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A common approach to quantum physics is enshrouded in a jargon which treats state 
vectors as attributes o f  physical systems and the concept o f  state preparation as aft#ration 
scheme wherein a process involving measurement selects from a primordial assembly 
o f  systems those bearing some prescribed vector o f  interest. By contrast, the empirical 
experiences with which quantum theory is actually concerned relate measurement and 
preparation in quite an opposite manner. Reproducible preparation schemes are logically 
and temporally anterior to measurement acts. Measurement extracts numbers from 
systems prepared in a specified manner; these data are then regularized by the theory by 
means o f  a state concept which is in turn used to characterize succinctly the given mode 
o f  preparation. The present paper offers, in a simple spin model, a method for determining 
the quantum state that represents any reproducible preparation. 

1. TWO MODELS FOR QUANTAL MEASUREMENT PROCEDURES 

It is commonplace to read in the literature of quantum physics that the state vector 
concisely summarizes the "maximum possible information" about a physical system. 
The concept of  mixed state, representable only by a density matrix, is then introduced 
as an artifice for describing systems about which less is known than might in principle 
be known. Yet, critical analysis of the physical meaning of  pure states and mixtures, 
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i.e., of the epistemic rules actually employed in the practice of physics to link these 
theoretical constructs to data, reveals that in both the pure and mixed cases ensembles of 
identically prepared systems are required to validate the physical predictions inherent 
in the state vector or density matrix. Thus, the physical referent even of a pure state 
is already an ensemble; for every state vector entails probabilistic information, 
testable only by comparison with relative frequencies obtained from statistical 
collectives of data. To regard a mixed state as indicative of ignorance--less than 
"maximum possible information"--leads therefore to the use of such meaningless 
clauses as "the probability that the mean value of observable E is (en ] E I en> is wn ," 
or "the probability that a system in the ensemble has state vector I en> is w, ." This 
phraseology assumes that every physical system possesses some state vector l e~> 
as an attribute which might be known or unknown, and thereby ignores the paramount 
physical fact that state vectors refer not to single systems but to ensembles of identically 
prepared systems. 

Against this background, the philosophical underpinnings and consequences 
of which are elaborated more fully elsewhere, m the present work attempts to provide 
a method for the empirical determination of quantum states which is consonant with 
the actual format of experimental science, and which does not presuppose that pure 
states are objective properties of systems while mixed states are subjective measures 
of human ignorance. 

The problem of empirical determination of quantum states is frequently confused 
in the literature with the mathematical problem of providing enough labels (quantum 
numbers) for the unambiguous specification of Hilbert vectors. The latter problem 
is solved by finding maximal Abelian sets of Hermitian operators (Dirac's complete 
sets of commuting observables). Unfortunately, this purely formal procedure is often 
described in terms of an old, untenable theory of measurement based upon the 
famous notion of wave-packet reduction. The verbal result, frequently couched 
in the jargon of filtration gedankenexperiments, superficially gives the appearance 
of an empirical method for state determination. 

This filtration model for quantal measurement procedures ignores the funda- 
mental distinction between preparation and measurement, the two physical acts 
that mark the beginning and end, respectively, of each run in a typical experiment. 
Instead, it is imagined that a quantum system can be prepared in a particular eigen- 
state [el) of observable E merely by "measuring" E, and retaining the system if 
the numerical result is ea but rejecting it if another result is obtained. Such "selective" 
measurements are to be performed using ideal devices called filters. If  E is by itself 
a maximal Abelian set, the procedure is described as having measured, selected, or 
prepared the system in state I ea); if not, E must be supplemented by enough additional 
observables and corresponding filters to make up a maximal set. In this model, 
mixtures are introduced subjectively as representing ignorance as to which vector I e> 
the system really possesses, a state o f  affairs presumably traceable to the use of a 
low-quality filter. Now, it is our belief that the filtration model does not adequately 
cope with the actual experimental situations that quantum theory is called upon 
to analyze. In particular, the following shortcomings of filtration should be 
noted: 
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1. The idea that a measurement of an observable E that yields the datum e 1 
is equivalent to finding or preparing the system in state 1 el) is erroneous. There is a 
finite probability for the eigenvalue el to result from an E-measurement on a system 
in almost any state whatever--pure or mixed; hence, a single E-measurement yielding 
e~ cannot be interpreted as revealing a preexisting state l e~). However, an ensemble 
of many measurements all resulting in e~ is a necessary condition for the verdict 
r e~) after the event. Neither can such a measurement or series of measurements be 
regarded as preparing [el);  such preparation coincident with measurement is not 
impossible, but in view of the catastrophic effects of detectors upon microsystems, 
it is certainly rare. 

