation can the Franck-Hertz experiment

be said to illustrate sc-called measurements of the second kind. (Even

@ ()
: then, we must write E—CQ/_R@ %o) — 0!2 £® 'b%_% 6‘,&@ —D/@\Q
] where the arrow denotes a mental process. At any rate, even if there are

7/(2)
measurements which do satisfy the condition, Iz (Q/_RQ 7(0 )_____ &@ 'b?'; S

E@kg orthogonal, the WAY theorem, as we noted in the last section, is
applicéble to them. Hence, the so-called Pauli classifications are far
from complete. In fact, as we have seen in the Franck-Hertz case, they do
not even include measurements by inelastic scattering, perhaps the most
common experiment in modern physics.

There is, however, a variant of the correlation assumption which the
WAY theorem does not rule out, From the proof given in section 11, it is
clear that if E&Sis not an orthogonal set, nothing can be said egainst
a modified cofrelation assumption of this form:

7; (A’_'(@ ,‘(o) = é?ﬁé @7& 5 g@«% not nécessarily an orthogonal set,
In fact, this version is central to the quentum measurement theory presented
by Lendau and Lifshitzg-‘ but, like Pauli's correlation, it cannot be upheld
as a general condition on measurement, inelastic scattering being once
again a good counterexample.

The foregoing sequence of proposed correlstion assumptions almost

suggesis that we are gradually approaching a "correct" one upon which a

o
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comprehensive quantum theory of measurement will be founded. Thus Pauli's
first kind wes a special case of his second kind; and the latter, a spe-
cial case of the Landau and 'Lifshitz correlation. We might therefore con-
Jecture that the proper all embracing assumption should have some vague
form like K(q/%® %0> — 4«0 E for example, which has the merit
of including every correlation discussed in this section, including the
Franck-Hertz case. Still anothaer scheme has been proposed by Durandfywho
almost succeeded in giving a general description of the measurement process
bj correlating A-eigenvectors to mean values of a quasi-classical observ-
able associated with M ; but that theory turned out to be applicable only
to the so-called selective measurements (idealized énalogues of the Stern-
Gerlach experiment). However, we shall finally sbandon this quest for an
elusive ultimate correlation assumption, for it is actually quite point-
less; as will be explained later, even if a sufficiently general, or

vegue, correlation were discovered, it could not possibly serve as a defi-

nition of the term measurement as used in the quantum axioms.

13. The Apparatus as a "Classical" System

When Schrodinger offered his "burleske"4gﬁantum description of a cat
in a box, he illustrated a point which many quantum theorists have taken
seriously in connection with measurement theory. Schrodinger's cat is
incarcerated in a chamber containing a few radioasctive atoms and some
equipment. The only interaction between cat and atoms occurs when an atom
disintegrates, but that rare evént will trigger some lethal machinery, A
geiger counter responds to the decay by setting into operation a hammer
which shatters a flask of cyanide. Thus the interaction correlates the
possible states of the atoms with the "alive" and "dead" states of the cat,

Congider now a quantum theoretical description of the composite system
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consisting initially of the cat and one unstsble atom. The cat-observable
of interest is the proposition, "it 1s alive", with two eigenvalues, 1 (yes)
end O (no), to which belong eigenstates & and S » respectively. For the
atom, let CP denote its initial unsteble state and & its possible stable
state. At first, the composite system is in the state ?ﬂ/ﬂg}::é{éa49;
as time progresses, ?71’ develops into QLM):__—_ C, (;/.)4/@% - g(/_)gwgg
which indicates the correlation between the two systems,

Reluctance to accept this as an adequate description of what has hap-
pened in the box stems from the unfortunate literal interpretation of the

phrase "a system in state ?Z*", which we have criticized repeatedly. Thus

it is said#ihat in actuallity the state of a cat is never a blurred super-

position of "living" and "dead" eigenstates, but is at all times one or
the other, though which one might be unknown. To express this ignorance
(recall the Copenhagen interpretation), a mixture is required. Even
though we contend that this demand arises from a misinterpretation of 1¥L,
nevertheless it seems at first that this mysterious desire for a mixture
to describe the cat is automatically fulfilled anyhow. Indeed, the mor-
tality statistics for the cat alone are easily calculated and the density
operator is, as a matter of fact, mixed:

O =1cw* B + lear .

Strangely enough, this does not satisfy the obJectors; their demands
are even stronger. Supposedly, it is an a priori truth that a cat-atom
system should be described by the mixed, correlated density operator,

Pt = Jc:,(r)/*)?@ PR ,Ic,tw/“}?m ,
which would refer of course to an imeginary ensemble representing our

ignorance as to which of the two possibilities actually obtained. Unfor-

tunately, the temporal evolution,

Ros == 1l gy + IR,
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is absolutely impossible within the dynamical scheme of quantum theory,
unless the composite system interacts with another system. However, it is
pointless to multiply the nuuber of systems, for at each state the same
objections would arise, together with the same demand that an impossible
total density operator i1s the "correct" one. Nor would it help to assume,
as in Heisenberg's theory of measurement, that the cat-atom system, to be
observed at all, must be immersed in an environment (Heisenberg's "exter-
nal world") described by a mixture, say (7==: :;ééJAQé F%ht . It is true
that the new total system--cat, atom, and surroundings-~-would then be in

& mixed state at time t; but note closely its form (immedistely derivsble

from the linearity of quantum dynamics):’
Ree O Z 0 g = =i Rppmm
—> FZ e [c*% 09 B(5dnT) + s ®08 (3.9m 1)
Every component of the resultant mixture has & "blurred" cat in it!
Schrodinger's cat is of course s metaphor; what it represents is the
notion of classical system, about which there are naturally many precon-
ceptions. Chief among these is the cherished belief that a classical sys-
tem connot take part in statistical considerations which include the so-
called "interference" of probabilities which occurs for quantum states. A
classical system always possesses a definite value for every classical
Observable, although there masy be ignorance as to which value; but if so,
the associated probebilities do not "interfere". One might ask: why so
much interest in prequantum idess? After all, there is no such thing as &
classical system, except in a sbeéial limiting case of quantum theory.
Besides, as already suggested, the cat paradox is based on thg unwarranted
association of %f’with a single cat-atom system in en almost oécult sense,
Thus a superposition of two eigenstates for a classical system is regarded

as a kind of unreal, smeared representation which does not recognize that
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at all times such systems possess either one eigenvalue or the other. We
have already granted in section 4 that in the quantum framework, observ-
ables are not possessed; but it is a gross distortion to say that a super-
position of eigenstates represents anything "blurred". Consider sgain the
two density operators for the cat-atom system:

me=F,¢=ca@d+c,s06

2 2
@ 0 =P P...
ICi] ,,(@Cp‘f"lca/ SO0
The physicel meaning of (1) is Just this: in an ensemble of cat-atom
2
systems examined at time t, the fraction ’Cth), of the systems will dis-
N2

pley & live cat (and unchanged atom); the fraction [Cp(#)/” will exhibit =

dead one (and radioactive decay products). Moxreover, (2) means exactly

the same thing so far as the observables in question are concerned, As

has already been discussed at length, it is improper to regard pure states
as referring to single systems and mixed states to imaginary ensembles
expressing ignorance, Every density operator, pure or mixed, has the same
referent--an ensemble,

This 1s not to say that (1) and (2) are identical; in principle,
there exist observables whose measurement statistics are different in the
two cases; hence the only scientific way to show that (2) is prefereble to
(1) would be to study empirical measurement results for such an observeble,
In the absence of such evidence, there is no reason to prefer (2) to (1)
provided quantum theory is understood, not in the Copenhagen interpreta-
tion, but rather as outlined in sections 2-5, To insist that a composite
system which is partly “classical" cannot be in a superposition of eigen-
states is therefore quite dogmatic.

Nevertheless, many theories of measurement differ from the standard

one given in section 6 by imposing the additional requirement upon
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that it be clessicel.* As & result, much effort is expended in formulating
reesons for replacing the inevitable post-measurement pure state of S + M_
by a mixture. For Pauli measurements of the first kind, this means that

the expression, 7147_—(3" @ %o) =%—<«-€( 5#‘> 0(0( @ m s has

to be reconciled somehow with the "real, classical" post-measurement den-

sity operator, which is taken to be the incoherent superposition,

é‘—;%\@’g,'l}% E/VQ@’@ . (The § -ensemble itself still undergoes

A
the von Neumenn meassurement transformation, 1?'1, — 7}2‘ é

2 —_— 2,
=5 <G| Z K, i 60 = 2 1< u>F 2,
Just as in the stendard theory.) Similar conversions to mixtures sup-
posedly "should" accompany any other correlation scheme usable for messure-

ment, owing to this supposed "classical" nature of M . Thus the Landau

_’—
and LifshitZ correlation, -7/; ( ;L I, a{a) = %<‘\/-ee.,¢>€k @ﬁ 3
A 2
would be supplanted by g.—.—-_ % < Y >l 19
123 I %! b €.«' @ ’f ¢

The means employed to achieve this goal are often interesting, even
though the end itself is of dubious value. For example, Landau and Lif-

(2]
shitzgdefine "classical"” as follows: "The classical nature of the appara-
tus appears in the fact that at any given instant, we can say with cer-
tainty thet it is in one of the known states" ’{yl Then, applying this
criterion to the expression,

T, (3 ®%,) =2, <%, P> 6 ® T,

they deduce that "the state of the system [ _S_+ M_ j after the measurement
will in actual fact be described, not by the entire sum, but by only the
term which corresponds to the E.ppa.ratus 'reading' C':]", It is remarkable

thaet earlier in the same book, these authors assert that "it must be most

*¥Obviously, in this version of measurement theory, _M_ includes the
mecroscopic laboratory equipment which the physicist ultimately "measures”
by direct perception; thus in the Franck-Hertz experiment, M_ cannot be
Just the probing electron but must incorporate the complex devices with
which the experimenter detects it and measures its energy.

—— .
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decidely emphasized that we are here not discussing a process of measure-
ment in which the physicist-observer takes part"fvthus, like all Russian
physicists, they reject at the outset the subjective tendencies of the
Copenhagen orthodoxy. Yet their theory of measurement involves wave pack-
et reduction! It is true that the reduction appears to follow from an
objective principle, the requirement that T&;Z¢»éajk;;>'be an eigenvector
of C; but thir 1s mathematicelly absurd. —Z;—Cﬂaéajz;> is a unique vector,
It cannot be "in actual fact" different eigenvectors of C in different
occurrences of the measurement process it represents. Apparently what
Landeu and Lifshitz have done is to postulate implicitly s second kind of
state change, an objective wave packet reduction* which occurs under con-
ditions which would be identified as a measuremeﬁt situation by an alert
physicist who happened to be present. Nevertheless, their theory, like
that of Blochintsev (section 8), is in effect equivalent to the Copenhagen
version in its physical meaning and is therefore subject to the critique
given in section 8, %%

Another method-éf Justifying replacement of the pure state by a mix-
ture is to define some sense in which the two are equivalent; the defini-
tion would also serve to identify the "classical" level within a quantal
context, But in what sense can two unequal density operators, én and e(zf
be physically "equivalent"? Clearly they are distinguisheble only by com-

) ' () (2)
parison of the measurement statistics they entail. Thus () and f) are

*It might seem that if were in a mixed state, a sort of "determi-
nistic wave packet reduction” could be derived, with different "reductions"
corresponding to interactions with the various components of the.ﬁi -mixture,
Thus "ignorance" of M would be blamed for the probabilistic character of
quantum predictions.” That this is impossible, at leag} for Pauli measure-

ments of the first kind, has been shown by von Neumannsz1gner§5and Komars:

**The "proJection postulate" of Landau and Lifshitz is somewhat gen-
eralized, but the principle is uncheanged.
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are certainly equivalent if, for every A, 77‘( (UA) = 77‘ (((Q)A) 3

in fact this is true in the extreme case when W Pm If, on the other

hand, only a restricted set of operators, 4/, = SAQQ s 18 considered,

i) I )}
\Uid

e and “‘will be indistinguishable relative to V4 -measurements, pro-

vided ’)Tf( e(/)A_k>== W(E(QA.R)D for every AK in the set % ’

M), A
This concept, which we shall call ‘A -equivalence and denote by (o ’fd )

is occasionally used to secure the desired post-measurement mixture,
For definiteness, consider Pauli measurements of the first kind; the
problem of measurement, for theorists worried sbout the "classical" aspect

of M 5 1s now reduced to the following: find & meaningful restriction to

) () o)
plece on lA such that ,‘\A; » Where (0 = PZ<%9¢>%{@ Ta 5

l
“= = <4 o<
= ) 2/¢>I P . The observebles corresponding
¢ = 2 *%® T
to operators in ere then called the "classical" ones, i.e., those directly

epprehended by the laboratory physicist, who cannot therefore distinguish
gy)from (ag Exemples of quantum measurement theories in which qu-equiv-
alence plays this role are those of Feyerdbendfshhkitéfzand Jaucﬁg?but
these are motivated more or less by an understanding of basic quantum
theory in which Schradinger's cat allegory is a paradox. We have already
considered this position and dismissed it as an unfortunate byproduct of
the Copenhasgen interpretation,

However, such investigations do have merit as checks on the universal
applicability of quantum theory, In this sense, they have little to do
with messurement theory but fall rather into the realm of the correspond-
ence, or "classical-limit", pfoblem. It is reassuring to know, for example,
that the quantal enalysis of an interaction between a cosmic rey and a
billiard bell will not yield predictions sbout the latter which are observ-
ably falge by classicael experiments. Whether the intersction has . anything

to do with measurement is irrelevant. Leboratory apparatus accounts for a

k—_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r
7,
]
hr
N

i)
]
4
s
‘]
Ai'

o

b
!
'\,L

67

reletively small segment of the vast domein of "classical" obJects.

N (2)
In the measurement case, as already mentioned, both and g imply

that M_ is in the semme mixed state: p 7’ PW —_ q’f\ ,0
Z , <4/~91',¢‘>/ f/ '94 . Hence, relative tOM -observables, there

:Ls no difference between él and 6 If the operator C is taken to repre-
sent "meter readings”, a classical observeble, then e certainly does not
suggest that these readings "interfere" with each other in any way which

could contradict classical observations of pointers. In fact, if the only

observeble classicsally measured on M_ were its "pointer position" s then
i1ts measurement étatistics could Jjust as well be represented by the super-
position ZL—_—:%<‘VQ_O#‘> ’f_& 3 since @r@/ R ; even this would
not contradict classical experience! We shall return in the next section
to this question of the significance of the concept "classical" in quantum
physics.,

The main point of the present section has been Just this: the fact
that M_ is in some sense "classical does not imply that in all measure-
ment processes a density operator like emzlust be the "actual" result.

That assumption far transcends the authority of classical physics in its
role as a limiting case of quantum theory, and it even leads ultimately to
strictures on the cbservability of those operators falling outside the pre-
ferred tA -equivalence class. Such arbitrary restrictions on the form of
e are merely intuited along the lines of the Schrodinger cat "paradox",
end do not relate to genuine "classical experience; they are drawn instesad

from unjustified extensions of classical rules, extrapolations apparently

motivated by the Copenhagen interpretation.

1k, On the Proper Role of the Concept "Classicael" in Quantum Physics

In discourses on complementarity, Bohr repeatedly insisted that clas-

sical description plays a role in quantum theory which is unavoideble and
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of fundamental significance. His often quoted declaration, ".,.however

far the phenomens transcend the scope of classical physical explanation,

the account of all evidence must be expressed in classical terms", Las

been echoed again and sgain. Heisenberg, for example, notes that the
language of the laboratory employs the concepts of classical physics, and
then asserts that "we cannot and should not replace these concepts by any
others“fﬁqsuch remarks go far beyond the milder and more ressonable asymp-
totic requirement that no quantal prediction concerning classically describ-
gble "macroscopic experience" should contradict valid classical prediction,
Strictly, of course, there is always theoretical contradiction in the sense
that quantal and classicsal constructs are quite different*; the correspond-
ence principle can require only empirical egreement. Thié, however, is
not the point stressed in the foregoing quotations.

The concept "classical" is there given a more basic status in quantum
theory; Landau and Lifshitz characterize its double role as follows:
" quantum mechanics contains classical mechanics as a limiting case, yet
at the same time it requires this limiting case for its own formulation."63
Undoubtedly, it is the latter belief which underlies attempts to construct
measurement theories of the type discussed in the preceding section, wherein
consideration of the "classical" nature of apparatus is regarded as essential.

Are we logically forced to accept the claim that classical physics is
the cornerstone of quantum theory? Must the language of the laboratory be
clessical? To answer the first qﬁestion, contrast the correspondence pos-
tulate (Ei) as presented in seétion 2 with the following popular formulation
which does make clessical mechanics appear to be the basis of quantum
mechanics:

Pla: The observsbles q (position) and p (momentum) correspond to

0 /
*This point has been discussed at length by Bohmé; Feyerabendf and Hanson‘;z

-
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operators Q, P which satisfy [Q) P]:.—,,jj Any observable

C;L, whose state function in classical mechanics is C:Z.( 5 /)

corresponds to a Hermitean operator of the form A = d/ S P)'
Note that the very concept of observable is here construed to be basic-

ally classical; quantal representatives of observables are generated from

%
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their clessicel analogues. However, the effectiveness of this procedure

(which, incidentally, is not always logically consistent) is obviously

' limited by the fact that quantum theory considers observebles for which no
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clessical analogue is imeginable. Nevertheless, quantum field theory, for
example, is often introduced "heuristically" or "inductively" by general-
izing Pla to an unconvincing method called "quantization". The concept of

quantum field is then induced from a bizarre analysis of classical contin-

uum mechanics in which field strengths become, upon "quantization", non-

commuting field operators.

Actuelly, Pla and its generalizations are not required at all among
the basic principles of quantum theory. The notion that classicsal physics
is the foundation of quantum physics has an evident historical origin, but
is of no logical value. Both theories have the same epistemological status
as verified connections among their constructs, which are related in well
defined ways to the given, the data of empirical experience. However, for

historical reasons and because quantal and classical accounts must be

empirically compatible within the classical sphere of interest, many quantal
rules of correspondence sppear to be based on classical physics. Bergmanﬁé4
made much of this in his "logic of quanta". Nevertheless, this is essen-
tially a backward-looking position; the classical world view, properly

understood, is not self-evident, nor is it forced upon us by percepts,

Like quentum theory, its logical genesis was an act of scientific creativ-

ﬁ ity, or comstruction. Thus it seems prefereble to formulate the correspondence
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postulate (Fl1) as in section 2, a statement which recognizes no logical
dependence of quantum theory upon classicel physics. The "quantization"
process (Pla) is then diminished to its correct status as a mnemonic device
sometimes useful to classically trained physicists,

As for the second question, from the same philosophic perspective, it
is clear that classical physics need not and perhaps ultimately should not
be the standard mode of experiment description. The reasonsble assertion
that laeboratory procedures be reported in communicable, "common-sense"
langusge simply does not imply what Bohr and Heisenberg suggest, viz,, that
whatever experimental operations are performed must be described clessic-
ally. Consider, for example, the complex of sensations which we categorize
as the "motion of a Maxwell top" (an antique device seemingly as "classical"
as anything could ever be). The primitive datal percepts involved are

certainly neither classical nor quantal; moreover, these terms are not

necessarily applicable to the empirical constructs used to describe and
quantify observations and results of operations on the top. Only the far
more abstract constructs and their interconnections which comprise the
physical theory created to explain these empirical observations can be-
reasonably called classical or quantal. However, when a given theory is
well entrenched, this "epistemological depth" of its constructs is for-
gotten in practice, and experiments come to be described in sbstract terms
provided by the theory itself. In the case of Maxwell's top, an empirical
fact of interest is the variastion in wobbling patterns which accompanies
adjustments of the screws on fhe sides of the top; but a complete report
of this observation is communicable without the sophisticated concepts of
any physical theory, although such a description would be cumbersome and
verbose indeed. But since classical mechanics provides the established

theory of the top, the changing patterns of its motion occasioned by screw
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adjustments may well be described in terms of "observations of the depend-
ence of angular velocity upon the inertia tensor"--a truly "classical"
leboratory language. Hence familiarity with a successful theory (classical
mechanics) has created the illusion that its profound constructs are
directly perceptible or self-evident; i.e., the “classicél" leboratory
language comes to be regarded as necessary, an unfortunate epistemological
misteke. After all, quantum theory, too, can fully explain the observed
wobblings of the top; and it could even provide a "quantal" laboratory
language, familiarity with which>can, and perhaps some day will, lead to
its adoption as the "necessary" vernacular of common sense description,
We therefore reject the principle that the perceived world is somehow
inherently "classical" and that the quantum theory of messurement must
have a "classical" aspect.
One of the trends in this kind of measurement theory was examined in
{{ the preceding section. The approach reviewed there was rather formel, the
: method being to "define away" allegedly undesirable interference terms,
Another way to secure the desired "classical" aspect is associated with
the names Jordan?ghd Ludwigfewho advocate thermodynamic analysis of the
measuring apparatus., (In a similar vein, Wignefagas suggested that the WAY
theorem proveslﬁ? cannot be microscopic, hence its macroscopic character
must be considered in the theory of measurement. ) However, again the under-
lying purpose is apparently to derive the von Neumsnn megsurement trans-
formation, which is, as we have seen before, the recurrent goal of most
measurement theories, An elaﬁorate attempt along these lines due to
Daneri, Prosperi, and Loingeréshas been endorsed by Rosenfeldfqan out-
spoken apologist for Copenhagen ideas (Bohr's in particular). In their
theory, the measurement transformation is derived by expressing the "clas-

sical” neture of apparatus in terms of ergodicity conditions and defining

T TP AT L T e Y e
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macro-observables to be temporal averages of quental observables. It is
then shown that the quantal dynemics of § + M__ , if supplemented by
these conditions, effectively yields the measurement transformation and
explains the registration of a permanent "resding" in Dﬂ . According to
Rosenfeldfq"ihe main purpose of the analysis of meaéurement is to exhibit
the physical process to which this formasl 'reduction' [}he measurement
transformatioé] corresponds’, and this Deneri-Prosperi-Loinger theory
fulfills that requirement,

Probably such a demonstration does offer an approximate explanation
of some actual measurement schemes; but as we have already observed, its
basic structure is the derivation of an unnecessary, even rare, property
(the measurement transformation) from an erroneous metaphysical belief
(that apparatus is inherently "classical"™). Clearly this approach can no
more claim to be the quantum theory of measurement than could the varia-

tions of the standard theory considered esrlier.

15. Infinite Regression

Thoughtful analysis of the standard theory of quantum measurement, or
any of its variations, leads most theorists to recognize an interesting
basic property of the usual approach. This property, sometimes called

infinite regression, is received with varying degrees of enthusiasm depend-

ing on the metaphysical outlook of the critic. The essence of infinite
regression is contained in this question: what performs the measurement
upon fVl? Ordinary measuremeht theory can only reply that a second apparg-
tus _M_n must interact with M in the same manner _M_ interacts with §_ ’
l.e,;, with the effect that a measurement performed upon Cj,permits certain
prediction of what a concurrent measurement on Aﬂ would have yielded.

Obviously, this suggests inquiry as to what makes messurements on f%h, and
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80 on gg infinitum,

In his original formulation of standard quantum measurement theory,
von Neumann did not regard infinite regression as an undesirsble attribute,
but rather as a necessary characteristic expressing in mathematical terms
the notion of psycho-physicel parallelism. This idea derives from the
elementary principle that all empirical observations must ultimately be
regarded as perceived by the mind; the perception itself is an utterly
primitive awareness of the given, a process intrinsically irreducible to
scientific law. Thus, in every application of the scientific method, at
some stage there must be statements to the effect that en observer simply
observed some datum, and this will be true no matter how far into his
brain the scientific analysis penetrates. Consider, for example, a meas-
urement aspparatus which registers its result as a pointer reading. It is
most practical to terminate the analysis of this measurement act by saying
that the observer observes the position of the needle, However, it is
possible to go much further; for example, suppose the observation is made
visually. An electrodynamic treatment of the relevant intersctions among
pointer, light, and eye can be involed to explain the formation of = retinal
image of the needle and scale; but if this work is carried out in hopes
of explaining away the observer, the effort is wasted. Instead of saying
é} ' the observer observed the needle, we can now say that he observed. the reti-
?é nel imege of it, but the necessity of the observing consciousness itself
s is as strong as before. It should be clear that no study of the optic
nerve or even of electrical ﬁroperties of the brain could possibly termi-
nate otherwise than in a statement that the observer becomes aware of the
needle position, or perhaps that this awareness occurs simultaneously with
some electrical effect in his brain, which would meen that a neurophysiol-

ogist studylng the observer's brain would observe, sayya certain

K
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electroencephalogram pattern concurrently with the observer's announcement
of the needle observation.

The primacy of the conscious mind in all scientific endeavor has the
character of a general philosophic truth, and it is unfortunate that this
lofty point was ever dregged down even as close to practical physics as
quentum measurement theory. There the felse impression has arisen that
physics, or at least quantum physics, possesses an undesirsble subjective
element which must be reckoned with somehow.

In attempting to methematize the subjectivistic excesses of some
Copenhagen pronouncements, von Neumann therefore proposed two distinct
processes, motion (P3) and measurement (P4), the latter representing the
final transition to a.consciousnesa. His motivation for drawing up the
standard theory of measurement was to establish the consistency of P3 and
P4 in the sense that the "cut" between observer and observed which P4
bridges should be arbitrary. Thus, in the standard theory, the same results
obtain for § if M measures _S__ or if _/_\_4, measures § +__M_ » etc.

However, we have seen earlier that this theory cannot reasonsbly be
called the quantum theory of measurement. Are we therefore faced with an

{% unusual subjective feature in quantum theory? The answer is negative, for
in light of the understanding of quantum theory eleborated in foregoing
Eé sections, we deny not just the popular solution to this "quantal mind-
body problem" but the problem itself., The foundations of quantum theory
nowhere exhibit any more or less "subjectivism" than does classical mechean-
ics; both theories, as has aiready been noted in another context, are
easily accomodated by the same epistemological framework. And infinite
regression is as much a property of classical as of quantum theories,
Nevertheless, von Neumann's recognition of that property and his

mathematical enshrinement of it in the projection postulate has sometimes
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induced the belief that quantum theory carries a destructive subjectivis-
tic quality which must be eliminated in order to save objective science,
Jauch, for example, offers this as a reason that Justification must be
found for reﬁiacement of pure states involving apparatus by mixtures (sec-
tion 13); presumsbly, this would halt the regression by inserting a clas-
sical level and therefore closing out the unwanted subjectivism. This
illusion has its roots in the mechanistic philosophy widely held in the
classical epoch of physics, when physical laws were widely regarded as
purely objective "discoveries" totally divested of any metaphysical format
constructed by the physicists themselves, Actually, this tenet was phil-
osophically unacceptablék%ven in the heyday of classical physics; it is
therefore strange that objectivity for quantum theory should be sought by
relating it to classical physics. Both theories are subjective and objec-
tive in exactly the same ways?vand both display the same infinite regres-
sion property. The main point we wish to emphasize here is that this
characteristic is not problematical, does not deprive science of obJectiv.
ity, but rather indicates that objectivity is established within "subjec-
tive" experience.* However, the problem of measurement in quantum physics
in the context of-the present investigation is not of such philosophic
depth as to require further discussion in this vein.
Accordingly, we now dismiss this basic notion of infinite regression

from further consideration, since it darkens more than it illumines the

;? problem at hand, viz., to clarify the meaning of the gquantal terms measure-

ment and preparation. Nevertheless, the logical structure of the infinite

regression analysis does prove to be quite valusble in this connection,

provided the above mentioned efforts to link it to the mind-body problem

*For a further discussion on objectivity in quantum mechanics, cf, H.
Margenau and J. L. Park, Delaware Seminar on the Philosophy of Science III,
' Mario Bunge, Ed., "Springér-Verlag (1967), Ch. B. -
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are forgotten.

Consider sgein the skeletal framework of quantum measurement theory,
according to which an CZ,»measurement on.éi consists of an interaction
with an a -meter M_ (a)which establisbes some correlation between rele-
vant states of éi and Cﬁ . The Cz,-measurement is then carried out by
observing the "reading" of M (a) . Undoubtedly, this account does offer
the correct quantal description of many laboratory procedures; but we now
suggest that it does not deserve the name usually given it--the quantum

theory of measurement. This "theory" cannot be said to explain the con-

cept measurement; indeed, as we shall see below, this theory cannot even

be stated carefully without implicitly using the term measurement itself

several times., In this respect, a quantsal description of & meassurement
brocess differs markedly from its classicel counterpart, which does not
: require the term measurement at all until the final stage when an observer
ff ‘"looks at" the meter. We shall see below that the resultant dichotomy of
meaning for the term measurement in its classical and quantum useges is
trecesble to the respective characters of classical and quantel observ-
ables (section L),

To verify our claim that so-called quantum measurement theory is not
even statable without using the term measurement itself, consider its
essential feature, the establishment of correlations. In classical physics,
where observsbles may be assigned values possessively, cg;félations between
gi and ﬁﬁ refer to these possessed physical quantities independently of
measurement. This scheme, héwever, is inconceivable within the quantal
framework, owing to the essential latency of observebles. No matter what
specific form correlations may take, in quentum theory they are inevitably

nothing but connections among poﬁential measurement results. For example,

the correlation assumption, 7;( %L@ ﬂ(o)—_—.-. -faz<4$p_ R ¢>A/ﬂ & ’ﬁz 5
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strictly implies only this: & simultaneous a -measurement'* on _S_ and

C‘i -measurement ) °B M_ &t the completion of the measurement, interaction
will yleld the pair (@R,Cg) with nonzero probebility only if k=4§¢ .

It is therefore said that the measurement process renders the a,-mea.sure-
ment on S redundant, since g é -measurement on M is sufficient for pre-

diction with certainty as to what the post-measurementa' a-measurement !

would yield. (It is interesting to note further that nothing can be seid
with certainty about what result would be obtained in an a-measurement,
kon§ Just before the measurementz interaction, except that I<%Q°2/*>’&
is the common probability distribution for a ~-measurements, before and

after measurementa interactions of this type.)

Thus we see that a rigorous quantum description of a messurement cor-
relation process is & verbelly cumbersome account in which the concept
measurement itself enters repeatedly., This recurrent use of the term
measurement is unavoidaeble in any quantal description which adheres
strictly to the latent cheracter of quantum observebles. It will be urged
in the concluding sections that this essential recurrence is the key to
understanding the epistemological status of the quantum term measurement.
To summarize: the goals of the present section have been (1) to point out
that the philosophic problem of infinite regression to consciousness is
equally relevant to both classical end quantum physics (and equally beyohd
the proper domain and competence of both); and (2) to show that close
logical scrutiny of any measurement scheme in s manner suggested by the
infinite regression argumentA(viz., posing questions like "in what sense
does M measure _§_ ?" and "what measures M_ ?") reveals that the quantum
concept measurement; unlike the classical one; EEEE appear as a primitive

term even in the so-called quentum theory of measurement itself.

*Subscripts on the term measurement will be referred to later,
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16. Quentum Explanation of a Real Measurement

The favorite motivating experiment for measurement theorists seems to
be that of Stern and Gerlach, which is alleged to be an example of the
correlation K(q{n @%o) — %@ ‘D&' s and is occasionally ele-
vated to the status of prototype for most, if not all, measurements., This
7vlew ciearly exaggerates its importance; nevertheless, the Stern-Gerlach
experiment 1s a good one to examine, if only because of its relative sim-
plicity. We therefore present a somewhat unconventional analysis of it.

Before getting immersed in the mathematics, let us briefly recapitu-
iate the data originally reported by Stern and Gerlaph. A beam of silver
atoms, emanating from a slit in a furnace, was channeled between magnetic
3; pole pleces toward a glass plate, upon which silver.deposits eventually
ﬁ? accumulated. One pole piece was knife-edged, the other flat; hence, the
‘ silver atoms traversed an inhomogeneous magnetic field, Stern and Gerlach

studied microphotographs of the deposits and interpreted what they saw as
;ﬂ follows: "The pictures show that the silver atom beam in an inhomogeneous
: magnetic field is split up into two beams in the direction of the inhomo-
?i geneity, one of which is attracted to the knife-edged pole and the other
3 of which is repelled.“zLThis 1922 description is slightly tainted by clas-
sical langusage. :A "pure" quantum theorist would interpret the same photo-
8raphs this way: Position measurements on an ensemble of silver atoms,
each prepared by emission from a furnace and pbassage through an inhomo-
geneous megnetic field, yield results whose statisticel distribution
exhibits two sharp peaks aloﬁg the direction of inhomogeneity of the field.
(Often there are more such peaks, but if ground state hydrogen atoms are

used, as Phipps and Taylozy%ave done, there are always just two.)

To explain this phenomenon quantum mechanically, the initial state

vector of the hydrogen atom* upon emergence from its source is assumed to

‘*We take for simplicity the Phipps-Taylor case.
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be of the form ZP@ %o . In the Schré’dinger-Pauli representation, the
spinor % involves only electronic coordinates relstive to the nucleus,
while % is a fairly localized wave backet whose argument is the atomic
"center of .mass". Thus the atom is formally regerded as though it were a
composite system whose constituents are initielly in states 7/» end 6(0 sy &
feature to be exploited later on (section 19)‘ Let O(, ,q/‘?' be the eigen-
vectors belonging to the component of spin in the inhomogeneity direction
of the maegnetic field., When the temporal evolution from initisl state
%@ ﬂ{ o s Where 3& is the ground state, is calculated, the following
result is obtained:

TW (4QX,) = Z <A, 4> O Tyt = F ).
Of special interest is the center-of-mass motion, represented in the equa-
tion dbove by ’f\(f) » since it is the final position distribution of the
atoms that the Stern-Gerlach apparatus displays. This problem is solved
by examining the final center-of-mass position probability density., If
gx),a_ denotes a common eigenvector of center-of-mass coordinates 1, 12 a,

the required probability density is

w- (X, }’ 2 Fw)= <ic»‘) 1®P 3’1—'(49>

<o, PGS ’o" N
It now turns ou'gﬁh%g - Z)L ’ ’ e ’

ir %is the direction of field inhomogeneity,
f< SX )’2:,/{!\>, is negl:;gibly small except in the same %*interval .as :ne
of the observed accumulations on the final plate; similarly, ] < Sxyz--, 2;>}
practically vanishes outside the neighborhood of the second deposit. The
theory therefore fully accounts for observations of the Stern-Gerlach type
described empiricelly above. Moreover, the theory also reveals sn interest-

ing correlation betwe_en the internal eigenstates and the center-of-mass
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motion. To be specific, in the expression foruq(X, Y, Z), the “strength"
of the 4Rth peak ]<§xy2 :ﬂ% >/2' is "weighted" by /<4’_91,‘9L>]93 a func-
tional of the intermal eigenvector d*@z. This property is often invoked
in Stern-Gerlach-centered discussions on measurement theory. However,
before getting into that, let us determine to what extent the quantal con-
cept measurement has slready been used in the foregoing theoretical expla-
nation of the actual Stern-Gerlach data. |

First an assumption was made &bout the initial state Z"@ %o ;s this
amounted to a number of conditionsl statements involving measurements
never performed. For example, to assume the hydrogen atom is initially in
its ground state means, among other things, that if energy were measured,
the result would be the lowest energy level. This only illustrates that
the concept of preparation ultimately depends on that of measurement, To
say that a certain physical act Drepares a state 6) always implicitly
entalls a set of conditional statements involving measurement in an essen-
tial way. Nevertheless, in the Stern-Gerlach experiment itself, none of
these measurements relating to the preparation of 'ZLQD fk; is performed.
It may be assumed that such measurements have been made extensively in the
past on a similar oven-slit device or other source and that it is guaran-
teed to be a bona fide producer of ensembles with (): %@%o .

The only measurements mentioned &bove in connection with the Stern-
Gerlach experiment as if they were actually performed are of the observ-

ebles X, Y, Z, i.e., atomic (center-of-mass) position coordinates. By con-

trasting this description involving atomic position meesurements to the
more prosalc leboratory report of Stern and Gerlach, we obtain a first
indication of a point to be developed later, viz., that the quantsal con-

cept of measurement is far more sbstract and less empirical than its name

suggests,

—
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The original Stern-Gerlach detection scheme--microphotographs of sil-

ver deposits--was in fact too crude to perform a single position measure-

ment. Yet quantum tneory explains the pattern of silver deposits as if

they represented numerous elementary position measurements, although the
adherence of a single silver atom to the glass plate is certainly never
really observed. However, position meassurements upon single microcosmic
systems are not impossible; on the contrary, position is in & sense the
most nearly "observeable" micro-cbservable there is, as will become increas-
ingly evident below. Now, suppose the glass plate is replaced by a better
detector which is able to perform an operation worthy of the name position
measurement. For example, impact of a single atom may trigger an "ava-
lenche" of reacticns sbout the collision point which produce a photogra-
pheble "spot"., Atomic position can then be defined operationally by
equating the center coordinates of the spot with the "result of a position
measurement”. (These coordinstes are determined by a "ruler", a macro-
scopic device which, used correctly, will yield the same numbers regard-
less of the intuitive world view of the experimenter; indeed he msy employ
quantum, Newtonian, or Aristotelian mechanical concepts for his own per-
sonal thoughts sbout rulers.) Using that rule of correspondence to relate

the construct position measurement to empirical observation, the quantal

explanaéion of the Stern-Gerlach effect in terms of “"single position meas-
urements” is no longer problematical; however, this has not really been
the main point of this paragraph. Of more general value is the identifi-
cation of one rule of correspondence between & quantum observeble (position)
and a laboratory operation.

Despite its innocent appearance, the foregoing operational definition

is in experimental practice not merely a specialized example; it is rather

i the fundamental rule of correspondence in quantum physies, in the sense
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that all other quantum observables are actually measured by esteblishing
correlations with the observable position. All measurement paraphernalia
--photographic emulsions, cloud chambers, bubble chambers, counters--
"directly" measure position in a manner similar to that described ebove,
As Landé%uts it, "...nowhere in physics do we have 'direct' data, the,
only exception being location in space and time, that is (q,t)-values.
Velocity, momentum, energy, etc. are always determined indirectly."
DeBrogliéﬂ%akes the saeme point as follows: "Any brocess of measurement of
& dynamic variable, such as the enérgy and momentum of a particle, is a
complex end indirect process which necessarily utilizes direct observation
of perticle localizations." Probably deBroglie's "necessarily" is too
strong; the dominant practicel role of the observable position is a matter
of fact rather than logic; but recognition of this fact sheds more light on
the nature and meaning of the quantal construct measurement than do any of
the so-called "theories of measurement" reviewed in previous sections.
What it suggests is that most quantum observables are never "observed",
and that most of the measurements which are unavoidably mentioned in every
quantum theoretical explanation are in fact never performed. Indeed, in g
certain sense, they are perhaps unperformable. The remainder of this work

is devoted to the amplification and clerification of these remarks.

17. Construction of an Operational Definition

Conslider the quantum observable spin. How cen it be measured? What
does it mean to say that an ensemble with state vector ?b'will upon meas-
urement of the Z-component of spin, JV yield é— )‘{ with relative frequency

2
’<3gﬂs1}¢>l ? It is instructive to take a close look at how an operational
definition of‘:g1y is usually developed from the Stern-Gerlach experiment,.

Once again we suppose that an ensemble of ground state hydrogen stoms is
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available for study. vAs noted above, the Stern-Gerlach apparatus brings
sbout this state evolution: 774-) ( T'L @g{a)=£«._<q%,4>4(k @ﬁ(f ).
We have already seen that w(X,Y,Z) suggests an interesting correlation
between A} and % » due to properties of the ‘ZQQ This may be seen more
clearly by computing the Jjoint probability for results of Sz and Z *.meg-
surements at time t. Let {A_RB denote eigenvalues of Si ; then the

Joint probebility density LU’(.A,L,Z) is found as follows:

U/’(An.,ZD gZZ@‘z:’»“z@T/ B, @P /%Q"«ﬂ»dé ® B >/xd)

—oO —aa
=)<, z/,>[ ?T < dxy =, T, >/2a/)(d)/

Recall that stymfnﬁ almost venishes except near one of the Stern-Gerlach
accumulations, which we shall call the )L th region. The distribution
U/’(A,,_.)Z) therefore implies that with near certainty an Sz.-measurement
would yield 4, when and only when a simultaneous Z-measurement yields g
result in the /L th region. This leads to the common identification of
the Stern-Gerlach apparatus as a kind of "spin-meter" which operates as
follows: to measure the observable 52- (on a ground state hydrogen atom) »
direct the atom through a magnetic field inhomogeneous in the Z direction,
and then measure Z, already operationally defined, A Z-result in the /Lth
region is considered to be & "reading" Aam of the "spin-meter". .

It is therefore tempting Jjust to regard this procedur; as the empirical
meaning of the quantal term spin-measurement. Unfortunately, this cannot
be done for two reasons: (l)‘ the operational definitions of Z and SE
would then be contradictory, and (é) .the Stern-Gerlach method cannot be a
spin-meassurement because its own detailed quantum mechanical description

involves the concept spin-measurement in a logically anterior way. Both

*We now drop the notational distinction between observables - %
and operators Sz s Z. L4

- - . -
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(1) and (2) follow from basic principles enunciated in previous sections.
Reason (1) is essentially a consequence of the WAY theorem, which in
this instance prohibits ’K?,?SLfrom being orthogonal. Thus, although

)R
’<5xyz .;f,:)/ 1s minuscule outside the /L th region, it does not vanish.

Hence, there is a finite probasbility, for exemple, that simultaneous Z-
and fsi:measurements would yield a Z-result in region 1 and the fia-eigen-
value Aki. In other words, we are sble to evaluate "how good" a "spin-
meter” the Stern-Gerlach device is; therefore it cannot be used to define
the quantal term spin-measurement. If it were so employed, the operational
definition of Z would be contradicted: the appearance of a "spot" in the

JL th region would always mean that an Esz;measurement has ylelded £,
but would no longer indicate with certaeinty that the Z-measurement result
céincided with the "spot"”! The best conclusion seems to be that the
Stern-Gerlach "spin-meter" is excellent but not perfect, and hence unsuit-
able for defining the concept of spin-measurement. The importance of this
result lies in the fact that in practice the above "spin-meter" seems to
be the only kind there is; therefore, the construct spin-measurement--of
proven value in theoretical explanations--refers to no asctual "laboratory
measurement” at all. This suggests perhaps that quantum physics uses the
term measurement in two distinct senses, one traditional and one peculiarly
quantal. That such is the case will emerge presently from the following
consideration of reason (2).

Since it is independent of the WAY theorem and universally applicable

to any conceiveble quantal descfiption of a "lsboratory measurement", rea-
son (2) is more fundemental than reason (1). The principal point has

already been discussed in some generality at the end of section 14; the

- term measurement necessarily occurs as a primitive even in s quantal

description of a measurement process. In the present case, this means
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that a éareful account of the operation of & Stern-Gerlach "spin-meter"
runs as follows: if an Simeasurement'* on the atom just prior to the
megsurement, interaction with the "spin-me;ter" would certainly have
yielded A’w’ then immediately after the measurement, interaction, an SE—
measurement | will certainly yield Az_a.nd a Z-measurement, will ( almost)
certainly yleld a Z-value in the /L th region. Hence the post-measur=ment,
SZ- -meaLs1.J.z'eme:nﬂt:I is redundant; a post-measurementz Z-mea.surement, is
sufficient to deduce what an Sz-measurement. would have given at the
instant the Stern-Gerlach measurethenta‘ procedure began. We haéten to point

out that this is not mere semantic legerdemain. No slternative quantal

description is conceivable; to explain in detail the operation of a Stern-

Gerlach "spin-meter" in any other way is impossible within the languesge
of quantum theory! Reference must be made to the imasginary results of
Sz_-measurements which are never performed in any laboratory. Further-
more, the very concept of performing an -measurement seems to desig-
nate no empirical act whatsoever. Thus the Stern-Gerlach device is said
to reveal "what an Si-measilrement would have given" earlier (Jjust before
the atom entered the magnetic field); yet this earlier Sz_-measurement
itself is not even an imaginable laboratory operation. Indeed, the very
device which supposedly performs that S a ~Deasurement can itself be des-
cribed only in terms of what the %-result would have been if Sz_had '
been measured! As suggested in section 14, similar conclusions may be
drawn from the quantal explanation of any "laboratory measurement" proce-

dure whatever. An experimental scheme designed to "make measurements of

(A " will in general be described in terms of unperformed and unperform-

able (/] -measurements.

¥As before, the subscripts should be ignored for the moment.

|
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18. The Dual Meaning of Measurement in Quantum Physics

Imagine for a moment that :S;Ewere en observable in the classical
sense; it would then be meaningful to say that the atom entering the Stern-
Gerlach device has ESEF=.451. Assume further that theoretical analysis
demonstrates, in analogy to the quantal case, that such an atom is always
channeled to the ) th region. It would then be remissible to conclude
that the term .E%a-measurement merely refers to this operation: pass the
atom through a Stern-Gerlach device and observe the spatial region of its
emergence. This act is & measurement in the classical sense because it
leads to a determination of what E;k-value the atom passessed. Further-
more, nowhere in this or any classical description of & measurement proce-
dure does the term measurement itself enter in a fundamental way.

By contrasting this fictitious classical description of & Stern-Ger-
lach "spin-meter" to its quantal counterpart, the source of difficulty in
the quantum case becomes apparent. At several points in the classical
account of a measurement process, the concept of Possessed observable is
employed; but at the analogous places in a quantal account, this notion
cannot be used, The basic structure of quantum theory forbids it. In sec-
tion h, we noted that this old concept of possession had been superseded
in quantum theory by the idea of latency. Thus the quantum axioms (section
2) connect observables to systems and states only in a dispositional sense.
This connection is made through the primitive construct le-measurement,
about which nothing is said excgpt that when it is performed upon & sys-
tem, it ylelds a number. Hence the logiceally primitive construct ZJL-mea-
surement, a consequence of latency, plays a role in quantum theory analo-
gous to that of possession in classical theory. Accordingly, to convert a
classical description of a measurement procedure to a quantum description,

each classical statement of the form, " f; has C;L:: cL*L?,must be replaced
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by the quantal proposition, "an a-measurement upon S would yield a'%"'

The term measurement, as it appears in the quantum axioms, has there-

fore a theoretical status quite distinct from that of the term measurement

in its classical usage and in the phrase, "theory of measurement”. In
recognition of this homonymy, we shall henceforth designate t'he primitive
construct measurement, which is essential to the statement of quantum
axioms, as LA{; ; an a -measurement will be denoted by M,(d} On the
other hand, Jug (a) will represent the classical concept of measurement, or
at least the nearest quantasl analogue to it. For example, the fic‘titious
classical a@is an operation which employs physical interaction to
( establish a correlation between possessed S_: and Z-values of the atom, so
that an observation of the Z-value (i.e., intelligently "looking at" the
"spot" and "ruler") ensbles inference of the Sz-value. Similerly, the
quantal %2(52)15 an operation which employs physical interaction to estab-
lish & correlation between the potential results of /’{,(sa)and /{'{,(sto
that the actual result of = perfomed/’{,(;‘-‘) engbles inference of the
potential result of a never perfomeda/“(,(si). This important distinction
between (/1’{, andl/"zzwas hinted et in sections 15 and 17, where subscripts
were attached to the word measurement to suggest its two meanings in
guantum parlance,
In connection with yand /% » several questions must be raised:
(1) How does M' fit into the general epistemological fremework of physics?
(2) Similarly, what is the role of c/‘éin the scientific method? (3) How |
are ‘M' and(/%,_related? and (4) What has all this to do with the quantum
theory of measurement? We shall now discuss these points in that order.

(1) The most striking property of M,is its abstractness; it is an.

ultimate primitive construct irreducible to any others. Epistemologically

it is like the concepts physical quantity and maess point in classical
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mechanics--no phenomenon can be theoretically comprehended without it.
Yet 1n spite of its deeply theoretical status, the nature of M, , 8B
implied by its role in the quantum axioms, belies an abstract mimicry of
& naive view which equates measurement snd elementary observation. Thus
the statement--"iflﬂ’ll (d) is performed upon __S_ s it will yield the result
A "--is beguilingly similar in form to this: "if an observation is made
of the sky, it will 'yield' the color blue." However, the apparent simi-
larity is purely grammatical; the d.ifferenées are far more important. If
& literal interpretation is demanded forbthe clause ".M,(ﬂ)is performed
upon §_ ", then we shall have to provide some kind of "micro-elf" , or
"quantum demon", to do the performing; for, as we have J’ust seen in the
special case of spin-measurements, real physicists do not, indeed cannot,
"_perfomM (SZ-)"' l/{{/(sz_) 1s quite typical in this respect. Hardly any
M,(ﬂ) is ever "performed" by an experimenter; in practice, macro-position
observations are perhaps the only exception. Nevertheless, the construct
Ml (a), even if it is imagined to represent the perceptions of omnipre-
sent g-demons, is invalueble and unavoidable in the q_uantum.theoretical
explanation of all actual empirical observations.

('2) In the opening remarks of section l, measurement was introduced
in the usual wsy as the epistemological link between percepts and concepts,
On reflection we now see that Mw&s the proper subject of that discus-
sion. Moreover, in using Mz_to introduce the essential use of the term
measurement, in the quantum axioms, we confused it in the natural manner
with M/ » which we now reccgnize as the only messurement-construct appear-
ing in the postulates. However, the fundamental mediatory role of %is
the same in quantum physics as in the remainder of science; the novelty of
the quantum fremework lies in the fact that, as a consequence of the latency

of observables, among the constructs which (/f’[z_ relates to datal experience is
, .
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(3) In classical physics, a.n/i{z(a)procedure is always understood
as establishing & correlation between the bossessed value of an gbstract
C]L and the possessed value of some dbserv&ble‘ik'directly accessible to
the experimenter. With deBroglie and Landé; we have tentatively (cf. sec-
tion 20) adopted the view that‘j( is always essentially a position; thus
the physicist always "looks at" a "spot" and "ruler", thereby observing
5( directly. It should be clear that without the latter direct observa-
tion,u‘é;aZ)would be impossible and the theory at hand therefore physic-
ally meaningless. Applied to the quentum case, this means that there must
exist an 3('directly observable by a real experimenter; i.e., the physi-
cist himself must be the g-damon who performs l/%, (%) by a simple "look-
and see" observation. As before, ek'is presumably & position, which the
physicisf observes directly as a coincidence of "spot" and "ruler". Were
he a quantum purist, he would of course describe his actions as follows:
"Uﬁl;éx9was performed ('ruler' placed near 'spot') and yielded x ('spot!
coincided with 'ruler' mark x)." Thus for 2 to be possible at all, a
quantum physicist must for EEEE,CZrbe himself a g-demon capsble of "per-
forming"ﬂ, (a), although for most a, 's his "performing ,/t(,(d) " is as
inconceiveble as, for example, the direct perception of (possessed)'energy
by a clessical physicist.

(4) Having estsblished the twofold meening of measurement in quantum
physics, we are now able to state precisely the very most that any so-called
quantum theory of measurement could hope to explein., Simply put, such s
theory can only offer a description of an ,/1{2(“)12 terms of (/M/ (ﬂ)in_q
23325!/¢£;'s- To reach that conclusion, we assume that the final pﬁrpose
of formulating a "quantum measurement theory"” would be to give a quantal
description of actual laboratory measurement processes, in particular, to

achieve a quantum theoretical understanding of how information sbout the
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mlcrocosm is obtained. Roughly speaking, it is obvious that knowledge of
things unperceiveble must be gained through correlations with things
directly apprehended. To be more scientific, a microsystem can be studied

only via physical interaction with it; otherwise, the requisite correlg-

tions could not be established. On the other hand, & lsboratory measurement

schemeuA4;?an be exhaustively described without using any postulates
except those normally required to explain other physical processes; this
fact was essentinlly the crux of many previous sections in which we criti-
cized the various extant ideas about measurement, some of which seemed to
regard quaentum measurement processes as more than Just physical processes.
Therefore, a.ra(/f{zcan and must always be explaiﬂed in terms of the basic
constructs of quantum theory, among which are the|/4(,'s. The V‘t,'s
themselves, being ultimate primitive constructs, are not susceptive of
further quantal explanation. A "quantum theory of bAll" would be tauto-
logical, like a "mechanical theory of motion". Hence, a quantum theory

of measurement can at most be a quantum theory of V4£z-

19. Remarks on Preparation

Several times in previous sections we have alluded to the interde-
pendence of the concepts measurement and breparation. Unfortunately, many

treatments of "measurement theory" fall to stress the differences between

these concepts, Frequently, measurement and Preparation are regarded as
essentially equivalent; this premise leads inevitebly to "measurement"
discussions marked by severe ambiguities. For example, Schwinger's "alge-
bra of measurement"vzs really a hybrid "algebras of measurement and prepar-
ation" in which the two concepts are not carefully distinguished; and
Groenewoldugvertly ignores the difference: "I teke all the time the term

'measurement' in a broad sense, including initial preparations, intermediate
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observations and final detections. Those, who prefer another terminology,
are free to make the translation."

This belief that measurement and prepesration are prectically equiva-
lent arises upon adoption at least of P4 as a universal quantum postulate,
The latter has already been discussed at some length, the principal con-
clusion being that P4, although occasionally derivable, is required & pri-
ori in the quantal account of no phenomenon whatsoever. However, the
equivalent treatment of measurement and preparation is most often founded
upon the logically untenable predecessor of Pli, which assigns a state vec-
tor to a single system on the basis of a measurement result. Thus it is
sometimes asserted that an a-measurement which yiélds (lig prepares the
state &y, .