2. The filtration model focuses attention on the terminal phase of an experiment 
- - the  measurement act - -and by treating measurement as equivalent to preparation 
for a later experiment inverts the fundamental physical question that experiments 
seek to answer. That is, instead of asking what measurements must be made to 
determine the state of a system that has been subjected to a given preparation, the 
filtration model attempts unsuccessfully to effect preparations by the performance 
of measurements. 

3. Since ensembles are equally necessary for the operational definition of pure 
states as well as mixed states, and for other reasons I~) too complex to review here, 
it is improper to pretend that each individual system possesses some vector !en), 
perhaps "unknown."  Hence, the problem of empirical determination of the quantum 
state associated with a given preparation should not be predicated on any assumption 
that each system has a state vector waiting to be discovered. If  a preparation scheme 
does in fact produce a pure ensemble, that information must emerge from an analysis 
of  the data, not from an a priori conviction. Similarly, no other assumption should 
be made in advance concerning the spectral structure of the density matrix. For 
example, if a preparation gives a mixture of [ e~) and J e~), that information must 
emerge from the data; subjective a priori statements that assume that each system 
in an ensemble has either [e l )  or l e2) are unreasonable, since the correct density 
matrix may not admit of the proposed decomposition. 

Instead of the filtration model, we espouse instead what may be termed the 
preparation-measurement model c~,4~ for experiments in quantum physics. Its essential 
framework has already been discussed above in connection with the foregoing critique 
of the filtration picture. In the following sections, we derive for a simple spin system 
a method for determining the density matrix that characterizes any given preparation. 
It turns out that measurement of a maximal Abelian set is in general insufficient to 
determine the state, even if the state is known in advance to be pure. Indeed, what 
must be measured is not a complete set of commuting observables, but what we shall 
call a minimal set of  noneommuting observables. 

2. MINIMAL SETS OF NONCOMMUTING OBSERVABLES 

We assume that some reproducible preparation scheme H is given and that a 
measurement is to be performed following each preparation for the purpose of 
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determining the density matrix that characterizes the given preparation. By repeating H 
and a measurement of  some observable E many times, we gather a collective of 
numerical data from which may be inferred statistical quantities like ( E )  (the 
arithmetic mean of the E-data), AE (the standard deviation of E-data), and (F(E)> 
(the arithmetic mean of some prescribed function F of the E-data). Our project is to 
find sufficient statistical data to determine the unknown O. 

For  simplicity, we consider a quantum system whose Hilbert space has only 
two dimensions. The density matrix O and matrix representatives of observables 
are of second rank. Hermiticity of  p and of the observables implies that four real 
numbers suffice to determine the matrices unambiguously; in the case of p, the 
auxiliary normalization condition Tr p = 1 reduces the number of independent 
real numbers occurring in the (complex) elements of the density matrix to three. 

Any Hermitian matrix on this Hilbert Space may be expressed in the following 
manner, which displays explicitly the real numbers that determine the matrix: 

3 

E = Z E k ~  = Eo% q- E"  a (1) 
k=0 

where o 0 is the identity and the components of o are the three standard Pauli spin 
matrices; Hermiticity implies that the Ek are all real. 

Let e l ,  e2 denote the eigenvalues of E; the trace of E is then (el -F e2); therefore, 
since Tr % = 2, Tr  a = 0, we obtain 

Eo = ½(el -F e2) (2) 

Similarly, for a density matrix p, we have 

P = ~ o  + P ' ~  (3) 

since Tr  p = 1. 
The arithmetic mean of E-data is related to the unknown p through the 

fundamental trace equation 

Tr(pE) = <E> (4) 

The trace may be expanded as follows using (1) and (3): 

3 

Tr(pE) = ~' pkE~Tr(crko~) = 2 ~ pkEk = E0 q- 20" E (5) 
k=O k 
~ 0  

Combining (4) and (5), we obtain 

2 p . E = < E > - - E  0 ~ 3 E  (6) 

Note that E0 is the mean value for E-data that would be predicted on the basis 
of equal a priori probability for each possible value; 3E is a measure of  the departure 
of the actual preparation from one that yields random E-data. 
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Equation (6) is linear and has three unknowns--the components of 0. If  two 
additional linear equations like (6) can be found, then 0 will be determined. This 
program is easily achieved by performing measurements of observables A and B 
upon ensembles prepared in the manner H. When the data are analyzed to obtain 
~A and ~B, we shall have three real linear equations in three unknowns, 

2o • E = ~E 

2p • A = ~A (7) 

2p • B = ~B 

which may be solved to obtain 

2 0 - -  3E(A × B ) + 3 A ( B  × E ) + S B ( E  × A) (8) 
E . A × B  

Note that, if 6E = ~A = ~B ---- 0, p is given by p = ½%, the density matrix 
that assigns probability ½ to each eigenvalue of  every observable. 