In this context, it is difficult to say whether the a, -measurement
is M/ (ﬂ)orﬂa(d ) Very formal treatments sometimes give the impres-

sion that an (/"t,[a)yielding Ay is equivalent to the preparation TT(P 3

of the state () . Others seem to suggest that when Y, ()reveats tne
result aq_ of ath{/(a) 77_( P ) may be regarded as having occurred at
the time of M( (a.} or even, as sometimes claimed'?qa’c any time between
\/1{, (d)and the completion of M‘Z (ﬂ)' In our opinion such considerations
ere as nonsensical as the following sentence: "a g-demon prepares § in |
the state%by 'looking at' the a-ness of§ and 'seeing' Cup,."

A similar comment applies to the contention that a commitment regard-
ing the post-measurement state is essential for the theoretical analysis of
successive measurements. If "successive measurements" means successive
(ﬁ{, 's, then the problem is unphysical; it amounts to an inquiry sbout a
"sequence of g-demonic acts". On the other hand, if successive M.ﬂs
are contemplated, all that is involved is a physical process, fully

describable without attributing any properties to successive J”{,'s.

.
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Like/"{q_(a) 3 777 %) s Or in genera.lﬂ_(F) » 1s correctly inter-

preted as a physical process which always has a quantum theoretical expla-
nation. To illustrate this point and to clarify the distinction betwean
measurement and preparation, we shall present briefly the careful quantal
description of a preparation scheme, a quantum theory of preparation.

Since it is commonly mentioned erroneously as evidence that measurement -
end preparation are the same, the Stern-Gerlach "spin-meter" as a prepara-
tion device will here be used to prove the opposite--that measurement and
preparation are basically different.

Once again, for simplicity ground state hydrogen atoms will be fed
into the magnetic field. This statément, &as noted earlier, assumes that
& preparation scheme for the initial ensemble of atoms is given. A theory
of preparation can at most be a quantal description of the physicel pro-
cess by which a desired ensemble is transformed and/or extracted from an
initial ensemble. It is of course impossible to describe the ensembles or
the process without the primitive measurement construct V%;. Only in
this sense 1s preparation ultimately reducible to the concept megsurement,
but this is not the same as saying that measurement and breparation processes
(Mfl and 77) are equivalent.

If all members of the ensemble consisting of atéms which passed
through a Stern-Gerlach field are considered, the device has obviously
prepared the state, T.Cf') ( ZL @‘7(0) e %<1)L5 ﬂ(%> Q{K @ 72_6?") ’
However, since the position detegtor is absent, the preparation is not
connected with any measurement operation--a simple illustration that ﬂ
and M,_are not equivalent.

More interesting preparations based on the Stern-Gerlach experiment

require the concepts of subensemble selection and U4 -equivalence, For

definiteness, we consider ;; ( Elﬁ—fi'l & preparation process often
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associated with the Stern-Gerlach setup. The customary description of the
method is rather naive: since the magnet has spatially separated the
"beam" into the two disjoint regions, an 0(:@ ’7_(,.‘ -"filter" may supposedly
be constructed by erecting an g&bsorber W in region 2. The complete appara-
tus--mgm;)-device, Stern-Gerlach megnet, and W--would therefore
constitute s 7T(E®T) ~-device. Now, it may be that this experimental
arrangement does indeed effect TT(E @T) but, if so, there must exist
am explanation better than the preceding "filtration" argument, This
notion of filtering arises from an erroneous classical interpretation of
the aforementioned probabillity distribution W‘ (An,z). As has been
stressed repeatedly, quentum theory involves only probsbilities that a
specified measurement will yield a given result; it does not and cannot
meeningfully spesk of the probebility that a system will be found "in" &
given state, Thus the fact that W‘(A,>Z> practically vanishes outside
region 1 does not meen that an atom detected in that region was "really
in" the state Y ,@’b’,‘ all along, an obvious presupposition behind the
ebove "filtration" scheme. The ensemble to be "filtered" is in fact pure

~--its density operator is the projection §<°<4¢,'4’>4/n@7‘_& -=and
therefore in principle irreducible to distinet pure subensembles such as

Zon

This invites the possible reply in defense of the "filtration" pic-
ture that we have been ignoring the very practical fact that only a
restricted set of observables 1/4 is really of any interest here. Thus our
admonitions regarding the theoretic impossibility of subensemble selection,
or filtration, (relative to all observables) may be irrelevant if just the
observable set M is studied. 1In terms of (A -equivalence, it may be that

%4\_/%4,74@@1‘ V4 ZK‘V«, ¥>| %@

heace tha.t the desired selection may actua.lly be possible relative to 1/4 .

Reprodijced with permission of the copyright owner. Further reproduction prohibited without permission.



9L

As a matter of fact, if ‘A is the set of all observables either of the

form A @i or 1_@ B » then the foregoing (,4 -equivalence relation is
velid (to an excellent approximation)*. To prove that, recall that the

atom is formelly treated as a composii;e system in the sense that its "in-
ternal motiorn" is separated from its "center-of-mass motion"; thus the
desired (/4 -equivalence may be established by proving the following relations:
(1) 77,‘€ = 77; ﬂ‘ R

(2) 7726 = 7?:;. KM 5

where <D='- %4“/%:'4‘)“/&@@ . €M=%}<4/%J¢>,&EQQ®TR’

The required calculations are straightforward:
= S L W Saun LTH > 1T < Ty
Z
== I<a,¥>/"Fg, |

— 1< >¢>Iz(%<d"” E’?LO(">> T

i
= % '<0(.p,: Z‘L>Iz%

T p = §Jdtdyd= <suyzl 3,0 DU e, 4 O R | Sy 2>
_ gzgggolxdyolzf% V<%0 by > <A LSy, TG>T, Sy
= %'<d-”-g Y>| B«. , Since <SX)/'5-"3’02>; <5X)"‘-Jﬁ>

R#L , sre each nonzero in disjoint X, Y, Z-regions.

Ty = Sty = <8y | Z 1<te,05 R, @ [y
=Z (<t #1((C( XA Yol 2 < Sy, R Sxy=2)R.,
=Z |<e, W', .

It is therefore tempting to declare that the total ensemble prepared

by a Stern-Gerlach device may be split into pure subensembles with state

vectors.'q/_%® } 'WLD'Q= [, 2 , provided only observables in 04 are considered.

*This equivalence class is not complete; 1i.e. » there do exist opera-
tors outside |4 for which the two 's are equivalent. Gottfried’ e.g.,
uses in the Sterr-Gerlach problem & class different from our
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Hence selection of subensemble Bn@w would constitute ” (5@2’,‘ 504)
i.e., preparation of the state q/,® ?T relative* to . If this con-
clusion were correct, then our sbove critigue of the "filtration" argument
would be reduced in practical cases almost to verbal quibbling; however,
owing to an inherent weakness of the "relative preparation” concept
/;(P : we still insist that the "filt "

«, @?/,17 1/4) » 8 sis a e ltration” argument does
not justify the claim that the apparatus in question-- ZL@ % -source,
Stern-Gerlach magnet, and W—-prepares / @7? in any sense. The trouble

with "relative preparation" 7 7 ((0504) is 1ts reliance upon b4 -equiva-

lence, which is mot a temporally invariant property. Although it is true,

as demonstrated sbove, that 7;’“( lo A):W%A)for each A inu4 at a
glven instant, say .4, , it does not follow that 7;:(7?7%): W(T&T%)for

each A in (A , Wwhere 7’?:7—(63,7‘,' ) Consider, for example, the proba-

bility densities tF@n, X, [ 2= e(a‘)) and u/‘@.,\_,)( 2 S &(4‘))

A Tl S T

w (z-n JX7>/J Z ‘><M( 2‘))‘:—7;.(6# )é/?@ S Xy é‘)':' l <04< °7+> <°(n.®s>( )’2-37’(4’«® _o?z )> , ;2.

At }f‘.—.—.]f,‘ 3'7’=:i » and these expressions are of course equal; but for
A> j,' N T?éi. and the distributions are unequel. This demonstrates
that the (A ~equivalence of and M at ),L i1s useful only in statics; in
general, even 1f the only observables ever considered are in lA , still

M
represents the ldea of state in its causal role; 6'1 » While equivalent to

e cannot be replaced by e for dynamic applications. Only e correctly
? at /7:' » leads to incorrect predictions end cannot therefore be regarded
as the state. Hence the foregoing "filtration" argument cannot be accepted
as a quantal explanation of the state preparation ” ( E ®T>'
- 1/ G
Thus far, it has been left undecided whether or not the combination

of ¥® X, -source, Stern-Gerlach magnet, and \V/ may actually be used to

*This should not be confused with Everett's concept of "relative state"S°
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prepare /09(' KN 5 all that has been established is the classical naivete
of the common description in terms of "filtration". The success of fail-

ure of the proposed device as a 2' 2 ?'/l ~preparer depends mainly upon the
nature of the system W . The ’Z,L@ ﬁ(o -source plus Stern-Gerlach megnet

has prepared P ; what must be shown is that the
o FRWA @ T,
interaction with _V_Vcould convert this pure ensemble into a mixture from

which the pure subensemble 5' @1" might be extracted. We shall now dis-

cuss two model theories of preparastion which would explein in a sensible

quantum theoretic way how the combined apparatus in question could perform

T(Re). .

(1) For a simple but rather fanciful model, assume Wis a slaeb of

antimatter initially containing N antiatoms. Since annihilation processes
connected with matter-antimatter interaction must be considered, we need
three Hilbert spaces: ’jze_s_ » assoclated with the atom; ’S/ew sy with the
slab; and ﬂ E s with electromasgnetic radiation. Let Cﬁ, denote the radi-
ation vacuum state, 49 some other radiation state, % a stationary state
for the N antiatoms, %_/ some state for (N-1) antiatoms, and _720 the atom's
vacuum state, Suppose the initial state of the composite system
SHW +F 1 (<%, ¥>00T)Qu) 04,
If U denotes the evolution operator for this total system from the pre-
paration of the gbove initial state until a time when the atomic wave pace
ket would have passed beyond the absorber position if _V_‘_/were absent, then
in terms of U-matrix elements » the following assumptions define a _Vl_/cap-

able of producing the desired mixtures:

<KONOE| Ul &®T)® ay @8> =0
unless K: T@{ ®’0?) 5 )\-':'U)” > §= ‘fo » Where T describes the evolu-

tion of the atom when W is absent.

KONOFI Ul @) @ Wy B> =0,
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unless K= 42;5)\=% . (Classically speaking, these expressions mean
that an atom may traverse region 1 undisturbed but in region 2 would be

destroyed. ) .
The final state of the composite system would therefore be of the form

U (S5 4> 4 OT5) @ty 84 |
=<, W [T @ %)@y @ +<on,9> L2z, O 4.
"Tracing out" the antimatter and radiation parts, we find* that the atom-

ensemble now has the density operator 6=/<0(‘37A>/’~/7?m;@m-)}- l<‘?:“7/>/2%)

which shows that only the fraction [é(m?p ]"of the atoms from the original

?}@ %o -source emerge from the complete apperatus and that this sub-

ensemble has state vector Té}" @3’,‘) (For the short time interval of

interest, T'—:,-ﬁ j_ 3 hence we have effectively a 77—( g‘ & 7('\) -device, )
(2) A somewhat more realistic model results if_w is teken as a slab

of ordinary matter. If U again denotes the evolution operator during

interaction, the idea of "region 2 ebsorber" may perhaps be expressed as

ronovs: U0 R) @ Wy ]=T@ o) @ uly = @ 97 W)y,
UL ORI Qu)yJ= G- Yem Dy @ U, viere Ui

is a complete set of stationary states for \_{\_/ 9 fﬁg is a complete eigen-

vector set associated with the atom, and % has these properties:

% =0, for each L ’\j_é;ﬂ_:? o unless%l(‘\’"@&ya,‘gﬂfs essen-

tially nonzero only within the slab, for each ML,

The final state of the total system is then

UG <> 2 @) O 1) ]

=2 L0, (00 @ Uy + <o, > S g 4, D
Le‘f’%%cg_‘_:?mgm 5 <8m3gm> = I'J m'-}é/\/s
HA>=D B O T = O; and Lht> G = G AN

*[his tracing is easily done if one Just notes thet <7 (4,@7), %

_ <W//a —y ==<¢9o,49>= o ;3 the general mathematical form
is then the s'e{mé as that encountered in the correlation assumption of ortho-

dox meamsurement theory (section 6),

—
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With these substitutions, the final state becomes % ?’—k Ea @W,@Q

where Eukgis an orthogonal set but €9k3 is not. Now, consider the

reduced density operator for the atom alone:

= = K| Z 3,6,0 Wy >CZ, $3uGp® Ut | >

= 27 % T 9><6% . Siem.
= Z (9, = K, " B + 2 )9 [,

O’
Thus the atom ensemble has become a genuine mixture from which it is pos-

sible to select the subensemble E,@’f,‘ Since all other subensembles
are localized in the slab by the interaction, we may conclude that the
ensemble of ato'ms emerging from the complete apparastus (the fraction l 4{,2})}’”
of the original atoms) has state vect_or q/, ®’ﬁ . This model therefore
exemplifies a rational quantum mechanicsal explanation of e]r(E wa-device H
Yet no measurementz process was involved,

It should now be clear that W(P ) is a physical process differ-

¥O7

ent from % but inexplicable without tacit reference to (/l‘(,'s. In
particular, there is no Justification for any general statement that

TI—(E,@Z’:) 1s equivalent to mr%@)yielding <t . The apparatus Just

described--Stern-Gerlach magnet plus region 2 gbsorber--would effect

7T (E,@’J;‘) 5 but it would not perform %(@)(unless the detection of

nothing in region 1 is regarded as a measurement of SZ- yielding ..0_, 1.

Indeed the preparation of the q,l @@? -ensemble still occurs even if the

sbsorber is not a detector at all, i.e., even if it simply does not record

whether or not it captured any atom.
The Stern-Gerlach example of the past few sections has demonstrated

that the constructs (/14, ,Mand ; ; should be carefully distinguished in

"measurement theories"; otherwise ambiguity and confusion are inevitsble.

fsld
R

o N e e,
RS A

An excellent example of this confusion is the term "selective measurement',’g,
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which 1s sometimes used quite indiscriminately to refer to both measure-
ment and preparation whenever a "separation and filtration" scheme like the
Stern-Gerlach. .device. is the physical basis of both 7Ta.nd [M&. As a8
result, 1t 1s virtually impossible to determine the meaning or purpose of
e discussion on so-called "selective measurements". The distinction
betweenﬁ/41$,0/£1;, andfrr.is ebnormally subtle in the Stern-Gerlach, or
"selective", case; for this reason, it is a favorite example among pro-
‘ ponents of wave packet reduction a.nd/ or the equivalence of (/i{ (a)and
7T( 6@~> - Nevertheless, as we have seen, the differences among these
concepts can still be exposed.
: Ordinary applications of quantum theory are normally successful in
o
;i spite of the occasional confusion of preparation and measurement. How-
;f ever, the distinction can be quite important in basic theoretical consid-
“ eratiané.' A good example of faulty reasoning due to the implicit assump-
tion that preparation must be accomplished through measurement occurs in
connection with the superselection ruleézof quantum field theory. These
rules arise from invariance principles which, applied to states, require
that certain distinct state vectors (rays) be physically equivalent. Now,
there are at least two ways to guarantee this equivalence: (1) Postulate
that not all Hilbert vectors represent physically realizable sﬁates, or
equivelently that there is no process:I7-(E£z)for certain ’?D's, The
Pauli principle is a familiar example of such a requirement. In the case
of superselection rules, it turns out that the distinct state vectors
which must be equivalent can be eliminated by postulating that all physic-
ally realizable state vectors are eigenvectors of certain operators (total
charge, e.g.). (2) Modify the common axiom that sll Hermitean operators
represent observables by explicitly denying the "observability" of all

operators having different mean values for those state vectors which must
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be equivalent,*

The conceét of superselection rule is relatively new and still under
development., It is therefore impossible to meke very definite statements
gbout it.** The only point to be made here is that a staendard "theorem"
which purésrts to derive (2) from (1) is fallacious because it confuses
measurement and preparation., A typical presentation of the argument is
given by Schwébe;¥b "If not all rays are realizable, then‘clearly no meg-

surement can give rise to these nonrealizsble states. They cannot there-

v fore be eigenfunctions of any Hermitean operator which corresponds to an

observable property of the system. To be observable = Hermitean operator
must therefore satisfy certain conditions (superselection rules).," The
first sentence is incontestable; indeed, if & state vector cannot be pre-

pared at all, certainly no measurement Process can do the job. The second

sentence is a non sequitur obviously based on the false premise that an
(/W.? (d)yielding Qgis the same as 77—(@) Thus if F(gk)is impos-
Sible,Umtz(ZI)must be impossible. The third sentence follows from the
second and 1s Just alternative (2) sbove. We see therefore that confusion
of measurement and preparation is here responsible for the theoretical
illusion that (2) is a consequence of (1), whereas in fact (2), if needed,
should be postulated independently. |

Although(/¢{,,¢/4<z, and.?? must never be regarded as equivalent,

there are of course connections among them which we do not wish to deny.

' *¥Cf, fn., p. 3.

. *¥In our opinion alternative (l), a natural generalization of the
Pauli.principle, is prefersble to (2) and is all that is really needed to
account for physical facts of the type which suggest the existence of
superselection rules, e.g., the fact that the superposition of an electron
state vector and a positron state vector apparently describes no actual
ensemble., If (2) were unnecessary, the word some would be unnecessary in
Fl,and P2 would not have to make the rather odd demand that)?)CA) be real
even when A is a Hermitean operator representing no observable,
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These relations may be expressed as follows: (1) VA4;L and‘77_;re both
laboratory processes the quantum theoreticel description of which neces-
sarily involves the primitive construct lﬁ'{,. (2) /1{2 (d}, like any phys-
ical process, leaves the systems involved in some state; and the ensembles
of these systems would have calculeble density operestors. In this trivial
sense, all physical processes,1/412(2L)included, prepare states. However,
these states need not exhibit any special relation to Cz;; in particular,
preparations effected by aazzare not necessarily, nor even usually,

77-< Z%) . To defend his use of an C(,Rin a complex situation where
UA{;(ZL)would never be performed, Schrodinger once remerked: “A purist
might challenge the use of a wave function not determined by measurement,
But he would have to give up using wave functions altogether, since none
has ever been determined by measurementﬂ33(3) Similarly, the physical
process 77( %') might conceivably be utilized as an(j(z, perhaps even
UA(Z(ZZUL but this need not be the case. Usually all that is known from
'ﬂY @%) is that, if(/"{z(ﬂ)were performed, the correlations thereby
established would show that an a-measurement, i.e,, Vt{l(d)’ must yield a_h.

20. Summary: Quantum Theory of Measurement

The problem of quantum measurement was introduced in section 1l in the

customary wey as a logicel challenge to be met within the quantal frame-

work, At issue was the fact that the explicit appearance of the term

o neasurement in the postulates of quantum theory automatically confers some

properties upon that concept. Yet the notion of measurement does not

really belong to quantum physics in particular; indeed measurement is
basic to all of physicel science and presumebly comes to quantum theory
already endowed with cheracteristics inherent in its more general epistem-

ological role. A "quantum theory of measurement" would then be & confrontation
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of the measurement concept in quantum theory with the ides of measurement

in general in order to demonstrate the consistency of the quantum viewpoint,
However, a fundsmental defect in this program gradually became appar-
*f ent. The quantum measurement construct is well defined in the sense that
the postulates offer clear instructions as to its use in theoreticsl expla-
nations of physical processes. On the other hand, the general philosophi-~
cal understanding of measurement cannot be expressed in simple mathemati-
cal terms, .Tb demonstrate this point, we critically surveyed the major
classes of proposed quantum measurement theories; invariebly, the extra-

quantal strictures placed upon measurement were found to result in phys-

- e e PR
I AN A T T D e e

ically unwarranted "overspecifications" of its root meaning. Scrutiny of
these overly marrow definitions of measurement served mainly to expose
misunderstandings about the nature of quantum theory.

Eventually we recognized that this entire approach was foredoomed.
Even if a gramd, all-embracive mathematical definition of & general mea-
surement process were discovered, it could not serve to establish the
conslstency of the quantum theoretical usage of the term measurement; for
no physical process, measurement schemes included, can be described by

quantum theory without the term measurement, which has therefore the logi-

cel status of am ultimate primitive, irreducible to other comstructs.
5 This state of affairs, essentially a conse@uence of the latency of

quantum observebles, suggested the necessity of distinguishing between

p/hz and ' The nature of these two measurement constructs as well as
thelr significance for quantum measurement theory was explained in several
preceding sections., However, to clarify these ideas, we shall now briefly
recapitulate by describing(/mt'and 4 in another way, viz., by focusing
upon their epistemological‘status. To insure direct passage through the

sometimes labyrinthine halls of scientific epistemology, it is helpful to
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</ D
C-field P-plane

Fig. 1
A simplified legend for this "epistemological mep" would mske these
identifications: (1) The P-plane represents uninterpreted sense impres-
slons, those elements of experience variously called the given, the per-
cepts, the direct observations, data, and by Margenau, the protocols.
(2) The C-field is the domain of reason, of ideal models; its members
(denoted by circles) are known as the categories, concepts, or constructs;
and in Einstein's wdrds, they are "free creations of the human mind"?s‘
(3) A set of rational connections (single lines) among constructs forms
the logical matrix of a theory. (4) Some constructs are related to direct
observations at the perceptual level (P-plane) by conventions (double
lines) which may be called operational definitions (Bridgmen , rules of
correspondence (Margengz), or epistemic correlations (Northré%ﬁ. (5) The
distance of a construct from the P-plane is to be regarded as an indicetion
of its relative abstractness, or, in s sense, its objectivity. This hori-
zontal "scale" is of course rather vegue, but it is not meaningless. For
example, the construct "electric field" is obviously far to the left of
"electric shock"; the sequence of concepts "entropic-derivative-of-internal-
energy", "thermometric-temperature", and "hotness" evidently range from
extremely far into the C-field to extremely close to the P-plane.

The general notion of measurement as a universal feature of the
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sclentific method--what we have designated¢/¢4z--refers to an important
part of the complex of linkages between the most profound constructs and
the practically self-evident ones just short of the diffuse boundary of
raw, undifferentiated percepts. Measurement,y is concerned directly with

those constructs called observables which mediate between mathematical

models and direct observations; the defining characteristic of any megs-
{j &rementz_scheme is therefore the extraction of numbers from observations
and thelr theoretically meaningful‘assignment to the observables. The
overall purpose and pragmatic value of this procedure is fully discussed
in books on the philosophy of science, but these matters are not at issue
here,

With the above understanding of measurement, as the provider of num-
bers to observables, it is easy to describe in a general way, using Margenau
charts, Just what a "theory of measurement " would be. Consider an observ-
able Cz.which is defined constitutively by the properties of its represen-
tatlve A among the mathematical constructs of the theory. Suppose that an
operation has been discovered the performance of which Yields numbers and

that these numbers can be consistently associated with C;L, in some sense,

as its "values", The measurement concept odﬁ;QZ)iS'then simply the rule

of correspondence which specifies that operation (Fig. 2).

7 A )

Fig. 2 UACQO&L)

A theory of measurement, 1s then simply a theoretical analysis of the

operation identified as 1/1/{_1 (d) In other words, part of the rule of

correspondence itself is explained in terms of fundamental constructs.

As a result, the conceptgA{L(ZL)acquires a more complex "structure" (Fig. 3).

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

"< YR
v v .3 N

On the epistemological chart, the unanalyzed double line connecting
a/ to the distant P-plene is replaced by theoreticsl connections from
a, to an observable% plus a very short double line from ﬁ/to thé near—
by protocols. The closeness ofq to the P-plane signifies that, as far
as physics 1s concerned, % is regerded as directly observable. In ear-
lier sections, % was taken to be position, said to be measured by "look-
ing at" the coincidence of a "spot" and a "scale marking', However, we
adopted this specific identification of 7 » suggested by the writings of
deBroglie and Land.é', only to exemplify the ultimate contact of physical
theory and empirical experience; there is no reason to regard it as the
sole direct observable of potential value for physics,

What has been said sbout measurementz thus far has been applicable
to sclence in general. Hence problems motivated by the foregoing remarks
cannot be legitimately interpreted as quantum dilemmas in particular. For
example, the unanalyzed connection of an 9{ to the diffuse realm of imme-

diacy suggests the problem of infinite regression quite independently of

quantum theory, as noted in section 15. At any rate, the measurement con-

cept Mg(a-)is epistemologically the same in quantum physics as in the rest

of science; and & quantum theory of Mz(wshould be of no more philosophic

interest than are classical disciplines suc_:h as thermometry and photometry,
On the other hand, the measurement concept 1/%, is peculiar to

quantum theory. To find its proper "location" on the Margenau chert,
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recall that the essence of measurement ﬂ,is the extraction of numbers from

observations and their theoreticelly meaningful assignment to the observ-

ables. Hence the descripticn of an (/1{2 (ﬂ)must always be given in terms

of such assignments; but we have seen in previous sections that classical
and quantal physics do not employ the same relation between an observable
and its numerical values. Classically, an observeble is said to "have"

its value; quantally, the only connection is through the auxiliary measure-
ment concept /%, @.) Accordingly, on the epistemological chart, let us

replace the observable symbol @ by if a,"ha.s" a value and by

if the latent results of potential./"{,{ﬂ)'s represent the only

connection between and its values. Comparison of the classical (Fig. 4)

end quantal (Fig. 5) realizations of Fig. 3 then serves to clarify the

eplistemological status of M

Fig. 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

These charts represent an attempt to summarize graphically the main points
about quantum measurement concepts discussed in previous sections, In
particular, they emphasize that uAt;is analogous to the classical idea‘ZL
of "having" a velue. It is meaningless to consider further analysis of'0
either or 04431; logic;lly,'both are ultimate primitives in their respec~
tive theories in the sense that no physical process can be described with-
out them. There could no more be a "quantum theory of‘udtl" than there
could be a "classical theory of "; either would be quite circular.

Hence the term "quantum theory of measurement" can only refer to a theory
of /Mg(d), the statement of which will necessarily employ M,'s. Under-
stood in this way, so-called quantum theories of measurement, are of no
more of less philosophic interest than analogous classical theories of
measurement, which explain the operation of calorimeters, spectrometers,
etc. Indeed the rather extraordinary qualities sometimes attributed to
quantum measurement derive from the various misinterpretations of- quantum
theory which the present work has sought to expose, Once the distinctness
of /14, and /u,'is recognized, the general concept of measurement 'M&_ is

no more mysterious in quantum physics than elsewhere,
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ABSTRACT

Part III is & study of what is sometimes regarded as the conceptual
heart of quantum theory, viz., the orthodox ‘physical" interpretation of
noncommuting operators as representatives of incompatible (non-simultaneously-
measurable) observables. To provide a firm foundation for the analysis, a
definite statement of the éssentials of modern quantum theory is given
briefly in the form of a mathematical axiomatizetion together with a review
of the two measuiement constructs introduced in Part II, Contrary to cus-
tom 1n discussions on simultaneocus measurability, the uncertainty principle
is not dwelt upon but simply stated carefully to establish its actual
irrelevance to the problem at hand. It is then demonstrated that the much
quoted "principle" of incompatibility of noncommuting observebles is simply
false, The axiomatic root of all incompatibility arguments is next identi-
fied; and it is shown that, with a slight modificetion of the basic postu-
lates which affects neither useful theorems nor practical calculations,
quantum physics no longer entails illogical restrictions on measurability,
Among the related topics touched upon are the problem of Jjoint probability
distributions, the "logical" approach to quantum mathematics (wherein non-
commutativity becomes incompatibility within a propositional calculus),
and the field theoretic attempt to unify quantal and relstivistic phyéics

through a postulated connection between incompatibility and space-like

intervals.
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1. The Compatibility Problem

It is characteristic of bhysics to represent observables by mathema-
tical objects to which the numbers emerging from experiments are to be
related. In classical physics the objects were functions, and numerical
measurement results were merely identified with the range values of these
functions., Quantum physics, on the other hand, uses (Hermitean) operators
instead of functions, and thereby complicates the relationship between its
observebles (i.e.,, their mathematical representatives) and the empirical
numbers to which they must ultimetely refer. Ironically, perhaps the most
abstruse and controversial difficulty assoclated with such operator-observ-
able correspondence arises from an obvious arithmetical law, viz,, that if
a, b are numbers, ab== ba. Naturally this commutative law applies to all
measurement results independently of the theory by which they are interpreted,
In classical physics, this numerical commutativity is reflected by the

unrestricted commutativity of functions; in quantum theory, however, the

analogous statement cannot be made, for pairs of Hermitean operators do not
necessarily commute. In particuler, it was discovered by Born in the

early years of modern gquantum mechanics that even X and P, the operators
representing the important ohservebles position and momentum, do not com-

mute but obey instead his famous equation E)(, PJ = X P — P X :—‘/oﬁj. .

Thus position end momentum are said to be noncommuting observebles.

Understandsbly, the presence in quantum theory of noncommuting observ-
ables has from the beginning elicited a great deal of academic curiosity
accompanied by the reasongsble suspicion that such & theoretical anomaly
cannot merely be written off as & mathematical quirk., Some kind of physical
interpretation must be given; the fact that [X) PJ#O surely expresses
something very interesting about Position and momentum., But what? The

orthodox answer is this: noncommuting observebles are incompatible, i,e.,
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it is impossible to perform upon a single system simultaneous measurements
of two such observables. The present work is devoted to the systematic
analysis of this femous principle of impotence; but first, as a prelude to
this endeavor, 1t seems appropriate to review briefly the more common--and
frequently illogical--arguments typically advanced in behslf of the doctrine

in question.

(1) Semiclassical gedenkenexperiments: It is quite fashionsble in

discussions on the foundations of quantum theory to lean heavily on the
historical evolution of the subject. This tendency is not new to physics;
it 1s in fact traditionally employed in studies of relativity, thermodynemics,
and electrodynamics, But while the origin of any of these disciplines con-
stitutes a fascinating chapter in the history of physical ldeas, the rele-
vance of chronological development to logical development must not be
pressed too far, Sometimes history of science illuminates and clarifies
philosophy of science; but in other cases it only distorts and confuses
logical problems if it is forced upon them. For example, the historical
fact that J. R. Mayer's contributions to the formulation of the modern
energy concept were inspired by observations of blood colorstion differences
between inhabitants of torrid and temperate zones sheds little light in any
philosophic study of the nature of energy., Even more extreme is the case

of Kekulé; who discovered the benzene ring in a dream sbout a serpent bit-
ing its tail, an historical vignette clearly irrelevant to the natural
philosophy of organic chemistry.

The typical historical account of quantum theory from Planck to the
present outlines a rather smooth transition from the "0ld Quantum Theory"
(Bohr atom, particulate photon, classical ontology) to the "New Quantum
Theory" (state vectors, probability, complementarity); and from the purely

historical point of view, this evolutionary description is perhaps entirely

. .
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acceptable, However, as indicated in the parentheses above, from a philo-

E; sophical perspective there is no gradusl metamorphosis from the "01d" to

L the "New"; there is an abrupt discontinuity in theoretical structure,

hence any discussion gbout modern quantum theory which employs concepts
peculiar to the "01d" to demonstrate alleged features of the "New" is accord-

ingly of little value. And such arguments are not uncommon; in fact, it

1s a good rule of thumb that any discourse upon quantum theory that calls

its content "intuitive" will probably commit this history-inspired blunder
of mixing the "Old" with the "New".

Unfortunately, the standard demonstratians of the incompatibility of

" TesTme IaRA NI e AT

certain observables in quantum theory are of this type, They are of course

the historic gedankenexperiments of Bohriand Heisenbergf'which have been

] both repudisted and defended meny times over the past 35 years. The pre-
sent work will EEE present still another analysis of these thought experi-
ments., Although such demonstrations are obviously not as irrelevant to

the philosophy of quantum theory as is Kekulé's serpent to that of chemis-

R S e alit N ROt Tt

try, nevertheless their primary velue is historical, as samples of the
? motivating thoughts of great physicists engaged in the construction of the
quantum theory.

The emphasis in the following sections will be placed rather on. a

logi.cal study of the notion of compatibility entirely within the axiomatic

framework of (New!) gquantum theory, independently of whatever dreams, intui-
tions, or gedankenexperiments historically might have inspired its ingeni-

ous creators.

(2) Uncertainty principle: Many gedankenexperiments have been designed

; to illustrate Heisenberg's famous law; unfortunately, the false impression
is often conveyed that his principle, which is actually a theorem sbout
; stendard deviations in collectives of measurement results, imposes

-
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restrictions on measuragbility. To see the absurdity of such an inference,

consider the following anslogous argument. Suppose the widths of a large
sample of desks were measured, the results tabulated, and the standard
deviation AW computed; similarly, let YN » the standard deviastion for
length measurements, be determined. It would not be especially surprising
is there existed a constant k such that AU AL > £ even if the sample
were extended to include every desk ever manufactured, Now, reasoning as
1s often done in connection with the uncertainty principle, we would have
to conclude from AuAl >R (a) that i1f the length of a desk is measured
to within an "instrumental error" $u’, one cennot at the same time contrive
a method for measuring the width with less "error" than Sh = -—;%7_ s and
hence (b) that it is impossible to measure precisely at the same time the
length and width of a desk. Obviously, these drastic conclusions are not
a logical consequence of the inequality AW, AL >'k . In section 2,
the uncertainty principle will be stated correctly in a proper theoretical
context and briefly discussed.

(3) Projection postulate (naive version): Frequently appended to the

useful postulates of quantum mechanics is one which, if correct, would
easily lead to the incompatibility doctrine as & theorem, It is the notion
of wave packet reduction, according to which measurement invariably leaves

a system in such a state that an immediate repetition of the measurement
would yleld the same result as the first measurement? It turns out that

if simultaneous measurement of noncommuting observsbles were possible it
would usually leave s system in a nonexistent state;_thus it is often

argued that simulteneous measurement is impossible, This argument is; how=-
ever, unworthy of serious consideration since the ides of wave packet reduc-
tion does not survive close scrutiny. Such reduction cannot be consistently

attached to quantum theory by postulation because of the inherent statistical
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nature of quantum states; 1.e., the physical reference of the density oper-
ator to ensembleéqfationally precludes its changing sbruptly in response
to a single measurement. Moreover, it is not true in general that an imme-

diately repeated measurement alweys ylelds the same result as the first one?r

(4) Prajection postulate (von Neumann's measurement intervention trans-
formationf% There is a way/to express the projJection postulate in terms
of ensembles and the selection of subensembles which does at least mske
sense. If this version represented a universal trait of measurement, then
it would imply the incompatibility principle as & theorem. We have proved
this elsewhere? However, it can be demonstrated that even this "reasonsble"
variant of the projection postulate does not describe all physical measure-
ments and is therefore unacceptable as a quantal exiom. Hence it is use-
less as an argument in behalf of incompatibility.

(5) Problems concerning Joint probabilities: If joint (i.e., simul-

taneous) measurements are possible, then there must exist joint probability
distribﬁtions. However, attempts to generate such distributions for non-
commuting observebles using fairly standard mathemstical ideas have been
unsuccessful, and this failure has been interpreted as proof of the incom-
patibility principle. This position will be examined carefully in section 8,

(6) Von Neumsnn's simultaneous measurability theorem: In his classic

work on quantum mechanics, von Neumann proved a theorem which is undoubtedly
the best defemse ever given of the incompatibility doctrine. Strangely
enough, it is also the most widely ignored argument for incompatibility

even though, unlike (1)-(5), it is a logical deduction from & seemingly
reasonable quantum axiom set which does not include the projection postu-

late.,* (Cf, sec. k)

*0f course the projJection postulate does appear in von Neumann's book,
but it playe no role in the theorem here considered.

~T—
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As stated above, the purpose of the present work is to scrutinize and
evaluate the principle of incompatibility of noncommution observables,
However, it is not our intention to consider the six preceding arguments
one by one; as a matter of fact, most of them will scarcely be mentioned
again. In particular, no further discussion will appear concerning (1),
(3), and (4). The value of semiclassical gedankenexperiments (1) has al-
ready been commented upon; and the absurdity of the naive projection pos-
tulate (3) and inadequacy, or lack of universality, of its sometimes cor-
rect version (4) are fully discussed elsewhere by the present writef?siAs
to the uncertainty principle (2), enough will be said in section 2 to demon-
strate its irrelevance to the compatibility principle. Thus ensuing sec-
tions will emphasize (5) and (6), the only extant arguments for incompati-
bility which are firmly embedded in the basic methematical structure of
modern quantum theory.

Because (5) and (6) arise not in shallow classical intuition but deep
in the theoretical framework of quantum mechanics, it will be necessary to
survey basic quantum axiomatics in order to distinguish clearly which com-
mon quantum "truths" are assumed hypotheses and which ones are derivable
propositions. Only in this way cen the deductions in (5) and (6) be prop-
erly evaluated., The remainder of the present section sets the sfage for
this analysis by reviewing several importent definitions from the quantum
theory of measurement and then using them to obtain a clear statement of
the compatibilitj problem,

As in other branches of physics, the objJects of study in quantum mechan-

lcs are called physical systems. Associated with these systems are the

constructs known as observebles which are in turn correlated via epistemic

rules to empirical operations which generate numbers., Such operations are

called measurements, The numbers they produce are called measurement
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results, and it is the responsibility of quantum theory to regularize,
interpret, and make predictions sbout them. Specifically, quantum physics
is designed to cope with problems of this format: given a repeatable lab-

oratory procedure 77 for the preparation of physical systems, what will

be the statistical distribution of measurement results obtained from mea-
surements performed upon an ensemble of systems all prepared identically
(in the manner 7] )? This question may refer to any observable and to
measurements at anyvgiven timé‘after preparation.

To avoid unnecessary philosophical dilemmas, it is extremely important

to understand the peculiarly quantum theoreticsal nexus which relates the

concepts of measurement result, observaeble, and system, Perhaps these
connections are best understood by contrasting them to their classical
analogues. In prequantum rhetoric the process of measurement could be des-
cribed as follows: physical systems are endowed with certain observable

attributes characterized by numerical values; measurement is an empirical

procedure for discovering Just what these values are. Thus classically
measurement results are simply revelations of the velues of observable

properties possessed by the system. The key word here is possessed, for it

expresses succinctly the classical relationship between measurement results
and observables.

In quentum mechanics the comnection is & wesker one. It is no longer
possible to pictorislize physical systems as objects characterizable by
definite values of the observebles, A classical billiard bell has values
for position, momentum, energy, angular momentum, etc. A "quantum billiard
ball“‘ggg no such values, Nevertheless, it remains true in quantum physics,
as 1n the rest of science, that a system's observables are operationally
defined end that measurements of them do Yield the numerical results upon

which theory feeds. Thus for the "quantum billiard ball", it is proper to
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speak of the numerical results of position,.momentum; energy, or angular
momentum measurements, but it is improper to interpret these numbers as

past, present, or future properties of the ball. According to quantum

theory, no physical mode of preparation 77r;xists which could produce sys-
tems certain to yield upon measurement a breassigned peir of values (x,p)
for position and momentum;, for example,

Incidentally, the possessed quality of classical observables brought
the concepts of measurement and preparation conceptually close to one
another. Since a measurement operation simply revealed a possessed value,
the same operation could also be called a preparation method for obtaining
systems having that value of the measured observable, Despite such clas-
sical intuition, however, the constructs measurement and preparation must
be severed in quantum theory. Failure to do so leads to the projection
postulate with its attendant physical and philosophical problels?

Since quantum physics is a theory about measurement results instead

of possessed properties, it is natural that a concept of measurement should

appear among its primitive terms in a place analogous to that occupied by
"possession of attributes" in classical theory. In other words, numbers
associated with observables are conceptually linked to systems only through
statements like this one: "if observable CL 1is measured on system éi_ ’
the numericel result a will emerge...". This is the primary meaning of

Regsurement in quantum theory, and we shall designate this measurement con-

struct, which supersedes the classical ides of posseésion, by the symbol 04{;6§L)
In quantal as in classical physics, it is also necessary to recognize

the basic idea of measurement ass an empirical procedure yielding numbers

assoclated with observables. Just as in classical pPhysics one must have

both the possession concept and measurement schemes to determine the pos-

sessed values, similarly quantum physics requires a traditional measurement
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concept in additiomn to (/1{,. Assume that in classical and quantum mecha-

nics we have a "direct" operational definition of position. For example,

: a position measurement may be performed upon a speedometer needle essentially
by looking at it. From the position measurement on the needle a number is
inferred which is declared to be the result of a speed measurement upon

the system of interest. The theoretical Justification of such an infer-

ence will be called a theory of measurement. A classical theory of mea-

surement for the speedometer would consist of a mathematicsal analysis of
the instrument leading to praof of a correlation between the possessed
position values of the needle and possessed speed values of the systenm,
The concept of measurement exemplified by this speed messurement will be
denoted by lM . In short,t/‘& is the normal measurement construct of all
science; %(aa@,...)represents any empirical procedure yielding numbers
a, b, ... which through a theory can be interpreted as the values assocl. -
ated with observables a ’ 6 seees In quantum theory, the values are asso-
ciated with the observeables via m,(a),ﬂ.(@ and not by possession,
Thus, for example, a quantum theory of measurement for the speedometer
would consist of & mathematical analysis of the instrument leading to proof
of a correlation between the probabilities that (}V[,(neecue position) would

Yield certain values and the probebilities that (/{(,( speed of system) would

Yield certain values, A measurement scheme (/1{:,‘13 thus explained quantum
theoretically in terms of the primitive measurement construct !
Using these concepts, it is possible to define bPrecisely what is

meant by simultaneous measurebility of two Observables: observables a,

and @ will be termed competible, simultaneously measursble, or Jointly

measurable if there exists an (M,_(a,@) » 1.e., an operation yielding two

numbers a, b with the same probabilities that quantum theory confers upon

the two propositions "M,(d) yields a" and "M,({B) yields b", where both

Reproducéd with permission of the copyright owner. Further reproduction prohibited without permission.
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(/1’(,’5 refer to the same instant in time, The compatibility problem, to

which the rest of this paper is devoted, may therefore be stated as follows:

if a,@ are noncommuting observables, is it quantum theoretically possible

for an %(ﬂ,@) to exist?

2, Quantum Axiomatics and the Uncertainty Theorem

To provide a framework for systematic analysis of the compatibility
problem, it seems appropriate to discuss at the outset certain basic Ppro-
positions of general quantum axiomatics.* Accordingly, the basic axioms
of quantum physics will now be stated, and the proofs of several important
theorems will then be reviewed.

Pl: (Correspondence Postulate) (Some)linear Hermitean operators on
Hilbert space which have complete orthonormsl sets of eigenvec-
tors correspond to physical observables. If operator A corres-
ponds to observable a s then the opera.tor?—(A) corresponds to
observable ‘IF(a,) , where - is a function.

It is convenient to use the symbol <> to represent this operator-
observable correspondence relation; thus A«>(l mesns A "corresponds to"
CL in the sense of Pl. The observable %E(a)is defined by this measurement
procedure: measure a, and use the result a to evaluate the given function
F ; the number ¢-(a) is then the result of an q:(a)-measurelent. The
function @_ of operator A,?(A) » 1s found by the following standard mathe-
matical procedure: consider the spectral expansion of A, A= % % B-k
where a,kis an eigenvalue and E-k denotes the brojector onto the span of

eigenvector O ; the operator ?(A} is then simply ?Equ—(a*) E* . (Exten-

sion to degenerste and/or continuous spectra is straightforward, )

*For a fuller discussion of the background concepts, see J. Park,
"Quantum Theoretical Concepts of Measurement". (Part II of thesis)

Reproduce& with permission of the copyright owner. Further reproduction prohibited without permission.
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P2: (Mean Velue Postulate) To every ensemble of identically pPrepared
systems there corresponds a real linear functional of the Hermi-
tean operators, /) (A), such that if A<>CL ; the velne of m(A)
is the arithmetic mean <(1> of the results of ([, -measurementg*
. performed on.the member.systems. of .the ensemble,

The content of Pl and P2 is slightly different from thai of thaoir ana-
logues in typical wvon Neulanﬁf&nspired exiomatizations., In the origingl
form of the Correspondence Postulate, observables and Hermitean operators
were assumed to stand in one-to-oae correspondence; in other words, the
postulate included both of the following statements: (1) Every observable
has an Hermitean operator representative; (2) Every Hermitean operator
corresponds to a physical cobservable, In 1952, Wick, Wightman, and Wigner”
challenged the symmetry of this quantal.correspondence by introducing the
concept of superselection rules, i.e., assertions which declare certain
Hermitean operators to be unobservable in principle. To embrace superse-
lection rules with minimsl theoretic change, the word every in (2) is simply
replaced by some: (2') Some Hermitean operators correspond to physical
observables, Although this particular proposed variation turns out to be
irrelevant in the present context and will henceforth be ignored, it does
suggest that the universal correspondence proclaimed in (1) and (2) is less
than sacrosanct.

As we sghall see later, Just as superselection rules challenge the
every in (2), an important facet of the compatibility problem.hinges on
the every in (1). Accordingly, the need will arise subsequently to distin-
guish between different "degrees" of operator-observable correspondence,

For this purpose the following terminology will be adopted: Strong

*In postulates and theorems, the term " (1 -measurement" refers to the
Primary quantum measurement construct M, (@).

| Reprodced with permission of the copyright owner. Further reproduction prohibited without permission.
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correspondence means that both (2') and (1) are assumed; weak correspon-
dence means that the Correspondence Postulate inclides (2') but not (1),
as in Pl above,

In subsequent sections, the relationship of this choice of correspon-
dence schemes to the problem of compatibility will be developed, and
eventually it will be demonstrated that only the week type (Pl) is logic-
ally acceptable,

Several"elementary" quantum theorems will now be stated and proved,
Although these proofs are not new, we shall nevertheless reproduce them
in some detail in order to show théir independence from strong correspon-
dence, Strangely enough, although the content of these theorems is well
known, the fact that they are theorems, i.e., derivsble from Pl and P2, is
rarely acknowledged. Instead, they are often given ‘as extra postulates
(or conjured up heuristically) in quentum textbooks; such an approach
easily gives the impression that Pl and P2 (or the equivalent) are mere
guldelines, whereas in fact they rigorously imply all the denersl proposi-
tions of quantum statics.

Thl: For each néia.n value functional m64) there exists an Hermitean

operator 63 such that for each A,

m(A) = T((”A)

Proof,?’ Let fcpg be a conplete orthonormal set, and A,,k—-<‘ion ,/4 c&>

Since A is Hermitean, /4.&,‘ —-,4,,@, i.e., EQ,A.QA E@Ank EQMAR ﬂm/]m,

Since ECPB is complete, Z P 1. A may therefore be expressed

as follows: A = (z%)/}(z )——ZPAP =Z14>An<%]
—-zzq9>Am<4°/ "
2,004 <A | + 14><8 | ) Ro Ay,
+Z 18> <] — | 4> <8, ) Son Agen.

R<n

MReproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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It is easily verified that the following operators are Hermitean:

5 =/‘pn><cpnla

n

K (n40) = 1> < b + 1u>< ),
Kint) = < (14> 4l — 12><4]).

Thus A now has the form of a linear combination of Hermitean operators:

A=ZAnlg + Z, K0 RAn+ = Kor, %) 9 An,
Now by F2 the mean value functional M(A) is linear. Hence

m (A) =3 Am 1 (5 ) + 3 [CeAien m(Kort) - S Ay Rioe)]
- _% PM&A'% zW(PA)a

where is defined by its matrix elements:
enn = m( n _
2= 51 (Kln,0)) + -g-«cm(/((nqw),%< N,

e T (K(’B *)) ~fm (/?(n,%)), RN,

Finelly, by P2 m(B) is real for any Hermitean B, in particular for
f?pn) K(n,#e)) K(nﬁ). Thus 69; @é:, i.e., e is Hermitean. Q.E,D.
The operator e » known as the statiétical operator or demsity oper-
ator, is not only an "index" of measurement statistics, but is also the
seat of causality in quantum physics. For this reason, e msy be called
‘the quantum Btate of the ensemble to which it refers. The general "law of
motion" is given by the following axiom:
P3: (Dynamical Postulate) To every type of closed* quantum system
there corresponds a linear unitary operator;.T‘( the evolution
operator) such that the temporal development of the density oper-

ator for en ensemble of such systems is given by
PO =T (i, ) (1) T, .

*In general, open systems, i.e,, those interacting with other systems,
do not evolve causally by unitary transformation. Thus composite quantum
systems with interacting constituents are in this dynamical sense indivis-
ible. (ef. J. Park, thesis, Part I.)

Reproducéd with permission of the copyright owner. Further reproduction prohibited without permission.
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In the following theorems, we assume the Hermitean operators have

discrete spectra; similar propositions hold for the continuous case,

Th2: The probability Vlé_(%':‘o)that an ({ -measurement on a system
from an ensemble with density operator P will yield the A-
eigenvalue a—k is given Dby

W (s ) =Tr (P Far)
where ﬁkis the subspace belonging to Aegeo _
Proof: W (a-n 5 F) is (by the physical definition of probability)

the mean value of the observable q:' (a) where %is defined by

/) oL = ak
g: @) = O, F a«j
By P1, $ (A)<~> + (a) . Hence, by Thi,

me (B ) =Tr (p ).

Consider the spectral expansion* of A and form G—’* (/4)

=%
()= gp%k ) ;r =
“ W, (aﬂ)()) -Tl’-‘((ﬂ ﬁ) Q.E.D.
Proof: Consider the trivial observable QQ' defined as follows:
measure any observable Cl 5 whatever the result, we shall say that an
é‘ -measurement has been performed with numerical result unity. Sym-
bolically, é—?-'-" @“\'(a« ) where ﬂ:.(o»):: I . The operator cor-

responding to & i1s therefore
o~ P
) =2 FCOR=Z Ry =1,
the ldentity operator.
Now, it 1s obvious from the definition of Sl that <o._0 >=1q

hence 7‘}:‘((01)—":- -T);rO"—‘-?/- Q.E.D,

*Here we have allowed for degeneracy; however in later sections spectra
will usually be assumed nondegen rate. The eigenvectors belonging to eigen-
value ., are denoted by Xy, . ol = /52, ...

N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Th4: The only possible results of (, -measurements sre the eigenval.-
uesgakg of A, where A&—> a.
Froof: The probability Z that an (L -measurement will yield a

number which is not an A-eigenvalue is equal to the mean value of the
observable &(a), where

1l, & not an A-eigenvalue
L) = :

O, a an A-eigenvalue
The operator to which .81 (L) corresponds is

&(A) — %‘&("F") Eyn = 2_ (O)@n — 0
Hence Z=7;;(€0) =0, As is customary in scientific espplications
of probgbility theory, we assume that zero probability for an event
means that the event will never occurk. Q..E.D.
Th5: The density operator is posi{;ive semidefinite,
J?roo:f': The projection operator 6 3 lgé—) @ , has elgenvalues
0, 1 (4 arbitrary). Thus by Thl*x <@> =0 . By T,

<@>:7;:(€8) Hence for a.'Ll-EP ’ 7?(()/2):‘- <CP><J<P> 2z 0,

i.e., ?Mis, positive semidefinite, Q.E.D.

Although a1l of the foregoing theorems required only weask correspon-
dence, they would of course still follow if Pl were replaced by an axiom

of strong correspondence:

P1S: The set of physical observables is in one-to-one correspondence
: with the set of linear Hermitean operators on Hilbert space with

; complete orthonormal sets of eigenvectors. If A€—> (L, then

Fh)<— F@).

* From a practical viewpoint, this mskes sense; however, in the ideal
case of an infinite ensemble, the interpretation of zero probability can
at best be that the event in question is of measure zero in the sample
space of interest.

**Ignoring superselection, we assume that every g represents an
observable. :

o

Repréduced with pérmission of the copyright owner. Further reproduction prohibited without permission.
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A cursory examination of P1lS and P2 seems to suggest that nothing
about simultaneous measurement could ever be derived from such axioms , for
in them reference is made only to measurements of single observables, i.e,,

(/1’[, (a) Indeed, the absence of a similar Joint measurement construct

l/i’(, (aJ 6,-~) appears to Justify the conclusion that quantum theory ie

[P

silent to the problem of compatibility and that in order to discuss simul-
taneous measurements at all P2 must be augmented by some kind of Joint
probsbility postulate. We shall see later (sec. U4) that this "silence" is
illusory, that P1S and P2 do in fact place severe restrictions upon simul-
b taneous measurements,

To approach the problem of joint measurements from an axiom set refer-
ring only to single measurements, it is necessary to develop a theory of

compound observables, i.e., observables defined as functions of several

ordinary observables. Then information regarding joint measurements can

be extracted from an analysis of single measurements defined as functions

r‘,-}.{ of the joint measurement results. For example s & compound observable ?(ﬂ,@)
P may be operationally defined as follows: measure a and @ simultaneously,
substitute the results oub into the function S (2,b); the value F=F(a ,b)
is then the result of the ?(a,@neasurenent. Then by P1S, there exists

an operator F to represent q-\(ﬂ,@; hence if F is known,q:(ﬂ,@)-neasurenents
are subject to quantum mechanicsal analysis, and in this sense Joint mea-

surements would be in the domain of the ordinary queantum theory of (/1{, ’5.

This leads us directly to an old and interesting quantum probleln’:3

8lven the correspondences A4—>a s B<> @ » ++o and a compound observ-

able FAB.), whet F corresponds to F 7 Note that if PLS is adopted,

S
¥
)

the existence of such an F is assured (1f a,e,m are simultaneously mea-

T
SR,

surable), for every observable must have an operator representative. If,

however, only the weaker Pl holds » the existence of an F such that

“Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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:F<$4;£Fﬁﬂq@%“)is not guaranteed. In neither case is there a general pre-
scription for finding F; but it is obviously necessary to require that all
deductions based on a proposed F be consistent with P2, the definition of
2;: » and the theorems reviewed sbove. In particular, Thl and Thk cuggest
especially useful consistency conditions. To formulate such criteria, the
following notation will be helpful. :

Let the sets E (/4) and??(gt) be defined as follows: E (,4) is the set
of eigenvalues belonging to the operator..A; 72(3:) is the set of conceiv-
able measurement results associated with an observable :I‘.' . When frr- = a;
%(ﬂ): E(A) by Th4., However, when ? is a function of (A and @ » for
exemple, it is possible that correlations between a and @ might preclude
the occurrence of certain a priori conceivable values of g;r, i.e., pre-
clude ceftain of the values ?(M,be) calculable from eigenvalues of A
and B under the a priori aasunpfion that all eigenvalue pairs (6’.* ) b.!)
are possible. In such a case, d§‘(}ﬁ) C:: ;%Z(QQ) . Finally, for a state

P, 1et W(agshyye- P) denote the joint probability that simultan-
eous a_J @_’ v+ -measurements yield (O ) b‘e getoe

Iwo consistency conditions may now be expressed as follows: If
Fé—ﬁ?(a_)@;”.> s then

(C,) %W(ﬂmb‘e TP €>g:(a~n3b‘e,...) =7;'((0F), for every P)
CHEF) €« nI[F(a,@,...)].

It 1s easy to see that (¢,) arises from Thl and the definition ofq'—
while (C,) is needed to prevent conflict with Thl, However, the usefulness
of (Cw) must be immediately questioned, for the joint probability W is of
course unknown. Indeed the search for W is an important phase of the com-
patibility problem (cf. sec. 8-10). Nevertheless, condition GCQ is not
80 mute as it appesrs, since for the proper choice of iF', it becomes inde-

pendent of the form of W (cf. sec. i),

: Reprodced With permission of the copyright owner. Further reproduction prohibited without permission.
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It will be noted that both Pl and P1S include explicit postulation of

the correspondence $ (A)(—-) @-(a.), and the above survey of the proofs of

theorems 1-5 indicates clearly the value of that rule, Nevertheless,

HRTEINATS e T ey Ty PR

later developments could cast doubt upon its necessity as a postulate un-

less there i1s good reason to regard it as indispenssble. Since Th2 (1.e.,
the form of Wé ) is the cormerstone of practicael calculations in quantum
theory and is therefore not a proposition which could easily be challenged,

the following theorem indicates strongly that the correspondence @(A)(—-}@(d)

i could not reasonably be removed from the quantum axiom set,

‘ Consistency Theorem: If Vva mge) -:.:Tr\_( F g‘;n) and if there

exists en operator F such that F<4>T(2), then F = (1), where A<=> ().

i Proof: The operator F must satisfy consistency condition (C‘,) :

Z T (p By,) Ftaw =Tr(pF).

. Thus 'T}.L‘D ( F - %: (2ge) Pﬁen)] = (O for every e » Which implies
F = %?(a*)@*z ZF(A). (Note tnat @) is also satisfied.)Q.E.D,
The F(2) which has probsbly received more attention than any other

1s a fairly complicated one: Q:(A) = (a_— <A >)Q> Wwhere

<O> 15 a real constant vhich 1s Just the arithmetic mean o UW,()} on

the ensemble of interest. Using P2, we may write q((L)= (a,—m(A))g",

then by the correspondence rule In P 5 Q:(a)é—) (A "'M(A)i)%

By definition,

(a)= mL(A-mA1)*] = < (A =<a>)*>s

Aa » sometimes called the standard deviation, is a common statistical

quantity measured in the obvious wey &as & function of measurement results

from an ensemble.

A e AT e I e
e ey S e e =41

Historically, ACL has often been linked erroneously to the problem

SCAESS S Ak

SRR
2EY

=2
AN,

of compatibility by way of what is perhaps the most widely misunderstood

theorem in quantum mechanics--the Heisenberg uncertainty principle. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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is not the place to dwell up‘on its misinterpretations; however, a few re-
marks are nceded in order to dispel the popular contention that the uncer-
tainty principle places restrictions on simultaneous measurebility., First
of ell, precisely what is the uncertainty Principle? It is a theorem,
rigorously derived from the quantum postulates; it states that under fairly
general conditions,

AL 2B ?.—};/m(EA,BJ)L

where A, B are Hermitean operators representing quantum observables a:@
and Aﬂ,d@ signify the standard deviations for collectives of a— and @ -
measurements,

Hence this remarkable theorem has the following physical significance:
Given two identical ensembles of quantum systems, if a-neasurenents are
performed on one ensemble, @-neasurenents on another, then the quanti-
ties AL, AG » calculated from the measurement results, will satisfy
the reletion Aa.A@ P2 '&‘)m (EA; B])/ '

The principal point here stressed is that 4l and d@ have physical

meaning only within the context of statistics. It is therefore illogical
to interpret the uncertainty principle as a denial of the possibility of
simultaneous measurement of a and (8 upon a single system if EA.) B]#OD
as has sometimes been done. The only sense in which w@ way refer to

a single system is purely statistical, i.e., to an ensemble involving one

system sequentially measured and reprepared. Furthermore it should be
noted that AaA@ » 88 presented above, is not even calculated from simul-
taneous measurements of a and @ perforied on each system, Whether or
not that is a meaningful alternative method of celculation remains at this
point undecided and will be deferred to later sections. For the present,
it suffices to observe that whatever conclusions are reached concerning

the notion of compatibility, i.e., simultaneous measurability of several

Reproducd‘l\)vith permission of the copyright owner. Further reproduction prohibited without permission.



observables on a single system, there can be no conflict with the uncer-

tainty principle, a relestion involving statistical Properties of measure-

ments of single observables.

Finally the uncertainty principle is often interpreted not as a denial
of simultaneocus measurability but as a statement about the accuracy of
simultenecus measurements of non-commuting observables. For the interes-
ting #pecial case of position ?/and momentum ?(whose operators satisfy
D() P]‘-'uj?l) this interpretation typically runs as follows: It is impos-
sible to measure simultaneously 7( and W exactly; the product of the
"inaccuracies" A%A@ is never less than what the uncertainty principle
allows, i.e., A%A @2:}{# . bProperly understood as physicists' jargon,
this interpretation of the principle is not too objectionable, for its im-
plicit meaning 1s the same as the more careful explanation abova, To see
this, it is orly necessary to realize that the phrase "to measure simul -

taneously /?/ and ?exactly" here refers experimentally to a collective of

5(- a.nd@- measurement results, each obtained by a measurement performed
upon a member of the ensemble at some given time relative to the prepara-
tion of that member. From such a collective the term "exact" draws its
physical meaning; thus if y-neasurelients are performed on an ensemble
of identically prepared systems each at the same time relative to prepara-
tion, and if all these results are identical, experimental jargon would
say that "an exact position measurement has been made,"”" since Aﬁ/ =0,
To éunarize: whatever propositions about Joint measurements may or
mey not be consistenily incorporated into quantum theory, the uncerteinty
principle remains unscathed so long as its interpretation does not trans-
cend the content of its theoretical statement and proof by making unjusti-

fied references to Joint, rather than single, measurements. Conversely,

the uncertainty principle is not an a priori restriction on any consideration

Reprodc;ad with permission of the copyright owner. Further reproduction prohibited without permission.
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purely about joint measurements; as noted earlier, perhaps the principle
can be generalized to cover joint measurements once a theory for the lat-
ter hes been devised, but no such requirement need be stipulated in ad-

vance, Indeed, the uncertainty Principle is irrelevant to thé problem of

compatibility.

3. Irivial Joint Measurements and Commutativity

There is one type of Joint measurement whbse consistency with quantum
theory is certain, for it involves the performance of only one measurement
upon the system. The resulting number is then used to generate a set of
numbers through a set of established functions; hence, the simultaneous
megsurement of a set of observables has been perfbrned; albeit in a rather
trivial sense. Accordingly, Joint measurements performed simply by arith-
metical menipulation of one measurement result for a single observeble

will henceforth be called trivial Joint measurements,

The question then arises as to whether the Joint measurement of any
two Observebles is reducible to a trivial Joint measurement; if 50,
quantum theory could embrace the concept of simultaneous measurement in a
very natural way. However, the correspondence rule $ < A)é" @?(d_ ) may
be used to prove that any two operators Jointly measurable in this trivial
sense necessarily commute., To see this, assume the existence of an observ-
able é and functions %‘& such that the observables a—_;@ are expres-
sible in the form'

A=F(¢) , G=2(&).

By the ebove correspondence rule, if C e—;é C 'b':n = ¢ #n ’Z ‘FQ‘ )

FE) > FC)=FZFen Ry,
Q(E)m2CO)=ZaCIE, .

| Reproducd with permission of the copyright owner. Further reproduction prohibited without permission.
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Since two different operators cannot correspond to the same observeable¥*,

it follows that A=Q:(C), B ==,&. (C) Hence
[A,B] :%Q—‘(cn)g_? (C*m)[g,’g, )%._/7 — )

The trivial joint measurements thus do not exhaust all a priori con-
ceivable simultaneous measurements. But this does not imply that noncom-
muting observables are incompatible; it merely establisﬁes that they are
not trivially compatible., Nevertheless, since L_AJBJ':—O is (1) a
necessary condition for trivial joint measurability of (. end G and (2)
the only condition under which MA@ =0 may hold, it is sometimes
claimed via a misinterpretation of the uncertainty principle that the only
simultaneous measurements permitted by quantum theory are the trivial ones,
that commutativity is the mathematical eriterion of compatibility. How-
ever, in view of our preceding remarks about the uncertainty principle,
such a position is evidently illogical.

Although the notion of trivial joint measurement is not an edequate
basis for a general treatment of simultaneous measurements, it does pro-
vide a means for deriving the Jjoint probabilities associated with several
coygtig observables. (The problem of joint distributions for noncommut-
ing observables will be explored in sections 8-10)

If (1 end @ are simultanecusly measursble through an suxiliary observ-
sble 2 , then joint probebilities for the resulis of M (A) ena M, (B)
are calculeble through single probebilities associated with M(é’) Given
A, B satisfying the necessary condition EA ,8_]::0 » the problem is to
find ﬂ?,& and ({3 <—;C such that

A<« A=F() <> F(t),
B> B= )« (&).

*1f (<A, and also af"A,L, then for every ‘03 <A>= 7;((9/4,) -:7;//,42))'

but this implies A, = A, -
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By a mathematical theorem generally omitted from standard quantum

textbooks, the condition [AJ8]=018 sufficient to insure the existence

of %b— s and c such that

A = ﬂ:‘(C) 3 B':d(C)
While some cases of the general theorenare rather complicated, it is not
difficult to prove the theorem for operators A, B which have discrete
spectra, Consider, for example, the interesting case where A end B con-
stitute what Dirac called a complete set of commuting observebles, This
means that the set of common eigenvectors (the existence of which 543 BJ=‘-—0
assures) can be lsbeled so that the eigenvalue equations teke this form:

A 'b:m - a—n qu

B T = bm Tom .
Now, let chédenote e set of distinct real nusbers and define Q—"; &
by the relations

an=F(cnt) y b= (Cy,)
This determines the desired C; its spectral expansion is just
C= *Z&C“ )%ee'
e () = iy = Z a0 B,
&(C) :%&(&gg}%e_—:%be pﬁe = B,

(Note that (T_.J &), and C are not unigue.)
To find the joint probability W(a%bl;(o) that Vt{,(ﬂ d /1{, ( @)
will yield (g, by) for the state e , we simply calculate V\é (Cre (0)
the probebility thet WM, (C)will yiela Cyet s by the standard quantum mecha-
nical rule for single probabilities:
W, by s )= W, (e p) =Tr(p ).

The non-uniqueness of Q: .& s and C is now seen to be unproblematical;

?
W(a%\b'p) does not depend on them. (As always happens in quantum theory,

in the continuous spectrum generalization W becomes W, & probability

| Reproduced with E)ermission of the copyright owner. Further reproduction prohibited without permission.
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density.) It is easy to illustrate this theorem by deriving the familiar
Joint ::o-ordinate distribution of nonrelativistic wave mechsnics. Consi-
der the function space whose functions (vectors) have the form CP/Q( ,Lbs)
The operators corresponding to co-ordinates 7 and ij— are postulated to be
multiplication by x and y, respectively; but it is not necessary to pos-
tulate further that CPX# is the. joint probability density for M,(Wa.nd
1/1'{;({3). Since [ X, yJ:O ,. we may conclude that 7( and a are Jointly
measureble in the trivial sense through an auxiliary observable é(——) C 3
the eigenvectors of C will be ’(9.(:%(?(32>= 5(7( “77)5(9-12,) . From the
.generalization of the preceding theorem to include continuous spectra, it

-

follows that the joint probebility demsity for % and g, in the (pure)
state €= 5 is given by s
W'(ﬂ’u?ls E):: Wé (Cx'?‘ 5 g) = /<’a;(\/‘9: 96}9}/
= | oy S 5 4-4.) et )
- ()Dir(%aya)‘p(%:?J .

For this simple example it is possible to see empirically the differ-
ence between trivial and nontrivial Joint measurements, Consider a plane
fluorescent screen upon which s rectangular cartesian co-ordinate system
has been established. Whenever a glowing spot appears on the sci‘een, a
Joint measurement of ;( a.nd."j, for the impinging particle may be made by
reading the 7( and g scales separately., Two numbers thus emerge, the ﬁ/—-
and %-neasurenents having beén performed nontrivially, To construct an
apparatus which simultaneously measures 7( and in the trivisl sense,
we require an observable é and the functions ) z? . A suitable observ-
able (E may be defined operationally by assigning to every point on the
fluorescent screen a single real number. When a particle strikes the
screen, the single number co-ordinated with the €lowing spot is regarded

&8s the result of a é ~-measurement upon the particle.

Rprouced With permission of the copyright owner. Further reproduction prohibited without permission.



25

If the functions q:'a.nd,& define a mapping from the single number to
the ordinary (x,y)-co-ordinates of the point*, the entire scheme then con-
stitutes & trivial joint measurement of %’ and ’f/dL )

The following basic assumption about the simultaneous measurement of
commuting observables underlies the joint probability theory Just outlined;
(§) ) If it is posesible to measure a and @ simultaneously in the trivial
sense, i,e., i £A>B]=‘-O, then the joint probability W(a.m, b'e; P)
calculated using an auxiliary observable é is valid for all simultaneous
a ) @ -measurements regardless of whether or not they are actually per-
formed by means of é -measurements. Strangely enough, this assumption
apparently never receives explicit statement though meny normal spplica-
‘tions of quantum mechanics would be difficult to Justify without 1it.

As we have seen above, even the derivation of the standard interpre-

tation of wave functions depends upon (J9) ). Indeed all correlations among

quantum observables are ultimately based on that assumption,

It is instructive to restate the content of (J. ) in a mathematically
definite manner which seems less ad hoc: (J‘_,_) The joint probability
W(aqe., b-e; P) ) [-—/4; B]: 0_’ is & unique functional of the state

P . Expressed in this way, the assumption is quite reasonable; it merely
requires that the state of an ensemble be sufficient to determine the dig-
tribution, as would be the case in classical physics., In particular, no
additionsl informsation regarding the method of measurement is needed to
obtain W; thus once a W for a gliven P is found by the method of trivial
Joint measurement, it is naturally assumed that this W is the W associated

with the given P independently of how (A and @ might be measured.

*It is true that such a mapping defies ordinary geometric intuition;
nevertheless, it does exist, for the line and plane are of the same order
of infinity, viz., that of the continuum,
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Suppose, however, that EA;B]#O Then the method of trivial joint
measurements is of course inapplicable. Does (Jg) still hold? Is.the
quentum state D alone sufficient to determine W's for Joint measurszmesats

of noncommuting observables? We shall study this matter in sections 8-10.

Finally, it is perhaps of some interest to know that the pPostulate

(& ) or (Jg) has the following trivial consequence: two simultaneous mea-

surements of the same observable CZ must each yield the same result. Form-

ally, ve may choose é: 62. ,@( é):’,&( f)=a/, Assignment of probsbilities
to :F(é)- and &(&) -measurements via ordinary quantal sanalysis of e--ea-

surements obviously leads to nonzero probsbility only when "both" Cz.-nea-
surements yleld identical results, viz., that of the suxiliary Cé,(E=CjQ)

-measurement,

k, Von Neumann's Theorem: Noncommuting Observables Are Incompatible
The popular belief that the only compatible observables are the triv-
ially compatible ones was reviewed in Bection 2, where the uncertainty

principle, the standard basis of this dogma, was presented and found irrel-

evant. However, there exists also a rather formidable logical demonstra-
tion that if two observables are compatible they are trivially compatible,
It is an elegant theorelggue to von Neumann which, strangely enough, appears
to be almost universally ignored, even by proponents of the viewpoint for
vwhich it is the strongest support. Indeed the main impact of the theorem
seems to have been to influence -athenaticiandminterested in modern physics
to defind-the term "simultaneously measurable" by the commutativity condi-
tion for trivial Joint messurebility, which is not very helpful in.view. of
the fact that both words in common physical usage already had other defi-
nitions, as explained in section 1. Because von Neumann's theorem is of

central importance to the problem of co-patihility, it is appropriate here
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to scrutinize it carefully, paying specisl attention to the hypotheses on

which it is based.

able)., If a and @ are simultaneously measured on a system, two numbers
will result. Now, suppose those numbers sre added (subtracted) and the
sum (difference) is considered to be the result of measuring an observsble
3 (‘é’) expressed symbolically by .&—QJ'(B W d 6) ¢ Clearly if a,
and @ are compatible observables, .3 and QB' are observables. Therefore,
in accordance with a widely accepted quantal postulate (P1S) there must
exist Hermitean operators S and D representing observables 48 and.{92
It is easy to prove that i# 5 exists, S = A - B,
To do this, recall the consistency ¢riterion (C,) of section 2 which
the operator S must satisfy:
(C;) %W(ﬂ%>b£ > (9) @(ﬁ« bl) Tr ((OS ) y for every P
Here Z (Aa, 6 _) A + @ therefore
Z[S W, b, f)]ﬂk +% =R (pj 7_(/5)
Because of the additive form of » we see that the unknown joint proba-

bility W( 4_)(0) may now be replaced by the well known quantally prescribed

marginal probabilities:

%W(am”(o/ & besp)=Tr r(eh,),
;W(ﬁw,bg”ﬂ) V\é,(a—-nyf) 77‘((”)2(*)

Hence, for every

ST )aw+ SR L =Tr (s5).

This determines S uniquely, as follows

T(pS)=Tr (p Zo% «W)rr(@bz

_T(EgA)JfT'(pB)
=Tr (0(/44- B) ], for every F
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Therefore = A 4 B.

Similarly, D = A - B,

From the correspondence rule @_ \/_ﬂ_.)é—)@m,)of section 2 together with
those Jjust derived there follows another:
ab<> & (AB+8BA)

u‘here QB denotes the ohgervable measured by nuitiplying the results of

simultaneous measurements of a and @ . The argument proceeds as follows,
2 2
If a and @ are compatible, -X and ﬁare also, as well as 2 and 08.
1702 AR
Thus Q=4“.‘(J—;§ is an cbservable, and by the just mentioned correspondences,
| 2 N2
its operator must be R—"-‘- Z(S"D ) . To see the meaning of this strange
operator, suppose that a joint measurement of a. a.nd@ Yields the numbers
a and b. Proper manipulation of a and b Yields & number r, which is by
2 2
definition the result r of an «-leasurelent: r= 'f; E(a&b) —(a.-b) _7= a.b,

1
!
\
t
)
i,
:
!

Hence, the operator ﬂ'or the product a@ must be
=4 [(AMBT—(A-BY =+ (AB+BA).

Von Neumann's simultaneous megsurability theorem is based on the cor-
respondence rule just derived. It should be noted that neither this rule
nor the ones from which it follows are arbitrary postulate‘s; they are all
deduced from the axioms, as demonstrated Just above and in section 2., We
shall now state von Neumann's theorem and review the proof since it is not

well known.

Simul taneous Measurabilitl Theorem: If a and @ are compatible and

QHA, @4—9 B, then
[A,B]= o,

Proof: Since a and @ are compatible, it follows that any function

of a and G is observeble (simply by measuring a. end @ simultane-

ously and using the results to evaluate the function); in pa.rticﬁla.r,
2 R .

consider the function a @ By the correspondence rules discussed

——
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.. .above, até-? ,‘4% and_ hence
af@ <> AB +‘ BAQ.—. P

/
But the product correspondence rule also implies

a*B= a(a@)éef(/} 4Bz B +A-5%MA)
-——-(A‘B +2ABA+BAY=F

Since quantum theory cannot tolerate the ambiguity of having several

operators for a single observable (cf. fn., p.22), we must set E ::E

and accept the consequences. The resultant equation is

ABA=-k(A*B + BA).

Moreover, the same argunent is gppliceble to any functions 4?(&.)

and ,2? [ @) thus
WFU)LB)FA)=%[FW)A(B)+& B)F w].

For simplicity consider A and B having discrete spectra (the general
case is not essentially different): A Koy = CC.%%{ 5 Bé@ zé/gz,
Define ﬁmctions%‘;z and éas foliows:

@)= Sy 5 L (b)=5,, .

Q&(&L)é‘?ﬁ- N=="% na’&En"‘E
< «B)e&z@)——ng be @m

Substituting these opersators into condition (l), we have for each -& ,é
I

}5{@%—-—}(@@ AN

E But )ée-ée

| Hence(a)Pé Qanlze-}-(g B)
(3) B%P = (Bog [2 + BEK>

Multiply (2) on the risht by
Multiply ( 2) on the left by

(u)BﬁP ,,(R""“(B*P %d—};B)

Subtract (4) from (3):

! qﬁﬁg—jgelgﬂza'

l

—
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Therefore EA: BJ:: %C{% l?@[gRJ gg]: O

This completes the proof of von Neumann's simultaneous measurability

theorenm,
Expressed succintly, it seys that if a and 6 are compatible, they
are trivially compatible, for their operators necessarily commute. Unlike

the semi-classical gedankenexperiments, the vague interpretations of the

AL bl

uncertainty principle, and some strange philosophizing sbout subjective
wave packet reductions, the foregoing theorem offers an argument strong
and clear in behalf of the propoaition that non-commuting observables can-
not even in principle be measured simultaneously. It affirms that the

| very notion of general compatibility simply cannot logically be appended

| to the established theoretical structure of quantum physics, unless the
latter is somehow modified, This possibility of nullifying the theorem by
such a basic alteration in the quantum postulates will be considered later.

”Save sug-

Evidently inspired by the preceding theorem, various suthors
gested that quantum mechanics should be rephrased in a new logical. frame-
work which would properly sllow for incompatibility. We intend to show in
subsequent sections that von Neumann's mathematics in fact does not estab-
lish incompatibility as an intrinsic.quantal property but rather proves
something else. Hence, if our analysis is correct, any "quantum logic"
designed to embrace incoipé&ibility is motivated by and founded upon a mis-
taken interpretation of quantum pPhysics. Accordingly, we shall not review
such a system in any detail; however, it is instructive to expose certain
salient features of "quantum logic" to establish clearly its relation to
von Neumann's theorem,

Propositions, or questions, are easily introduced into quantum theory

as functions of observebles, For exemple, consider an observable

aé-PA'-‘- %ak Ek and the proposition CPh . "M(a)would yield @, ,"
_—
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The proposition @L is Just the observable measured as follows: measure

a ; 1f G, results; assign @ the value 1 (by convention); if a-uR(?-‘an)
results, assign (Pthe value 0. In short; @ ﬁ/ﬂ/)wbere ﬂ."a- dsrined

vy % (Aw) = Sanm Hence @4—9;7:64) %@—“ (M)%~E
Similarly, a suitaeble projection operator may be found for any pro-

position involving commuting observsbles 3 but because of von Neumsnn's

theorem, any compound proposition involving noncommuting observebles must

of course be regarded as undecidable, or ebsurd, For any two compatible

propositions, @and g it is possible to find operators corresponding

to the logical relsations @"or" Q—-@U a and @ and" Q""‘ @Dn @.’,
Puva<— PrR- PR,

PN G« FR.

The change in logic sald to be necessitated by quantum mechanics has

to do with the classical distributive law 'of propositions:

Pnauk) =(@na)u(®ne).

Suppose A, B are operators in a two dimensional Hilbert space, If

[AB1Z 0O , ema Pes }%, Qe);)@é%QD then be-

cause of von Neumann's theorem, the distributive law cannot hold in quantum

: theory., To see this, note that
PnavR)«—K(R+E-Ek )= H1-0-F
‘ but (GD/) Q)U((Pn @) is an absurd proposition because neither @/) Q
g nor @/l @ is measursble since they are compounds of a and @with
M 8 ] # 0 Thus, since the distributive law apparently cannot hold in
quantum theory, it has been suggested that "nondistributive" logic is re-
quired for modern physics. |

Contrary to this view, we shall later show that once von Neumann's
theorem is properly interpreted, quantum theory provides no reason to

eradicate the distributive law of logic.
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5. Counterexamples: Noncommuting Observables Are Not Incompatible

Mathematically speaking, von Neumann's simultaneous measurability

theorem is beyond criticism. Neither logical nor algebrsic srrors ore in-

J

volved; the theorem is a legitimate deduction from P1S and P2. If, there-

fore, one could find a counterexample, i.e., describe quantum mechanically

a physical process fully certifieble as a simultaneous measurement of, say,
position and momentum, then the basis of von Neumann's theorem would re-
quire reformulation. It would then establish not the incompatibility of

physical observables but rather the inconsistency of the gquantum mechani-

cal axioms, In this section we shall discuss the coAstruction of such
counterexamples.

It is instructive to consider first a typical quantum theory of mea-
surement for a single observable,‘ viz., the "time-of-flight" method for
measuring the momentum Q) of an electron. We assume that the rule of cor-
respondence for position X is an ideal one which might consist, for ex-
ample, of the direct observation of a coincidence between a scale marking

and & macroscopic spot appearing on a photographic plate in response to an

electron impact,
Suppose we have an "electron gun" which prepares the state = 5 .
Using nonrelativistic wave mechanics, the probability density Wé (70 51-}-)

for \/M,(@at the time of preparation is easily calculated:
i - 2
Wolpst) = |<To 2| = | (o o™ F pt)
where Q%—e P= 2“%\' > T, = (zzrt)'k,w/o %3'-3 P77;, =70777,,<7;,u77ﬁ>_-.g(7¢.7o,),

This distribution is the quantum mechanical touchstone for deciding whether

or not a proposed experiment which generates numbers via the established

operational definition for M (unalifies a8 a momentum measurement scheme
Mz(@). If the numbers in question are to be regarded as (/1'{; ((ezresults,

they mist satisfy the theoretical distribution We (7/) $Y),

—
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Let t = O be the time when the electron is known to be in the pre-

pared state €= 5 . The wave function #(z’.)j:a) is assumed to be of com-
pact support, and it is convenient to set up the origin of the x-axis so
that the interval where 3‘(7)# O is (—74, ,2{,_) . The L/t,(g(@)-procedure,gis
simple: wait a very long time (J‘-—)vo) as the electron moves r_re_el_y, then . -
measure the observable @@(}'—‘4‘, where m is the electron mass. The re-
sultent number then counts as the résult of l/l‘{,(?)at t=0. To Jjustify
this operational definition of @ quantum mechanically, we must prove that
the probebility for t/%(é/to yield 44¢€ (74, ﬁ) at t = O equals the probaw.-
pility thet MEEE)]y1e1as MEE(4,74) ast> c0 . In short, it must
be shown that

We Lpetpn )34 @0l =\N [ GE € )3 it ), a=d].

To find %L/Q(,ﬁ, given zﬁ(ﬂ), one must use the general quantum theo-

retical "law of motion". In the present case, fs g and the law of motion

reduces to %:mb) % » Where T is the free evolution opersastor for the

electron. In function space, this transformation is given by

Yint) = Vamchr— 4 '2—”%’;52?”[‘ ‘%’v" (%% = %/-Q)] #2490,

" Weo [BE £ 1) s Bn] = Wy L (B> )%t 4]

- fﬁ/ Wl = ﬁyjﬁfm /_9;4—%{% ) Ww»é«./f

Changing the varisble of integration gy letting x = e ? we obtain

\Aé'(«)['”}'zf W) s W%‘*j*‘%/@%m& ji;;zj Wx)oé/./z
Since 31( %)) = Otor ’/Y, ¢ ("'7(0)9/0) ﬁ the ;ntegral over ?(, is Just equal

% ~ .
to —Sﬂ(—?\’ﬂ%‘ X,t— %&]M o and we may take the limit T—» 0o

inside the integral without difficulty. The result is then

W cipmrstaostod= (| sl
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‘But this equals f%[yg#@(,ﬂ]p{,}a ""‘% Eff(f“ﬂ‘n 7"(”30)-]’
Hence the resu]l.ts of "direct" (’X)—measurements performed suffici-
ently long after the preparation of WQ/ 0) will be distributed Just like
the theoreticsel results for o/%f((?)upon #( 7}’ 0) This time-of-flight
arrangement is thus fully certified quantum mechanically as an operational
definition of @ (for pure states #{ﬂa} of compact support)., Because
quantum theory can make orly statistical predictions, no further guarantee
that this method "really" mekes @-measurements is required. Indeed fur-
ther quantal analysis of the question is theoretically inconceivable, Of
course it is possible to note that a free classical particle initially
confined to (—%:;7(0) would, by Liouville's theorem, after time t have momen-

tum in the range « 7(
— -m-—- m o
P=F 5

and that as ;/‘—300910-9% . However, strictly speaking, this simple
classical demonstration adds nothing to the quantal argument Just given.
A serious theory of measurement should not rely on heuristic classical
analogies; it should establish its consistency wholly on quantum mechani-
cal grounds by matching probabilities in the manner illustrated.

With this understanding, it is .ea.sy to see that this time-of-flight
method for obtaining the result that J/V(, (&)at t = 0 would yield also

determines the result that M( Wat any time t > 0 would yileld. This fol-

Ay TR TRy T e ey e 7

lows from the fact that momentum is conserved in the free motion of the
electron; in quantum mechanical terms,

Wolpew, 1) 44 (1] = W Le (p,94) 5 20, #)]
Thus by the same reasoning which validated the time-of-flight method as a
rule of correspondence for l/i(,@at t =0, we can likewise regard the

results of (M[[?(y)]yf""o , &8 ;/1{, (@) -results for any t >0, In partic-

ular, consider that instant when the electron strikes the photographic

-
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plate and the result emerges. For that instant we may conclude with full
quantum mechanical Justification that l/t(;(e/zlould have yielded &(ﬂ')
where X 1s the result of the M(ﬂ/) Hence, contrary te the prohibitions
of von Neumann's theorem, we have an empirical method for the simultaneous
measurement of 7 and ? s two noncommuting observables!

Incidentally, it should not be thought that the physical unattain-
ability of 2" ->20 vindicates the incompatibility doctrine by preventing
the performance of & "perfect" time-of-flight <§)-measurement. Although
it 1s true even classically that time-of-flight (jymmeasurements are never
perfect for finite t (unless ex/at t = 0 is known exactly), nevertheless
classically and quantally the error inherent in the method can be reduced
below any arbitrary limit simply by choosing sufficiently large t, as
shown above, Besides, thelt->C¥9 approximation is not a special property
of 65662)-@ma3urements in general; for example, a magnetic deflection
method for Joint measurement of 9(and @wbich does not require t—> oL
will be outlined later (sec. 10).

There is a tendency among interpreters of quantum theory to dismiss
simultaneous measurement schemes such as the one just described as if they
did not in fact legitimately challenge the orthodox view that fx/apd (}D
for example, cannot be measured simultaneously. The usual argument seems
to have been originated by Heisenberg and may be summarized by his state-
mendqthat “the uncertainty relation does not refer to the past". In the
time-of-flight experiment, for example, by the time the €k$<§zvalues
emerge, the time to which they refer--the instant just prior to the elec-
tron's collision with the photographic plate--is past; and the electron 1s
then buried in the plate, According to Heisenberdm%uch "knowledge of the

past is of a purely speculative charscter, since it can ﬁever...be used

as an initial condition in any calculation of the future progress of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



i
g:
il
4

B

36

electron and thus cannot be subjected to experimental verificetion. It is
& matter of personal belief whether such & calculation concerning the past
history of the electron can be ascribed any physical reality or not".

In rejoinder to this distinctly philosophicel argument, we offer the
following comments:

(1) Knowiedge is a dangerous word to employ in discussions regarding
quantum measurement. From a strict quantal point of view an electron

never possesses properties fk§<F>, etc., of which one can conceivably be

knowledgeable or ignorant. There simply does not exist a preparation
scheme thich produces electrons always yielding the same % € -values
from %@-measurements 5 the relation m&zg‘ among standard deviations
i1s simply a quantitative expression of this fundamental fact., Accordingly,

measurement should never be described as though it increased knowledgg'by

revealing the actual, previously unknown, "velue" of an observable. Mea-
surements simply generate numerical results associated with certain opera-
tions and observations upon the system of interest., The meaning of these
numbers is pr&vided by the theory into which they are fed; in quantum
theory it happens that the numbers are not to be regarded as measures of
possessed attributes.

(2) It is therefore pointless to sey that the uncertainty relations
do not refer to the past. They refer to the standard deviations of col-
lectives of measurement results at any time, What the relations do not
refer to is measurements upon a single system at a single time; standard
deviations naturally refer only to measurements upon ensembles. Hence, as
explained in secti‘on’2, the emergence of simultaneous %’@-valués upon
measurement in no way violates the uncertainty principle,

| (é) In the time-of-flight method, the f&g -megsurement results refer

of course to the instant Just prior to the electron's impact in the plste,
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These numbers are indeed useless for predicting in classical style the re-
sult of a future 7 -messurement, but they are no more "sp;;:ulative'! or
lacking in "physical reality" than any other measurement result. Their
lack of predictive power stems from the fact that the "motion" of quantum
systems 1s not governed by Newtonian laws. That the %@-values refer

to a past time is no special property of simultaneous measurements; it is

characteristic of all quantum measurements, The time-of-flight measurement
of @ alone referred to t = 0 although the result did not emerge until
2"—9 °0 « Nevertheless, such @ -measurements play a key role in the pro-
cess of empirical verification; for example, their statistical distribution
determines whether or not the state prepared by the "electron gun" is really
%L(X)O) . Indeed, if the physical significance of %?-values is a mat-
ter of "personal belief", then all measurement results for single -observ-
ables ai'e likewise of sélipsistic velue only.

We therefore conclude that the foregoing method for simultaneous meg-
surement of %@ is as significant as any other gquantum mechanical mea-

surement scheme, And its validity cannot be philosophized away.

The time-of-flight method for l/%(@)exhibits & curious feature which'
seems at first paradoxical. Only7 is "directly" measured; @ is then
measured by calculation of ?(7( ) Yet if @ #-(9() it follows (ef. sec-
tion 2) for the respective operators that P_—_—”V’-()Obhence E X)PJ =0 s which
is felse, To see this more acdurately, it is convenient to describe the .
time-of-flight method in the Heisen‘berg picture, where - 9( <> X @QP

%X, s Qe X=TXT, = TfPT

T being the free evolution operator. In these terms, it would appear that

the time-of-flight scheme is based on the relation P = ‘g’:“){fq /7‘ —-» o2,

But from this expression and momentum conservation ( P=_- E) s 1t follows that
..
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[X,Pl=Crxr; TPT] =[TXT, P] = [X, , "Xe1=0,

which contradicts L_ XJ PJ _.—=,¢:j1' 1_ .
The solution to this dilemma provides interesting information regard-

ing quantum measurement. The error in the above reasoning inheres in the

assumption that P_—:_”.:_r&' Just because @::_’”jj& is used in the time-of-

Iflight sxrrangement. Actually, the relation @_—;_— mj_é‘ holds only for ini-

 tial wave functions ?L%O) of compact support that develop freely until

the measurement of %. ,,‘7"-—9 ©O , 1In general, E)(_, PJ#O and no < exists
such that @——-44:(2). Nevertheless, this analysis reveals two interesting
points concerning quantum measurements: (1) Even if [A)B_];‘o so that no
general trivial joint measurement scheme for (A4 and 6 can be constructed,
it may still be possible, for certain states and measurement arrangements,
to measure @ as a function of (. (or vice versa). (2) Conversely, the
fact that @'—‘-%"\(a—) for some particular Ma(e) does not imply B_—" ?64),
However, as shown in section 2, if @:‘?:@) always, then the operator rela-
tion B=¥(A) 1s valid.

To conclude this section, we introduce another counterexample to the
simultaneous measurability theorem. Consider two quantum systems _5_) ) Sz
with observables 0-,,,6, aend agassociated with _S. and a2, respectively.

Suppose EA:;B]#O and denote eigenvectors and eigenvalues as follows:
6&__ _n o @W_ @ @)
A;o( = Oegn e 5 Aa. = e Xy "¢
Let S\ SQ be noninteracting but in-a correlated state:
= 0

2
Y= % Cp Ko ® A
It azhas an established operational definition, the correlation in ZZ
which relates M@)—results to l/t{,(a.z)-results may be exploited in the
standard way to construct an J‘(z(a:) As in the time-of-fq.ight /{'{2(@)

case, we must establish a theoretical matching between probsbilities asso-

ciated with N, (ﬂa)andg/‘{,(dr). stnce [A,, A J=[A®1 5 18A,]1=o0,
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a,end ag_may be jJointly measured (trivially) through an auxiliary observ-
@),

able (cf. section 3). The joint probability ( .71:) is therefore

easily calculated:

W(aw,a.'s ) = f(%P D o2 = [Cgl S.M-

From this expression 1t is apparent that vhen ./‘(, yields a‘-k a simultan-

eous /M,(af) would yield aflgi. Hence we have a.n:/%aa)scheme: to measure
al s simply measure azi ir a&w results, then d'_:(is regarded as the result
oz M,(A,).

Suppose @, s like az,, has an established operational definition.
Now, since the M(CZ:)Just outlined involves no interaction with _5_4 ) We
may perform (/t{,(g,)siuultaneously with l/"{z(al), and thereby jointly measure
noncommuting observables a, and 6,. Once agein von Neumann's theorem is

contradicted,

6. Strong Correspondence--the Axiomatic Root of Quantal Inconsistencies

The necessary deductions to be made from the last two sections may
be summarized as follows: (1) The quantal postulates (PlS, etc.) rigor-
ously imply that noncommuting observables are incompatible, (2)‘The same
postulates together with what would seem to be a normal scientific under-
standing of the term measurement may be used to describe empirical arrapnge-
ments which must be~regarded as legitimate schemes for the simultaneous

measurement of noncommuting observables, (3) Hence the standard postulates

of quantum theory are inconsistent. We must therefore re-examine the axio-

matic basis of von Neumenn's simultaneous measurability theorem and isolate,
if possible, the false hypothesis which ensbled the rigorous deduction of
this false theorem,

As explained earlier (sections 2, 4) in order to derive a theorem

about simultaneous measurement of several observables from axioms referring
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only to single observable measurements /M,(ﬂ.}, the notion of compound observ-

. able had to be introduced, subject to certain consistency conditions, (G/)
and (Cg) which would have to be satisfied by any operator corresponding to
such a compound observable, Condition (C,) was in genersl useless because
it involved unknown Joint probability distributions. However, in the spe-
cial case of the sum of two oObservables a‘l‘@ » the latter condition
assumed a simple form and, moreover, it even sufficed to determine uniquely
the correspondence A+ @@A"'B upon which the simultaneous measura-

" bility theorem was ultimately based. In fauct, once this correspondence is
established, the logic of the theorem cannot be doubted, as careful re-
study of its proof (section 4) will demonstrate.

We therefore direct attention to the correspondence a-f- @4—3 /4-/- B,
As Just noted, condition (C;) alone implied this rule, To be more explicit,
P1S guaranteed the existence of an operator corresponding to the observg'ble

a-l— @ ; that operator would necessarily satisfy (C,) and (C;) . It then

furned out that (C,) for a,'f‘ ecould be satisfied by only one operator,

A 4+ B. Thus condition (C:)was never used., This observation provides an

important clue in our search for the false hypothesis which made possible
the proof of von Neumann's (false) simultaneous measursbility theorem,

Is a,-l—@ really an observable? If not, P1S cannot be invoked to
assure the existence of an operator cc;unterpar’c. To establish the observ-
ebility of a,-f'@ » Wwe need only recall the last counterexample of section
5, which showed how two noninteracting but correlated systems _5, and -52.‘
could be used to construct an appropriate rule of correspondence for simul-
taneous M,(a,)end ;M,(@l). Since the experimenter is obviously free to add

the two results, it is apparent that a-/+' | 1s indeed observable.

Therefore, by P1S, there must exist an operator S such that a.-i-@'é-) S,
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For simplicity, let system §, be a "spin" whose relevant states and
operators refer to a two-dimensional spinor space. For noncommuting observ-
ables ﬂ, )®, » take x- and z-components of spin Dy and j.y . In terms of
the Pauli opersdators, we have

A=8,<>2(° L), B=24 é_,#_( _,)
Now, simultaneous measurements of a, and @, using the correlation scheme
involving auxiliary system 5 will by Thi4 always yield one of these eigen-
value pairs: (%‘-,-f) (a S .’2) ( ff 2);(—%;’?). (The two eigenva.iues of
any Paull matrix are 1, -1.) Hence upon addition to obtain aﬂ‘ g,-mea.-
surement results, only the three va.lues;, h— 3 O,—A— ere possible., To use
the set notation of sectlon 2,
’n—(dl"" 6/) = Z—.A—J O, }'-3

énd by consistency condition (Cg), ir a_,-f-@'(-) 5 » quantum mechanics
would be self-contradictory unless

C) &(5) & (4, 7"®:)
But (C,) must also be satisfied by S and, as shown in section L, the only
S meeting this requirement is, for the a ‘f’@ of the present example,

S—Z‘(;o)ﬂ“ (/ ) ﬁ(/-/)

Now, by an elementary calculation, the eigenvalues of this operator are
'I—%) % ;3 1.e., 5(5) == Z"— %g . Compgring the sets
NA+®) ana E(5), A, +B <> S , we find that
Na+®) N &G =HF.

Thus the only operator S capable of satisfying (C,) does not satisfy (Cg).
To summarize: a"f'@ | 1s demonstrsbly observable. FP1S then insures
the existence of <> (A, + @, . If the quantal axioms are consistent,
that S must satisfy both (C)) and (Cz). The unique S which satisfies (C;)
violates(cz) . Hence, the quantal axioms P1S and P2 are inconsistent.

This is of course the conclusion reached at the beginning of this
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section upon confrontation of von Neumann's theorem with the counterexamples
of section 5. This time, however, we have isolated the difficulty within
the initial hypotheses of that theorem and are now able to understand "why"

the theorem is false., The reason is simply that Pl1S--strong correspond- . .

ende--proclaims the existence of operator-observable correspondences which
simply cannot exist in harmony ﬁith the remeining postulates. Thus the
axiom set-«PlS, P2-~must be altered,

In view of the overwhelming empirical success of qQuantum mechanics,
it is immediately clzar that any proposed axiomatic modificati;n should,
if possible, be a "slight" one; i.e., it should remove the inconsistencies
attached to the problem of compatibility, but it should not affect the
normal applications of the quantal algorithm by revising or eliminating
any common theoretical ﬁbocedures. As we have seen, the troublesome cor-
respondences which breed inconsistencies are deriveﬁ essentially from two
quantal propos;tions: (1) P1S, invoked to guarantee the existence of an
operator to represent any given cbservable, and (2) Thl, which establishes
the general form of the quantum mean value functional, viz., 77(/,4).
Obviously, we cannot change Just Thl without also altering the postulates;
moreover, since that theorem is the basis for the highly successful quantum
theoretical state representations (the density operators), it is, practi-
cally speaking, not & reasonable candidate for deletion or even revision.
We are left therefore only with P1S to criticize.

In section 2, a distinction was drawn between the usual axiom of
strong correspondenée (P1S), which claims a one-to-one relation between
observebles and Hermitean operators, and a simpler axiom Pl, called weak
correspondence, which states only that every Hermitean operator represents
an observable., It should be clear that Pl omits just that part of PlS

which led to the inconsistencies discussed above. This suggests that Pl,
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not P18, should be adopted as the true quantal Correspondence Postulate.
The question as to whether this truncation of P1S to Pl still permits the
derivation of key quantal propositions such as Thl will be deferred to the
next section, where our advocacy of weak correspondence will be fully
defended.

If P1S is replaced by Fl, what does von Neumsnn's theorem resally
prove? It becomes a reductio ad absurdum proof that the correspondence

A+ @4—'7 A‘+ B and its consequence 0.6 é—?-k(AB + BA)

are not valid if EA 5 BJ-#‘O . To be specific, in the proof of the

theorem, at the stage where two distinct operators emerge to represent one
observable, one faces two logical possibilities: (1) Interpret this ambi-
guity as the failure of strong correspondance, or (2) equate the two opera-
tors to derive & condition on A and B for the existence of the compound
observables involving a and @, in short, a condition for their simul-
taneous measurability. As presented in detail earlier, von Neumann chose
the second alternative, which enebled his rigorous derivation of ms BJ=0
as the condition of simultaneous measurability,

But what of the other possibility? Is it not perhaps more reasonable
to take alternative (1) and to regard fhe conclusion from (2) as an absurd-
1ty which shows that no operators correspond to a.'f'@ or a@ when.

[A D) B]#O ? Of interest in this connection is an old but apparently
forgotten, mathematical objection to .the principle of strong correspond-
ence, a theorem due to Temple?‘,

The basic premi.se is strong correspondence. As we have seen, it fol-
lows that if Aé——?ﬂJB@® then
A+rBe +® , -+ (AB+BA)«> OB .

Now, when these rules together with 3:(,4 )é—-}?f( ﬂ,) are applied to the
observeble a@& s there results a threefold ambiguity:
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O@L<—>%[L(AB+BA)C + £ CIAB+BA)]
=5 (AB+BAC +4C (AR+BA);

(DG F (CA+AC)B +4B(CA+AC);

(BC)A«— z(BL+CB)A++A(BC+CB).

Once again, we face two alternatives: (1) Interpret the ambiguity as the

failure of strong correspondence, or (2) use the ambiguity to derive a
relation among A, B, C. Temporarily choosing (2) y 1t may be readily shown
that equating the above operators for ag& leads to the relation
[_C [A BJ] 0 s Tor every A, B, C. '

Up to this point, Temple's theorem seems to be nothing but a varia-
tion on von Neumann's theorem. There is a radical difference, however, in
the final conclusion to be drawn. From the condition EC ; [. ,45 B]j‘:‘_ O
and its permutations, it follows in several steps¥* that A, B, C constitute
a commuting set; hence, since a.,@, & d.eno‘cedj _;_nz.physi'cal observables,
any two operators which represent physical observebles must commute! Need-
less to say, such a statement violently cl_ashes with the movst successful
parts of quantum theory, and cannot therefore be permitted to stand. In
short, it must be regarded as absurd, and the hypotheses from which it is
derived immediately fall into doubt. Yet the similarity of reasoning in
Temple's and von Neumann's theorems is striking, Indeed the von Neumann
conclusion--the incompatibility of non-commuting observebles--should like-

wise be considered absurd; and the common root of both of these perplexing

et RIS FABI 2B ACLB) e, e
, & A g?AJB'E %dBc) a.nj-égg ch (B c)A

adding these equations glves

Similarly, C
Adding the la?t(gw%Aequgﬁons-#yiceédB AC B

A(BJC)A + 0‘ Asc)B:‘-d(AE%EA’C)i; for every A, B, C.
O\(B‘,C) = d (ADC') — A(ﬁ_BfBA,C).—; O’ror every A, B, C.

Hence
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theorems, viz., strong correspondence, should be abandoned. The benefits
end liabilities of such a structural change in quantal foundations wili Be

examined in the following section.

T. The Consequences of Weak Correspondence

The suggestion that strong correspondence be abandoned is not alto-
gether welcome, primarily because quantum theory would suffer a certain
loss of universality. No longer would every physical observable be automa-
tically considered a quantal observsble; there would>be conceptual room
for nonquantel observables, to which some might even attach the controver-
sial adjective "hidden". Moreover, the pillar of faith upon which the
search for rigdﬁbus mappings from classical to quantal observables is
based would be gone; but acceptance of consequences such as these is not
really an insurmountable task. On reflection, it is just as easy to ima-
gine.ghat strong correspondence is probably false as to presume for the
sake of completeness that it 1s probably true. For example, one might specu-
late half-seriously that the power of the infinity (in Cantor's sense) of
pPhysical observables probebly exceeds that of all Hermitean operators.

More significant for the physicist is the nonspeculative question:
what effect does the replacement of strong correspondence by weak corres-
pondence as & quantum axiom have on the principal qu;ntum theorems? Con-
sider, for example, Thl, which states (in part) that every real 1iﬁear
functional nqCA)on the Hermi tean 6perators may be expressed in the form
%(PA) « Such a mathematical theorem is quite independent of the phy-
sical problem as to whether operators can be found to represent all observ-
ables; all that matters is that the operators which are involved do repre-
sent observables. Within the mathematical framework--which is of course

the context wherein theorems are proved--operational definitions are
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irrelevant, and quantum mechanics is Just & set of mathematical objects
subject to given rules. (Among these are tacit rules concerning the con-
structa/ks(Cl)which give meaning to the primitive term obseryvable as it
appears in Pl,) Thus none of the developments in linear elgebra which

form the theoretical structure of quantum theory will be affected by the
elimination of strong correspondence, In fact a careful search through
quantum theory by the present writer for a proposition dependent upon strong
correspondence revealed that no basic theorem involving the analysis of
ensembles, statistics of measurement results, etc. requires P1S rather than
Pl in its proof. (E.g., cf. Theorems 1-5 in sec. 2,)

As mathematical intuition suggests, the only type of theorem which
would require strong correspondence is of this general form: "the operator
corresponding to the observable ¢ measured by...is F." Here strong cor-
respondence is effectively standing in the background and commanding the
operator algebra t6 produce sn F satisfying that set of requirements which
comprises the definition of f@f, but leaving no way to save the integrity
of the theory in the event that no such F exists.

On the other hand, if only weak correspondence is adopted, no theorem
of the foregoing kind is ever contempleted. Given an observable :F:, the
operator algebra is not expected to produce an F; instead, it is simply
asked whether or not F does exist such that @‘4—) F '« In short, what were
formerly regarded as "correspondence theorems" are now interpreted as tests
of validity for proposed correspondences. Here is a summary of the correct
interpretation of the theorems of this kind which were presented in previ-
ous sections:

(1) a,{'@é—) A-}— B : (C,) uniquely determines the operator A 4 B
but (Cq) is often violated. The correspondence is therefore not generally
valid,
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(2) a@e ‘5‘6451- BA) ¢ Von Neumann's "simultaneous measura-

bility" theorem is merely a demonstration that this correspondence can
apply only to commuting operators (in which case it takes the simple form
a@<=>AB=BA .

(3)@(8&6‘7 .? P Temple's theorem is further proof of the incon-
sistency of the correspondence (2).

Incidentally, for [A,B]5# 0 , rules (1) and (2) are jJust special
cases of the postulated correspondence q?' ( é)é—>$ (C) To see this,
recall that ['A_,B]=01m§11es the existence of C, &, &2 such that
A=F(C) , B=4(C) . Hence At+®=F(&)+.LE)TCI+LC)=A+B
and Q.@::@(é)ﬂ(@)e@-‘(C)ﬁ(C)=AB=BA. In this connection it
is instructive to consider a simple example which illustrates why consis-
tency condition (Cq)required anly &(F) & 7! £$ A, @Jrather than
E(F)=n£$(aa @)] . Let a=§f;d @:‘#iﬁ'b where
i?. is the z-component of orbital angular momentum, &%é—? Lzﬁ"% %'
Suppose a, and @ are measured simultaneously and the results added toge-
ther, 72(0-"" @) s the set of all a prior.{ conceivable results of this
procedure is given by 72(&’,;-}—#02%,):5,,2};1”33, since 6([})::2}”#3.
Now, the eigenvalues of I_.'?-Fﬁ L? comprise the set @ (| L%_+h[_?>=ﬂem“)fj
which is only a subset of ?Z (ﬂ,-!- @) s Ll.e.,

E(L+hly) S (5 +02,).

The reason this set inequality appears is easily understood if postulate
(J,) or (J,) of section 3 is recalled. Any measurement of the observables
i;, and #I% must yield results correlated in the same manner as would
be the results of a trivial joint measurement of these observables. One
such trivial Joint measurement would involve simply measuring ifz, and

evaluating i;-}- #f? . Obviously, this procedure could yield only num-

bers in the set E_-OQ (9{-)—])#’-3 -_=E ( L;-l'-ﬁl_%_) . This demonstration
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merely affirms the consistency of (J,) or (J,) with the postulated corres-
pondence ﬂ:(é)é—) Q:CC) ,

Unfortunetely, elementary treatments of quantum mecixanics occasionally
employ correspondences (1) and (2) as if theyl répresented a universal
method of "deriving" quantum operators from classical functions. Since (1)
and (2) are, for most a>® , Talse, it is evident that so-called "quanti-
zation" schemes based upon (1) and (2) are in fact nothing but memorv aids
which presuppose familiarity with classical mechanics.

For example, consider a classical harmonic oscillator, i.e., a system
whose energy is given by the funct;;on

W«,']o)-: Lo+ kx>0,

Supposedly, the oscillator is "quaptized" by using the established corre-
spondences ﬁ(«X, @(—‘) P plus rules (1) and (2) to find operator H such
that W‘—D H . This procedure yields immediately

H=#P + £ X*

= am 5

the energy operator which then serves to define the quantum harmonic oscil-
lator. To see that this scheme is merely mnemotechnical and has no signif-
icant logical value, it is sufficient to note that the classical function
W contributed nothing to the operator H except its functional form.
If the definition of the quantum energy operator were based in a physical
sense upon the classical energy function, then the operationsl definition
of energy which Wﬁ’ﬁ} entails would also be valid for the quantum energy
operator: quantum energy would like classical energy be measursble by
first measuring observebles 6() @ s then using the results %70 to eval-
uate W{%?p) Thus the qua.ptum energy operator H would be defined such
that W( ﬁ/) @)4—-) H i.e., H would have to satisfy consistency con-
ditions (C)) and (C,) .

2 2
Now it turns out that H‘:— ol'(—_m- P -+ _‘%_"X
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does not meet these requirements. The logical situation is therefore the

following: the quantum system called "simple harmonic oscillator” is by
definition one whose energy observable %’corresponds to the operator above,

the form of which can be remembered by classical anslogy. ﬂ/’ has its own

rules of correspondence, but among these the classical prescription--mea-

sure ﬁ/ and @ , evaluate WX,?@) --does not appear. It is quite possible
to measure V/Yand @ simultaneously and obtain thereby a velue for W%’f)

which is not an eigenvalue of H. For example, assume the oscillator is
system §l in the Joint measurement scheme outlined at the end of section 5.
Let the correlation between _S, and _Sz (which are noninteracting) be such
that a momentum measurement upon _Sa‘determines the potential result of a
concurrent i/tt,(@on 5 | - Consider the _§. -subensemble defined by the pro-
perty that such M(@S‘would have yielded 'f'—"-?o, ; this subensemble is
therefore characterized by the eigenfunction 'TI‘?, =C€7r77)—.la'%ﬁ: ( S -func-
tion normalized) » which obviously assigns equal relative probability to

E_l_l_ results of g/i‘{, @) Hence this kind of simultaneous %@-measurements
upon the oscillator will often lead to values of %70) which ere not in

the set E(H) :-'Z(n-}:!{—)ﬁ/’ %3 . Hence by Thhk the classical energy

function W%}O) has in a sense nothing to do with the quantum energy

observable %Lé“?H ,

Let W‘(ﬂ(,f) be the Joint pz;obability density associated with the simul-

taneous measurements of 7 and @ . Our analysis of the relation between

W%f) and H indicates clearly that we should not expect M/?;(,f)to satisfy

, the following equation¥*:

. gof« gal,p wzm;»”?”f% p) = 77((0H).

- %Another example to illustrate this point may be constructed by con-
trasting measurements of the observable +§ to those of the observ-
able whose operator is H+-_/: X® . _The former can leed to any result, the
latter only to numbers in the set 2-014—-'!{)#/[%” . Thus the operator

: l—-i-'i-—'--)(gL and the observable 5#.}%2 do not refer to the same physical
sittIa%ion.

|
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This observation is of special importence in connection with the problem
of joint probebility in quantum theory (section 8).
With the replacement of PlS by Pl, the theoretical structure of
quantum mechanics is freed of the various inconsistencies exposed in earlier

sections, Fortunately, this simple axiomatic chenge has no effect whatso-

ever on the normal applications of the theory to experiment, such as the
calculation of scattering cross sections, spectral intensities, etc. But
this revision does have considerable theoretical and philosophical signifi-
cance, Indeed, the elimination of these logical inconsistencies from
quantum theory automatically removes the only sound theoretical foundation
the concept of incompatibility ever had. Von Neumann' s simul taneous mea-
surability theorem is now recognized as a correct mathematical theorem

physically misinterpreted as a restriction on measurability; as we have

seen, it is in fact a reductio ad sbsurdum proof that the correspondence

a@ e—i’(AB-}—- BA) is false unless EAJBJ‘:O , or in

other words, a proof that EZLE;]::C) is a necessary condlition for the
validity of a. @ <> 'éf (A’B+ BA),

Hence any physical or metasphysical idea motivated by or founded upon
the concept of incompatibility now requires careful re-examination. Three
common incompatibility-based propositions are the following: (1) Because
noncommuting observables are in principle not simultaneously meaéurable,
it is meaningless to contemplate joint probability distributions of quantal
measurement results; (2) Since any proposition sbout the results of simul-
taneous measurements of noncommuting observables is meaningless, a new
system of logic is required for quantum physics; and (3) The operators cor-

responding to two loceal observables separsted by a space-like interval

must commute ("microcausality"”). These inferences from the false hypo-

thesis of incompatibility will now be discussed in sequence,

Reprodu;:ed with permission of the copyright owner. Further reproduction prohibited without permission.



51

(1) The incompatibility doctrine having been discarded, there remains
no a priori restraint against the study of joint distributions. Accord-
ingly, in the remaining sections of this work, quantum joint probsbilities
wlll be studied systematically.

(2) At the end of section 4, we indicated how incompatibility led to
the notion that quantum mechanics requires a new, "nondistributive" logic,
i.e., a system which does not involve the law,

CPn(auR)= (PN a)VPNR);
which meraly expresses an idea most physicists--iﬁcluding quantum theo-
rists--regard as "common sense." The problem was that propositions (EDéz;
and <;ican be given for which there does exist an Hermitean operatér cor-
responding to the left member but there is not one for the right member,
Apart from the esoteric context in which it is cast, this problem is not

different from the difficulty encountered with the correspondence

a,‘f"@é—? S . Just as an appropriate S exists only when [_-AJBJ::'-O
similarly a D exists such that @/} Qé—? D only when E }93 Qj_—:o,

When [R Q:I #0, 1t simply means that the compound proposition @ n Q.

has no operator representative D, Natdrally it is then impossible to
write down an operator counterpart to the distributive law; but this does
not 'make the law wrong! Thus when P1S is replaced by Pl, it becomes appar-
ent that the search for "quantum logics" receives no legitimate motivation
or endorsement from quantum physics. .

(3) The "microcausality" principlez%f relativistic quantum field
theory is often introduced as though it somehow combined in one grand
statement the principles of relativity and complementarity. Actually the
rather nalve argument involved is nothing but a pun on the term "interfer-
ence”. Consider two local observebles (A (¥ ),@(’)ﬁ), 1.e., observables

associated with space-time points 7{,,11 . According to the. theory of
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relativity, no signal can connect ?ﬂ and.?GLir they are separated by a
space-like interval in Minkowski space. Hence no operstion at }n could
possibly "interfere" with an operation at Az. On the other hand, if

EA(Q’, ), B(’Xg >J ;‘0 s then the orthodox version of quentum theory in-
sists that a(7(,)e.nd @(«L)are not simultaneously measurable, or as this

is often colorfully phrased, any attempt to measure noncommuting observ-
ables simultaneously will be obstructed by mutual "interference" of the
measurement procedures employed. Therefore, if ?ﬁ and ﬂg are space-like
separated, relativity then precludes any "interference" between the measure-
ment operations; hence L— A(’X, , B(XQ)JL’O necessarily. Clearly this argu-
ment is grounded in the canonical misinterpretation of commutativity as an
index of meesurability. The argument is therefore untenable; it should be
understood, however, that no pretense is here made of disproving the "micro-
causality" principle itself, Its generalization to quantum field opéra-
tors plays a major role in proofs of the TCP and spin-statistics theorems,
and the mathematical property of commutetors which the term "microcausality"
rebresents may indeed be a necessary physical postulate. What we have
esteblished is that "microcausality” should be regarded as a new postu-
late, de#oid of elementary quantum physicel motivation and rather unde-

serving of its suggestive rame.

8. Joint Probsbility in Quantum Theory

Research concerning joint probability distributions of noncommuting -
quantum observables has been reported by various a.uthors?'3 Interestingly,
their motivations seem to rest upon rather diverse problems --hidden vari-
ables, operator-observeble correspondence, reduction of Glagonal matrix
elements to phase space integrals. However, the common feature of all

attempts to derive joint distributions has been failure., In general, the
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procedure is to set up equations which any proper joint distribution must
satisfy and then attempt to solve these equations for the distribution.
The natural starting point for such an investigation is the consistency

condition (C’) : if q:(ﬂJe)é)Fand W(amgg,a) is the (unknown) joint

probability that m, (ﬂ),d%(@)would yield Clpe, b_e , respectively, then
% WG, by 5 (’) Flarv,b) =Tr ((’F)

It is also customary to assume, as we have already done implicitly in
previous sections, that the marginal distributions associated with
W(a.g%bz SF) should equal the quantum mechanical distributions associated
with single measurements; i.e.,

Z W(ow, @5(0):77”(( B )s

%W{a&, by 30)= '),r((:@)
In ordinary classical statistics, where it is always possible to conceive
of the measurements as revelations of possessed values, the possibility
that this latter condition might be denied is almost unthinkable. However,
in quantum theory where the bond linking observable and operator is far
more subtle, where measurement results must be interpreted in the minimal
way simply as numbers which emerge in response to measurement acts, it is
not so unreasonable to suggest that the distribu_tion and/or the values of
a, -measurement results might depend on whether or not the a -megsurement
1s performed "alone" or in conjunction with other kinds of measurements.
However, it is not difficult to see that such a dependence would raise seri-
Ous conceptual problems which would greatly complicate the idea of measure-
ment, Suppose, for example, that Th4 had to be narrowed to the statement
that (A{,(d)yields ‘elements of 6 64 ) » provided no physical operation except
the a -measurement itself is performed upon the system of interest. The
empirical vagueness of such a proviso is immediately evident; supplementa-

tion of the quantal axioms by restrictions of this kind would require the

Reproducedr with permission of the copyright owner. Further reproduction prohibited without permission.



Reprodu

54

elucidation of criteria which distinguish physically between an g-mea-
surement "by itself" and an a-measurement "in conjunction with other
operations". Accordingly, for the sake of simplicity we assume, as is
always done, that "an a -measurement is an a-mea.surement" regardless of
what else happens concurrently and that marginal distribu‘gions are there-
fore always equal to those given by the quantum mechanicel trace formula
(Thl); Incidentally, as a consequence of this assumption, the uncertainty
principle will apply to the results of simultaneous a J® -measurements
upon the members of a single ensemble (cf. section 2) ; this follows from
the fact that the uncertainty theorem is derived from the ordinary quantal
distributions for single observables which have Just been assumed equal to
the marginal distributions associated with simultaneous measurements.
There is a fair amount of literature dealing with the special case of
(C.,) where a. = 6( (position) and 6"—"’- Q (momentum), EX, P.J =¢‘/J7-1.
Because the spectra of- X and P are continuous, an integral of a proba-

bility density Mﬂ;fs'l’) replaces the summation on proba.'bility W ; for

_pure e i.e., e = ﬁ» 3 (C.,)then becomes

o wrex 39Ty = < F#>,

Now, if there were a general rule which provided F given g:(ﬁ',f) it should
then be possible to extract U/T%f,"’/) from this equation by some inversion
method., However, since we have found in previous sections that compound
observsbles may have no operator counterpart at all, it would not be sur-
prising if the W(’X,fs %) which satisfies {C)) for a proposed correspond-
ence @éy F turned out to be unsatisfactory.

Suppesal';as argued along these lines that quantum mechanics cannot
admit a proper distribution b(/‘(’,\{,f_;?ﬁ) and that simultaneous measurement

of 7 and ;F must therefore be impossible., Although both conclusions are
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false, it is instructive to examine his argument. The ides is to use (C/)
to obtain the characteristic function ﬁ@,?ﬁ for W’(’X-,//’)';L) and hence by
Fourier inversion bVY%Q?ﬂS#Qiimelf. The characteristic function LZ:(6%1:)
is defined as the mean value of @71,70):,2‘.0%4—’&7? Suppes assumes with-‘
out special comment that if K< ¥/ @4—9 P, then

T, Q)= ™" Y, Xt el
This surfices'to de?armine ijaGTo;#) uniquely as the Fourier transform
of <%L> _@AGX +AJEP%L> O:o |

s 1) = \ o= )P Y v i) .

Because this w is not positive semidefinite* yet is unique, Suppes con-
cludes that ﬁ/ and @ are incompatible obsefva.bles.

Having seen the same erroneous conclusion drawn fronlagt)before (ef.
section k), it is not so difficult this time to reinterpret the mathema-
ties. Suppes has not proved the sweeping assertion that 2/ and pcannot
be measured simultaneously; he has shown only that the correspondence

' ’ . .

’Q:w?(-l—»oz-@; : dé——(ﬁX‘f"A.Z'P
is not valid. We have seen earlier how von Neumann's incompatibility
argument motivated the study of "quantum logics". Similarly, in a recent
paper Suppegxgeduces from several premises that "the functional or working
logic of quantum mechanics is not classical®. As might be expected, among
these premises is his (false) conclusion that Joint distributions in gen-
eral do not exist in quantum theory. Hence this csll for a quantum logic,
like that discussed in previous sectlons, is inspired by the misinterpre-
tation of a mathematical theorem.

The use of «lb)on characteristic functions is not the only conceivable

way to generate joint probabilities. Another scheme, developed by Margenau

*This w, known as the Wigner distributionf‘bis a valuable computational
tool in statistical mechanics.
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7
and Hillz, begins with the concept of covariance:

Cov (A, B) = <aB> —<a><G>
= Z Waie,bpiWagh —<a><@>.
The first problem is to find an Hermitean operator F <> a_@ which

leads to desirable properties for Cov (ﬂ, @) . Once F is selected, the

two coveriance expressions above are equated to obtain what will be recog-

‘nized as the (C))condition for F (A, B) = a®:
% W(a;b, %) axb, = <1, Fy2.

Because it gives the covariance reasonable properties, Margenau and Hill
chose F=+(AB+ BA)
Unfortunately, the W's to which this leads are not true probebilities.

With our reinterpretation of von Neumenn's "simultaneous measurabil-
ity" theorem (cf. section T), perhaps it is possible to understand why
this covariance method was unsuccessful. Since that theorem, correctly

interpreted, proves that the correspondence ﬂ@é} 'i"(A B+ 8/4) is

generally consistent only for commuting observebles, it is inevitable that

any theory built upon this correspondence will at some point break down.
From this perspective, the work of Margenau snd Hill must be regarded as
further evidence against strong correspondence,.

Although the elimination of strong correspondence does save quantum
theory from self-contradiction, we now see that the consequent sbsence of
operator-observable corresiaondences effectively leaves (C_ ,)useless for
finding joint probabilities. It is therefore reasonesble to shift the base
of research from (C,) to the marginal distribution requirements, for which

no operators representing compound observaebles are needed. For s pure

state ?=—“ E,L , we have
S Wt be3#) = | <otpe, 351,

FWean )= |<g , 1

R
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There is at least one satisfactory solution to these equations, viz.,

M (ai(') b,Z > ;L)=/<°(~RJ4>/2/<€892’L7/& . As Marsenﬂu'ggwho

proposed this distribution, has shown, the stochastically independent form

of W,, in no way violates the spirit of quantum theory. (The uncertainty

principle, for example, is derivable from M s & fact which shows again

how i1llogical it is to interpret that principle in terms of mutual "inter-

ference" of measurements.) Nevertheless, it must be asked: are there

other positive semidefinite W's which also satisfy the marginal distribu-

tion equations? 1Is M unique?
For the special case where /4 =X7 B - Pp EX_; Pj-"%ﬁi, L. Cohenﬂ‘

has laid the ground-work for answering this question by providing a canoni-

cal form for W‘(?(,’PSZ}) :
Wty = gl dollote =TT+ YR sy

any choice of ‘F(@,’t) such that 'F(Q;O) = 'F(O_g ) =] will generate a
w satisfying the marginal requirements, The f for any given w is found |
by Fourier inversion. Unfortunately, no way has been found to isolate
those f's which generate positive semidefinite w's.

However, if we restrict ourselves to operators with discrete spectra,
the problem of finding all admissiblé V\/(ﬂ.k,és Z,L) becomes more tﬁctable.

Consider the special case (. =—%—2’b’7 @ ‘-'-"—-727'—,3« s where ‘JX ).jab,

are spin components for a spin-ﬁ- system., The operators which correspond
to a and @ are represented by the Pauli matrices:
a(y5)=A, ®>(° \)=B
(0 -1 b /| o) <

!

(! _/° (A / ,
R R R -
these eigenvelue equations hold:

Acq:-a%ock S B@":bzée '
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We seek all functions W(a-,fe,beizﬁ)?‘f: \/\_/k,z@“) satisfying these

conditions:

0 W< | , Z Vi =Kot 2l s WP =g, w5/

ORI e oo el

LAS

For the present simple case, it is in fact possible to find all W's con-

- Zid

sistent with any given % . Consider, for example, 3‘: ( 'VT . The mar-
[

’ ginal conditions are then

W+ W, =

V%H—Ma =‘l

M + W, -
v\/oz "f"W::"Q‘

Substituting sz =,2 — ja. 1nto the second equation, we obtain three

equations in three unknowns M ,V% ; \/14, ;
M + Wz =9
- VV:: +V‘/2/ = =
Wi + W =8

An examination of the appropriate determinsnts reveals that these equations

W
e
N
[
¥

have an infinity of solutions. However, it is easy to find by using solid
analytic geometry the straight line in ( V\{“VVR,V{,)-space which repre-
sents the set of real solutions. Then the condition ()£ WR—C SI

is used to delineate the segment of that line which represents all admis-
sible sets (M;W,_)v&,> and VVQQ. (Via \Ma=02"ma') . When this is
done, there results a one paremeter (2') family of positive semidefinite

W's satisfying the marginal conditions:

W (at,f,b&}s Y)= Mgy = +7nu y&ELo],
' ) ’ 'z
Cm‘@""'(-—.l ,/) » Uhe)= (,/ o)'
(Although this was worked out in detail for a specific 7f , the same gen-

eral procedure is of course applicable to any state vector in spinor sapce.)

One member of this family is the uncorrelated distribution

v\/M (ﬁa,t& 3 4)=,<0(-R ’z}'>’zl<€e5 ¢>/:‘ 5 to find the corresponding
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parameter ?‘M consider the form W&'M (a'k b ) fgﬂz From the equa-
iemna, Fa. T ry ‘Fﬂ, Sle +.l,

Tl:):_— 'IC"f'Z, _ﬁﬂz ./C
two expressions for 3/99‘ may be derived:

I o WA Py
F T Sk T
Solving for 7_", we obtain Z'M ’—"‘-—,2 . All other tvalues in the

interval EO;IJ lead to correlated joint probsbility functions.

The purpose of this simple spinor space example has been to show that
the marginal distribution brequirements alone are not sufficient to deter-
mine a unique functional of 1)L, W(a.%) bﬁ" 7/) In .general, given any
state P , we therefore anticipate the existence of many distribution
functions marginally consistent with that state.

It is difficult to evaluate the significance of this apparent multi-
plicity of W's. There are two possibilities: (1) For every state there
exists a unique W(%wl?zif) governing the statistics of a,@-measure-
ment results for real physical systems; or (2) The quantum mechanical
state P does not determine the joint distribution of a)@-measurement
results.

Alternative (1) has always been assumed implicitly throughout discus-
sions of quantal joint probability. It is deeply rooted in the fundamen-
tal quantum belief that the density operator e embodies all that can con-
ceivably be said about the iea.surement statistics from the ensemble to
which P refers. Moreover, since only P obeys & causal law, it is the
quantal construct "closest" to the classical ideal of physical state. The

natural assumption to make therefore is that determines W(a'%, b z)

Just as it determines M(Mand We(b_e) If so, we should attempt to

formulate some physical criterion which, when required in conjunction with
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the marginal rules, extracts the one true distribution from the set of
marginally satisfactory ones.

There is in fact some precedent to support this plan. In the case
of commuting observables, it also turns out that the marginasl requirements

alone do not determine the joint distribution. Consider, for example, two

b, ©
commuting spinor space observables a‘—% ) @é—?( ! ), a,#az,b,;éba:
whose common eigenvectors are ‘) ) = ( l)
For the State 1f:‘— ) » We obtain these marginal distributions:
FVig = 34’

4—W W:.'I'W"’L‘

These equations a.re satisfied by the following one parameter family
of W's:
\/\_/92 = Mg & + Nye , +£50, lj
where - —“!7' % — é- -'F
(Mpe) = C—;{r ) o € _e) = )

Nevertheless, we are able to select from among these, Wy invoking further

4

criteria, the single correct joint distribution. By working with an auxil-
iary observable é through which a and @ may be trivially Jointly mea-
sured, we find that l

W=%, W,=5 W, =W, =0.
I.e.,'z_’::.[ gives the correct Md; the others are physically meaningless.
(The genersl derivation of Joint distributions for commuting observables
was discussed fully in section 3.)

If slternative (2) is correct, then for the case of noncommuting
observebles there can be no similar criterion to distill a "true" distri-
bution from the set of marginally satisfactory ones, for the density opera-
tor alone would not determine W, This is not the same as denying the exist-
ence of W; since noncommuting observables are simultaneously measurable,
of course W exists. What alternative (2) suggests is that W does not

exist as & functional of state, that simultaneous measurements are in some

E
_
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sense theoretical ancmalies not treateble by any comprehensive theory _
resembling the ordinary quantum theory of single measurements.

At this stage there is no firm basis for choosing betwean these alter.
nate interpretations of the fact that many proper W's satisfy all velid
conditions placed upon them. Shortly we shall return to thié‘problem; but
first it will be advantageous to do a bit of roaming in the relatively

unexplored (due to aforementioned taboos) realm of simultaneous measure-

ment theory.

9. A Search for Ordinary Simultaneous Measurements

As we have seen, attempts to approach the study of quantum joint pro-
babilities via more or less natural random vaeriable techniques seem invari-
ably to be thwarted at some stage by ignorance of, or perhaps even the non-
existence of, operators corresponding to compound observables. It seems
desirable therefore to develop a method for examining simulteneous measure-
ments which does not depend on unknown operator-ohservable correspondence
rules, To do this, we return to the genersl ideas concerning quantum
measurement which were reviewed in section 1. As explained there, quantum
mechanics is essentially a theory about systems which do not possess attri-
butes (i.e., values of observables). Instead quantum observables are re-
lated to physical systems only in the dispositional sense conveyed by the
philosophical doctrines of complementarit§xznd/or latencﬁ% The primitive
classical notion of possession ("System§_ has a,-value O.p") is super-
seded by the primiti\‘re quantal measurement construct (ﬂ{, ("If/{{, ( a )is
performed on system ;5_, the value @, will result with probability...").
Accordingly, Just as a theoretical explanation of measurement processes in
classical physics involved relations among possessed attributes, a quantuﬁ

theory of measurement at best describes connections among the unanalyzable
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M, ’5 . Statements of such connections and associated empirical procedures
constitute \/%:L: the usual scientific concept of measurement, or measure-
ment scheme (operational definition, Margenau's epistemic correspondence
rule). These constructs were exemplified in section 5 by a discussion of
the time-of-flight Mg(@for momentum measﬁrement; typically, the theory
of %(@established a connection between M:(?/), already operationally
defined, and ,/%1 (&), which thereby acquired a theoretically validated
empirical definition itself.

Because every physical process--hence any measurement scheme, single
or Joint--has a quantum theoretical description, it seems reasonable that
whatever the correct joint probabilities are, they should be derivable
within the framework of a quantum theory of 2. That 1s, if a given pro-
cedure ./1{2@(,67)18 to be regarded as a method for simultaneous measurement
of % and @ » the scheme must be certified by a theory establishing rela-
tions between MW);M(@, and whatever "direct meter readings" are used
as the basls for inference of simultaneous M(’X)&nd OM, (@)—results; from
this enalysis it should be possible in principle to find the probability
Tor the occurrence of those "meter readings" which imply any given pair of
%" end @-values. This measurement theoretical approach to the joint
probability problem bypasses the operator-observable correspondence diffi-
culty which obstructed the methods reviewed earlier. (All this will be
clarified below by explicit examples.)

To develop these ideas further we next distinguish two kinds of MQ_
theories: (1) ordinary and (2) historical. This distinction will later ‘

turn out to have considerable bearing on the problem of compatibility.

(1) An ordinary Mzbegins with system S in an arbitrary* state 6; at

-

*I.e., practically arbitrary. Recall, e.g., that the time-of-flight
Ma@) did require ?{;ﬁ to have compact support, but no specific functional
form was demanded,
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some specified time j; and demonstrates how some operation upon S eventu-

ally leads to numbers from which may be inferred - results to be asso-

ciated with S in state [ . It is to be especially noted that the state
> ;

oi‘§_ before ,1: is completely irrelevant. (2) An historical /‘(,,_-theory

also seeks to certify some operation as e bonu fide supplier of numbers

which can be meaningfully interpreted as M,-results for _S_: in state @;o
However, unlike the ordinary type, the historical q/‘é-theory cannot be
worked out without detailed information concerning the structure of 6,: ’
Such information might be deduced from facts about the past history of the
system, e.g., its state at some earlier time j,-<2: plus its physicalv
environment between /7;' and J: . An example of each type appeared in sec-
tion 5: +the ordinary time-of-flight Mz(wand the historical time-of-flight
Mo (2%, @)

Physically, the ordinary M{theories have been of greatest interest
because they represent the idea of measurement in its purest form as a pro-
cess applicable to a system at any instant independently of its past. An
auto speedometer registers the speed of the car at any time regardless of
the past wenderings of the vehicle; meteorological instruments record today's
weather conditions with indifference toward yesterday's. Similerly, in
quantum mechanics the language of M’s presupposes that measurements are

performed upon systems in states which are simply given without details as

to the method of preparation. Accordingly, le-schemes for single observ-

ables (or commuting sets of observables) have been of the ordinary type.

It is therefore natural to seek an oi'dinary Ma:theory covering the simul-

taneous measurement of several noncommuting observables. However, in view

Oof the fact that both examples of simultaneous measurement given in section

S~-the time-of-flight M&’,@) and the use of two systems already correlated

at the time of interest--were of the historical type, there is no reason
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to be optimistic about finding any ordinalry theory for simultaneous mea-
surement.

We shall now outline two fairly generel procedurcs wnich, at the out-
set, seem to be altogether plausible methods for achieving ordinary simul-
taneous measurement of two noncommuting observables. In both cases theo-
retical obstacles will eventually arise, and this will be interpreted as
evidence that quantum theory does perhaps forbid ordinary simultaneous
measurements, Deeper reasons to anticipate such a theoretic prohibition
will then be explored.

Let i be the system upon which MJC(,@)is to be performed. Suppose
a second system M with an observsble ﬂ, UQQ ;Mg% interacts with O

in such a way that the following correlations result:

‘Ee(mo)s ZC%@)") 06&@% » With marginal conditions
. a 2 2
5| Coe O =<0, 1>(" and Z- |Ced®l = [<6,, ¥/,
_e .
where 7;.,@ is the evolution operator for this ﬂa(ﬂ,@ ~-scheme and ZL
and% ere the initial state vectors of é and M . Since these equations
imply that post-interaction tM,w-results occur with the same probability

as they would have before interaction and that a post-interaction M, (%)

would yield (4, with the seme probability that a pre-interaction M,(@)
would have yielded b" » an ordinary %(d,@) brocedure yielding 1/14, (a)-
and M(@)—results for the instant before interaction may be defined as
follows: - after interaction, measure a on § ,W on M ;s 1f the result-
ing number pair is (a-.k)un) s the pair (ak5 b,,) is declared the result
of simultaneous M,{ﬂ)and M,(@)for é in the state 7'L s l.e., Just before
interaction with M . If a 70:@ exists which can accomplish these corre-
lations, the derivation of the associated Joint probability distribution

is immediate:

Wit byi#i Tog) = |Cag @]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

We have indicated a possible dependence of W upon 7:@, i.e., upon the
e’

method of measurement, since in the case of joint measurements there is no

tor. (For single measurements, we know axiomstically that probabilities
depend only on the state.) The important point here is that if such a

’);_)e exists, we have an example of an ordinary theory of M(ﬂ,@ com-
plete with Joint probability distribution, Unfortunately, no such 7;0@

does exist.

To see why, consider first 'I,L:: &} . In this case
2 2
= [l '= <ot o5 = S
Since [( o, )2>0 , this implies that C_m(dn)-‘:'o ,RFEAN thus . Cogeptn)

has the form C‘%ﬂ (Q/,,) —— Sﬁn %(o(n) and accordingly
2

= | Caop(C0)[ = /%,e(o(")/a’=}<@zo°‘n>l?
Hence 7;:;@ (%@9(0) == é S.pgn%(dﬂ)qu 6, .

Now, by superposition we can derive the transformation associated with any

#’ subjected to this type of measurement., If zp-‘:-“‘—— Zn.<o(n., 21L> O(n.;
Taue (FOX) = Z<o0, > S, 4, )0 B8,

— %@cbz»q@(q@)a@@@z;
tos Copg(B) = G (O) <t 3>,

Checking this form ageinst the two required marginal conditions, we
find that one of them is not in general satisfied: to be sure,
2 1C = (F9e]") | <ete#51* = | <otae w1
but
2 |Co (W] = | G o] (Z 1, ¥>)%)= el = I<te m>/%£/<@ W
Hence the ordinary M(ﬂ,@)here enviseged is theoretically impossible,
The same conclusion is obtained if we attempt to construct an ordinary

GMz(d,@) based upon interaction of the primary system _S_ with two measuring
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devices, M(d)aﬂd M (6), which we might call a‘ and@—"meters". I Ao,

Z: are the initial states for the meters, @( l/ are observables belong-

ing + nM/ﬂ)M/(g) pectively //9 =140 \/M—-al“"n

N ecLively SRl P {’L 2 and

56@3 is an orthonormal set of vectors in the Hilbert space of S s the
following correlation scheme would describe an M (a 6):
Te(?®3( @f) ‘%Alna)qg@@ @7/,,, , with
marginal conditions ; /’A:émn. (?z’)/ = |<otm, 4>/
ad == [ gy n (W= | LBy 8D
L.
,/\4 (d—)@) would comsist simply of "reading" the two metere (measur-

ing QL and U) after the interaction; if (um‘)'f/;) results, (am,b,.,) is

declared the result of simultaneous M&)andyi{, ( @).qmn _._S_ in state 4,#

i.e., Just before the interaction. Once again the joint distribution

J

would be easily derived:

Witn,bus ¥ 5 Tag) = S 12a B,
Like the previous example, this Mz(a @) is impossible; thus non-

commuting observables cannot be simultaneously measured merely by letting
_5_ interact with two meters and reading the two separate results. To

prove this, note first that for zL::: O(_R 5

Trg@®%X, & f,):;sm 9240 r O
| =% Yo%) 4, B8 @7, ;
2 Smie 9t g 1904240 = |, i >/
2[ SM& Goen (%% )/ [<Xpn., > = Smi. -

Now consider the superposition ,4‘ %<°(%52}> N"Q ¢+ this leads to
Tag(FOXO L) = Z0479,6) 8 5,87,
Lo, Lgfey, = G (%) <L, %>,

But this ,Qg% does not satisfy the second ma.rginal condition:

T |t = 25 <ot 421" /%,en(o(n)/ Z et/ Z |q.400"
== Lt U[1< By D[ /Z<«a,¢><&,o<k>l" R
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The foregoing examples were presented to motivate thisg proposition:
(0) Ordinary simulteneous measurement of noncommuting observables is
igs thecoreticelly imno
Of course merely citing two unsuccessful attempts to develop an ordinary
lM_z(ﬂ—,;@) does not prove this proposition, but for the first time in the
present study, we have found a good reason to suspect that quantum theory
may indeed place some restriction upon Joint measurability. However, if
80, the qualification will not be a sweeping mandate to the effect that
0/1{2 (ﬂ,‘)®) is genersally impossible, since that common version was refuted
in section 5 by counterexamples., Rather (0) would mean only this: given

at time]: a system _S__ of unknown history, it is impossible to devige an

operation M(d,@)which leads to numbers (a‘*’%)interpretable as M, (aj—'
and M,(@)-results for time /7: .

Let us attempt to prove (0) by assuming it to be false and then try-

ing to deduce a contradiction with quantum theory., That is, we now hypo-

thesize that a theoretically certified, ordinary ;/%(ﬂ,@) does exist in

spite of our preceding difficulties in formulating one. This means that
glven a system _5___in state PS(J:) at ]: , Mz (ﬂ,@)m&y be performed and will

yield (@, b)), the results of simultaneocus ,/{, (ﬂ))/%@at 1, . Now, sﬁp-

pose that S and another system __C_ with which S EE not interactin;g are

-

.

A P
Jaits

g 3
e3

oo

257

regarded as one composite system and that the state of the latter at Z:

R by Sy

is The density operators e*(gt) and @M)will then be related by

).
S+c
7EF§ {’&) — @_(}f;) , where 7?_‘0: denotes the trace over _C__ ’

Hilbert space,

Since §_ is not in interaction with _C_ s the efficacy of ‘/1/(2 (dd®)
cannot be affected by any statistical correlations which may inhere in the

(1)
composite state 5+C ° In particular, it may be that é.'_(g;) involves

double correlations of the kind employed in the famous Einstein-Podolsky-
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Rosex?g'&iscussion concerning the completeness of quantum mechenics. If a
@ are the ___-o‘nservables to be measured and W Vare noncommuting
_\_/__ -Obsexvables with respective eigenvector sets ZB”‘-S Z?an such double

correlation may be expressed* as follows:
@4—9_; }g > ?:‘ ZCKO(RQ‘QR:% 0&@ @7& )

The first form of ?Z.Z impliea thet from an (/1{ w result one may conclude
what result a concurrent /"{ (2//would have yielded; similarly the second
form shows that if /1’[,((8) 1s performed the result that a simultaneous M, (?/)

would yleld may be inferred. Hence if the procedure Mz(a)e)is applied

to 5_ s the results (dﬁa b‘e) lead to the prediction with certainty that
simultaneous M(Z(/andﬂ,(’Wwould heve ylelded (g, 4} ) &t Ao . But sys-

tem _C_ is not disturbed by this process; during ;/Mz (ﬂ_, @) ’ Q evolves

from its state at 2‘; Just as it would have if Wz(a,@) had not been per-
formed on §_ . However, :/Ml(a,@)has provided a memns for dividing the

_C_:_, -ensemble into identifiable subensembles. In particuler, consider the
subensemble comprised of those members of the C -ensemble for which M(Z{)
was certain to yield Ly and 4/1{ ( Wwas certain to yield 7 at J: .

(“KJ'V‘) -subensemble must have a density operator @L(j;) since P2 and

Thl assure the existence of a for every preparable ensemble. From the

definition of the (U4} )-subensenble, it is clear that F(’Tv) must satisfy

these conditWZ[“x%(K *)-7 7’[ 2 o)PJ
W, [ 5 B¢ = Tr @L(#)P] ),

and by Th3, 77‘[ @(L (f )j__- . By using the matrix representation of

these equations, it is easy to see that the only possible solution is

¥For specific examples, see Ref. 32 or Ref. L,
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But since [ U, \/];ﬁ O , the sets $H3% and f?&B cannot be identical;

it is thererore always possible to choose M}("VZ such that QK?-‘- 721_,
This means that 6([.(2:) does not exist, hence that the proposed preparation
scheme for the (MK)'!/[)-subensemble is impossible. Thus some assumption
upon which that scheme was based must be false.

To be specific, we must exemine two key assumptions: (a) there
exists an M(d,@)perﬁormable upon aﬁy artibrary es(j:), i.e., an ordi-
nary ﬂg(d,@) ; (b) for every @- (»7‘3) s 1t is possible to find es 4_(*97:5)
which incorporates the Einstein-Podolsky-Rosen type double correlation.

It turns out thai (b) is false; double correlations cannot be generated
from arbltrary (j},) . For example, consider the common case PS = E‘, '

and seek a vector ?Z such that 77; Ez= g . From von Neumann's theorems

about states of composite systems, it follows that @ has the form @— - E(

and hence ’%-‘—‘- W% » & form which cannot embrace double correlations.

That this is the case may be seen by expanding #@% in te'rms of fq/ﬁ\® &”‘3

and of Eg‘e@')&z and seeking conditions under which both expansions exhibit

TR S AR R R ST v e NI

SRSt
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e N

correlations:

F= Z e > <, X > Hn® 9»»"“'%5 Bes 2K 6,87,

Consider only the first expansion; it will correlate a-a.nd u-measurements if

LY > <y, A > = Sip G, ><Bu,X> & condttion

which can only be fulfilled by the trivial cases, 9(:.:0 or ZL::O , and

e RIS S

Ak FT T2

by the conditions ﬁ(::: QM, ;L bt O(m But similarly it follows from the
second expansion that 9(:‘- 7"\_) ?7L=:. €m. . Hence the very common case
es_ = 7'(, counters the assumption (b) that doubly correlated states
are always available, Thus our EPR-inspired demonstration does not prove
(0) conclusively,

It does, however, prove this: (0') if a system is in any doubly
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correlated state @ (7/;) s then ordinary simultaneous measurement of the
noncommuting observebles involved in the correlation is impossible., In
other words, if assumpiion (a) were true at all, it would have to be modi-
fied to read as follows: (a') there exists an Mz (a) @) performaeble

upon any @(jg)except those which are doubly correlated in (A and @ -=a

rather strange statement.

Although the foregolng considerations do not rigorously prove that
ordinary Mz(a)@)are generally impossible, it is difficult to allay the
suspicion that (0) mey indeed be correct. The sbove reported failure of
very reasoneble attempts to develop ordinary Ji{,\-theories together with
the proof just given of (0O') certainly point in the direction of (O);
Moreover, the fact that we have been unable to find even specific cases of
ordinary l/%z(a,)@):‘s provides inductive support for (0).

Finally, it is instructive to summarize in a concise way the theore-
tical basis of our "psrtial proof" of (0), i.e., our proof of (0'). As we
have seen, a consistent quantum axiom set does not forbid simultaheous
measurement in general; it does, however, entail important prohibitions
regarding "simultaneous preparstion"”. For example, it 1s strictly impos-
sible to devise a method for preparing systems certain to yield given 3(—-
and -values upon measurement; such a procedure would, among other things ’
violate the uncertainty principle. In short, certain "simultaneous pre-
parations" are inconceiveble in quantum mechanics.

Any proposed operation which leads to a contresdiction with these basic
restrictions on "simultaneous preparation” must be regarded as physically
impossible, In the double correlstion argument gbove, the qperation in
question happefxed to be a certain kind of measurement. However, thig does
not refute our earlier admonition (sec. 1) that measurement and preparation

must not be equated as is customary with proponents of wave packet reduction,

Reprodaced with permission of the copyright owner. Further reproduction prohibited without permission.



-

T1

Measurement and preparation are generally distinct, but, being constructs
within the same theory, they can of course be related through propositions

nsmte o~ AN
Buca as (Vj.

10, Some Exaqgles 2{ Quantal Joint Distributions

As we have Just seen, it may be that the class of ordinary measure-
ments cannot be extended to include simultaneous measurement of noncommute-
ing cbservables, Thus it is plausible that the orthodox principle of incom-
patibility, though incorrect as a general proposition, might be a valid
assertion about ordinary measurement schemes. Since the latter have cus-
tomarily been emphasized in scientific practice, (0), if correct, would
explain to some extent why it is that the standard doctrine of incompati-
bility, which is not only erroneous itself but is also often "derived"
from false premises such as the projection postulate, has been able to sur-
vive and indeed flourish in the physical and philosophical literature for

decades. Because of its practical, and perheps general, validity for ordi-

nary measurements, the orthodox principle of incompatibility has become g
quantum platitude, a creed whose words are occasionally repeated but whose
content is essentially ignored.

However, even if it turned out that ordinary joint /1{24; were nonexist-
ent, this would not eliminate &all simultaneous measurement schemes., There
would still be interesting historical procedures to study. Accordingly,
the remainder of this section will be devoted to derivations of the joint
distributions associated with several Jjoint VA42% of the historical type.
Perhaps another suitable adjective to describe this somewhat anomalous
class of ‘/t’{fs would be accidental, for as close scrutiny will reveal,
each of these simultaneousvmeasurement methods requires the quantum state

involved to exhibit rather extraordinary properties, However, even though
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they are "historical, accidental, and extraordinary", these schemes do rep-

resent velid simultaneous measurements of noncommuting observebles, and

At ewn A B T o L O O e R N Y . IR . /N - X
edgy U0 vaSleadre s€glLevidlde€ly TelUle Tae clalms tnatl (&) such measurements

are impossible and (b) that the associated joint distributions do not exist,

(1) Time-of-flight Mz (% ©): e theory behind this method was
presented in section 5, where it was shqvn that, under certain conditions,
an %-measurement Yielding x implied that a simultaneous @ -megsurement
would have ylelded ff—'—'—m% with theoretical error which can be made arbi-
trarily small (in contradiction to the standard misinterpretation of the
uncertainty theorem). Obviously, the Jjoint distribution associ;ted with
this M,f%@ is given by the following probability density:

w3 t) = | s (p—2E).

(2) Electric field M,l(f( ,@): Consider an electron (charge e) in an
uniform external electric field E. If Z,L(%O) is the initial electron
state, the state #%/79 at time t is given by the following unitary trans-
formation: . 2 .

Y= ety T + & S ottt
where -F =2F, <%0 7
" From this trensformation follow two probability "matchings" on which
an M(%@)may be based:
(= WoLpe st ] =\Wo [pe Gptr, p+tt 4],
) Wolipe ()3 ] =Wy e (BE+ BE, 152 1229, Joes
A 0o , provided ?,L{?{,o) 1s nonzero only in some finite intervel (-, 32'0)’

Equation (a) means that /1{’ (@l‘t t =0 ylelds p with the same proba-

bility thatM(@at t >0 ylelds f-l-'f\f . Equation (b) provides this
z(@)s to determine what l/l'(,(gat t =0 would have yielded, measure ?(
at sufficiently large t and use the result x to evaluate f=‘- M - fi—t 5

A
which then counts as the result of M, (@at t =0. By analogy to the
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time-of-flight method, we have only to combine (a) and (b) to obtain an
M.‘Z (ﬁ(,@) ¢ glven an electron (with initial state 7/&’,0) of compact

support) in a uniform electric field, wait a very long time and then mea-

sure 7( ; 1f the result is x, 1t is inferred through (&) and (b) that a

simultaneous M(@) would have yielded 70: (_’_;"ﬂ-’ -—f‘zﬁt) +TF = %Z 4_.‘_%’7"'

The jolnt probebility density associated with this method is accordingly

w s )= %)) S (p- 22 - £2),

To prove (a) y it is su:tficient to show that the evolution operator
for the electron in the electric field transforms an eigenvector belong-

ing to eigenvalue p into an eigenvector belonging to eigenvalue 70+'Fj‘

Thus, let ?’(’X 0)= Zvﬁ)w %— and determine the corresponding

¥nt) , F »
¥ 4)= gﬁ i 5 ar ok it — L ]}

Xg;r.—%;ﬂ—-[ '””%-i-’”’( +% ﬁf‘yr, +7ozj
__{gg‘é&w[x (M,L)wr( me 488 o]
'SBW [ f‘/r—-_}iq-,,o)_]

=l % (‘P*f’)ﬂ[‘”’” 2+ *"o/f‘)]

which will be recognized as the desired eigenvector (the second bracket is

Just a phase factor independent of x).
To prove (b) let 2/’/’/Y 0) denote eny wave function which is nonzero

only within an interval (—7(,,)% ) and consider the following probability

function: o b:ﬁ-—-l-"c’fz
Mxe(%—%—» 2547 = [ 3, 2o
a:’)ﬂz-f-fi-—
m am 2

-G @f—-{ R
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" .
Under the substitution ;Y—- ’ﬁ"' + ——{t' , this beconies

*. im
/;——; ( %‘#m,wz‘m“a&// s

l LY/ KS] Joo

which, y the same argument given in section 5 in the time-of-rlight case,

for sufi'iciently large t becomes arbitrarily close to

1: o )2 & HF 0y | dp =\WpLpe o, %]

(3) Correlated systems M (ab@): This genersal method was discus-

sed at the end of section 5, Since the state of S+‘ @ , where

,g; _ % (I) @ o< s the state of §, alone is F rz ?E
“‘%IC—K’ pc» . Now, theM(d,)which determines the desired /M,@)—re-

sult also provid.es a method for resolving the § -ensemble into its pure

subensembles E&)\ . (As a matter of fact, this is a case where even the
naive version of the projection postulate could be used without error, )

)
Thus the S o), -subensemble to which theM (ﬂ,)-result (789 105) assigned has
state 0) s a.nd.M (@)on that subensemble would yield b‘e with probability

T( P *PW> ___}( 6") (’) / . Since the fraction IC%J" of the

=2 -ensemble would be in the subensemble B’) it follows that the joint

t

probability aBBOQi&ted with this Mis
Wot, B 5 p)=lea PISE 1= Tr (48, %) Tr (Bf2),

To summarize, the foregoing joint meesurement schemes led to these
probability functions:

O W pih)=| %t Sp-IE) o0

@ w (A, ,7//) | %0 5( -~ E —1f), #> 00,

o Wieth, 530) =Tr(p BT (Re ).

Note that in each case the two Observebles are stochasticafly dependent,

(4) Magnetic field ./1{ %w Since in a megnetic field the
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canonical momentum is geuge dependent, we here consider the problem of

‘ measuring the y-component of position and velocity, and W If an
g electron in a uniform magnetic field [H=[D is initislly in the state

?(9(;“337;0) , the state at time t is gvew}rgg
Y SM }/?, §J§,, W%’;—g@@? @ et G Nr- 1)ty Y] +w(763—79837(«g,;30)3

—_—00 -

where U)E < and the gauge is so chosen that the vector potential
BT 4 ad
is /4 ::—-:-,Z-(-—-?,L +/,Yj ) . From this transformation the following pro-
bablility equations may be derived:
W [ )i ] = W Db € (%) 4, ]
where 2— = % R
(b) Ir ’f(ﬂ’,%% 10) = § (%) Z/*[y)j(a,) S then
Wacl € (viok) s &, ] = Wae e (51> 25 )3 2],

Proceeding as in previous examples, we may define an Ml( 5%\)

as follows: to measure and ’Vat time 2" for en electron initially
in the state S(ﬂ)#{z} :f(’z.), measure 7 at ? and use the result x to
evaluate 'Ui’:: -—%z ; also measure @,at ? to get result y. From (a)
end (b) it follows that the pair (5’4/5> mey be regarded as the result of

simulteneous M(a)a.ndt/{{,(%t ¢ . The joint distribution of y and 1/5

will depend on that of y and x since 'US, is determined from x.
To prove (a) end (b) and to find the desired joint distribution, it
will be necessary first to obtain the ?(ﬂ, ,352‘) corresponding to

?(%;,3—30)::5(1) ’I}’[ﬁ_) 30(3,) .* It is convenient to work with the

* 1}'(‘3») and j(’}) are assumed normalized. However, since 'E(% ;}50)
contains also a Dirac 9 y 1t is only S -function normalized; thus g?( 3%,% 5‘&)
is also S -function normalized. As a result, probabilities computed from
these wave functions will involve meaningless §(0) factors which will be
replaced by unity at the end of such calculations. (This replacement will
be indicated by using the symbol ‘=% instead of —— .)
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expansion

(2¢t 7;2, )0) = 5(%)5049(70) 049 3&),

where qJ(f) E_;-_r:— ).e ‘ﬁ f’(‘z)% is the canonical momentum space wave

function corresponding to %( )

oo

U35 5) (arian Vo [ Swz—:’,;—“—(%wzug

)(Sob/ % oy L [wln’; 7(72]5(/0@ ) f/ﬁ@n

= malda fﬂfo‘ffé%w ot 150

#(/ xrfh 30(%?:) @;‘pfff— S [ ( 122 + )]

tree

3}27%7 ("~ )] ﬁ"%?) I

(The factor in brackets is normalized, )

From this expression we next obtain

W lne (%58 ] _
2
G

W

= gzléf(/mr)/molt/‘ NOXO,
v
=" gq] Cf)(mar)/afn.oﬁw

vhich must be compaﬁred to W EA/’E (4/- 1]")9 é] , where

Firy,350) = 60 ty) Pz,
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The opersator \/ such that \/4__7 W is
() 2 g |
L2 _w
\/4 E n LY O - ;
] 0 ) ~
its eigenfunctions are Z_?/‘(
value corresponding to 7 %
Wo.ro?o

~ calculated as follows:

W [vewsi); %, )= atvf ; Zb<7’%? >/g[¢ - (B 0]

ol s

Ya X 5["’ (m 127()_]

= ; @@ﬂv_(ﬁge_%)] /gm = g e@zmm

—&Z_@ @70? [ (H — %) [strose)| cﬁ%)/

EL@@ § [ 2] 5(0)/49(74,)/

:g | mmelr

!

Comparison with the expression for Wﬂ/l:?( E ( 3_"}_[., __._ 7 ?J shows

that (b) is true. o
We next prove (a) for the specific Z_Zo involved in (b), since only

(; 3.)5(:/)?4@)3’@/

that specisl case is required for the Mﬂ, under eonsidera{:ion.
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f W, [0 & (~45,-w)s %;]::@S%gy /<Za @%’%;)/;[v-(%—-‘%&ﬂ

v o
=\ \ o\t \ola,, § [or— (G - 4 10)]

X / o {"’3 doy S C1-1) %j‘%&}%} ez W}@‘»‘Z%’*’/

)

8
I
8

= A\ 2 st8.0505) o - - )

= (b 22222 500 s+ 2]

5

= ]af’(—mv)/inow S(O)-

Vo
" .
W= S }CP(—WW)} may
=V

5

]

This equals W%):'ng(ff{, V{)', %] ; hence (a) is valid.
The Joint probability density (/7 K% @?) for this Q/i{z(yﬁ/; )18 easily
obtained, Since M(@-results depend on MW-results, W’(?,)»t/g'.; i;,)

is simply related to W,af(:?;iz;), which is calculeble in the standard way:
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y@/: 25 Z.) ’igif(ﬂ/; w}*’-’)/ Zgz“‘(f‘;f / l/@_’?’- ¢( '@52%/ / ’z

[;;t} Since !uf‘:—; _:_'_1_4‘_ at ¢ , the density “ (?’ 2‘ ) 2,2’/ is given by

Wy )= % iy (- Loy s )= (B | )

'I'he tact (counterintuitive for some physicists) that simultaneous

Q

measurements of noncommuting observables could be stochastically indepen-
b dent and be in harmony with the basic structure of quantum mechanics has
been emphasized by Margenau?g The above expression for U}7 ( ) i) shows
that such independence orM (y)and J‘/ (?{Actually obtains for this partic-
ular (/1’( (y)%) To see this more clea.rly, note that (,(/’(43,’1)5‘ ] i—)
—UI?(‘?)W{,»(W , where Wrg a.ndb“f/- ere computed in the usual quantum

mechanical manner:

WP ‘g”&/@ ?(2’,7,3,,1-)/
G lrE e sr) )
ek
K =_ 2;( g %E?" / <7x,7@°35 £>/ ; b;-(Ce _g_ga;j
=56 |4 =" m | ).

Thus we have a counterexemple to the idea that noncommuting observ-

1I

ables must somehow "interfere" with each other during measurement. Al-

though r >/ \/]#0 simulta.neouqu @)and(/‘{ (Q/)performed via the present

2 yield stochastically independent results. But of course the uncertainty

principle still holds; indeed here A@A’V—? SO, where the A’S are

Just standerd deviations related to collectives of simultaneous % L)
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014;-measurements.

In conciusion, we now summarize the important results obtained above:

ﬁi 1l, If quantum theory had to be based upon the common assertion that
to every physicel observable there corresponds an Hermitean operator, then
the theory would be self-contradictory, for that axiom proclaims the exist-
ence of certain‘operator;observable correspondences which, as & conse-
quence of the remsining aexioms, cannot exist.

2. A byproduct of these contradictions is von Neumann's theorem on
simultaneous measurability, which is the only seemingly logical foundation
ever given for the orthodox principle of incompatibility of noncommuting
observables.

3. Once the concept of measurement is properly understood, it is pos-

sible to give explicit examples of quantum theoretical schemes for the

exact simultaneous measurement of noncommuting observables,*

4. The contradiction between von Neumann's theorem (2) and the

counterexamples (3) is simply a reflection of the fundamental contradic-
tions (1).

5. If quantum theory entails only a weak correspondence between

operators and observables, i.e., if it is assumed only that Hermitean

*¥It is importent to realize that we have used the term measurement
exclusively to refer to theoretically ideal processes which yield sharply
defined numbers. (In a full treatment of the general nature of measurement,
Margenau®¥calls such procedures "successful" measurements.) Occasionally
one sees discussions of so-called imperfect "measurements" which presum-
ably yleld both a number x and an interval of "uncertainty" Ax covering
that number, a concept inveriably used without any clear definition.
Recently several authors®¥who tacitly accept the projection postulate and
therefore believe that noncommuting observebles cannot be simultaneously
measured with exactitude have advanced simultaneous "measurement" theories
wherein the term measurement refers to these (in our opinion ill-defined)
imperfect "measurements". Thus the similarity between these theories and
the present work runs mo deeper than the sound of the titles,
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operators represen£ observaebles but not that all observables have operator
representatives, then the contradictions disappear; in particular, von
Neumann®s theorem no longer Tollows from the axioms.

6. Moreover, none of the basic theorems which form the praétical core
of quantum physics is affected by this exiomatic shift from strong to weak
correspondence.

T. The structure of quantum theory does seem to resist the formula-
tion of any ordinary theory of measurcment to describe simultaneous mea-
surement processes; nevertheless, quentum mechanically certified simul-
taneous measurement schemes of the historical kind can be developed.

8. Derivation and comparison of the joint probability distributions
associated with several methods of simultaneous measurement reveals that
quantal Joint probabilities mey be either correlated (e.g., the time-of-
flight case) or uncorrelated (e.g., the magnetic deflection type). Indeed
the diversity of form among the specific distributions studied would seem
to indicate that quantal joint probabilities for noncommuting observables
are probably not functionals of state alone but depend as weil on "his-

torical"” factors concerning particular UAqéb's.
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