Equation (8) determines 0 and hence p if and only if the scalar triple product 
in the denominator does not vanish. Therefore, the observables E, A, and B will be 
adequate to determine p if and only if 

E . A  × B=/=O (9) 

The condition expressed in (9) is not, however, in the form readily accessible 
to normal quantum-theoretical modes of thought. We shall therefore demonstrate 
that the content of (9) may be stated in terms of  commutation relations. 

The commutator of two observables A, B expanded in the form (1) is calculated 
as follows: 

3 3 3 

[A, B] = Z AkBj[ek, or,] = Z AkBj 2i Z %J,e~ 
k=O k = l  p = I  
j=o  j = l  

(lO) 

since % commutes with a. 
Rearranging, we obtain 

[A, B] = 2i %~jAkBj 
io~=1 

j = l  

i.e., 

a~ = 2i(A × B)" a (11) 

(vector component of [A, B]) = 2i(A × B) (12) 

Now, E • A × B =7(= 0 if and only if 

E × A @ 0 ,  A × B =7~ 0, B × E : ¢ : 0  (13) 

But, by (11), (13) is equivalent to the statement that E, A, and B are 
noncommuting observables. 
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Hence, the condition (9) for the adequacy of  E, A, and B to determine p can be 
fulfilled i f  and only i f  E, A, and B do not commute. 

We shall call such a set of observables that yield the data 3E, etc. sufficient to 
determine p via equations like (7) a minimal set of  noncommuting observables. (In the 
present example involving a two-dimensional Hilbert space, the minimal set has 
only three elements.) 

Note that three distinct types of measurement apparatus must be employed; 
i.e., several statistical quantities like (E>, (Ea>, (sin E> drawn from the same collective 
E-data are insufficient to determine p, since all functions of E are mutually 
commutable. 

3. UNCERTAINTY AND CERTAINTY 

The uncertainty theorem of quantum mechanics, 

AA AB >/ ½ [(~b[ [A, B] i ~b>l, ~b arbitrary (14) 

is easily extended to mixed states via a triangular inequality. Let the spectral expansion 
of p be 

p = rl [ rl>(rl[ + ra [ ra>(r~ [, r I + r~ = 1 (15) 

If 

cl ~ (r l /½[A, B] [ rl>, c2 ~ (r2 [ ½[A, B] I r2> (16) 

and [c1[ >~ I ca 1, then 

AA AB >~ I Cl [ = (rx + ra) I cl I >~ rl [ cl i + rat ca [ >/ I tic1 @ r2ca] 
(17) 

= [ Tr  p{½[A, B]}I = ½ [([A, B]>I 

From (3), (11), we find 

Then (17) implies 

I<[A, B]>I = 4p - A X B 

A A A B > ~ 2 i o ' A  × B] (18) 

Now, it might be supposed that a deviation AA could be obtained experimentally 
as an item of information independent of the mean value (A>. However, in the present 
simple Hilbert space, such is not the case. Using, for example, the A-representation 
we have 

(A> = Tr(pA) = alplx + a2022 (19) 

(A2> = Tr(pA ~) = a~2011 + a22p22 (20) 

which pair can be solved for pll and p2~ : 

pll = ((A2> -- a~<A>)/al(al -- a2) 

Pz2 = (<A2> -- al<A>)/aa(a2 -- al) 
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and, because identically Pll + pss ----- 1, we have 

(A s) = (al -f- as) <A) --  ala2 (21) 

which is of course an invariant relation independent of the representation used in 
the deduction. Thus, (A s) is not an independent bit of information beyond (A). 
From (21), we further have 

( A A )  s = ( A  2)  - -  < A )  ~ = ( a l  - -  ( A ) ) ( < A )  - -  a~) 

and similarly 

( A B )  2 = (b l  - -  ( B ) ) ( ( B )  - -  bz) (22) 

The left side of the uncertainty relation (18) is thus in fact 

A A  A B  = [(a~ --  ( A ) ) ( ( A )  - -  a2)(bl  - -  ( B ) ) ( ( B )  - -  b~)] 1/~ (23) 

Combining (8), (18), and (23), we have the following relationship connecting 
(A),  (B) ,  and ( E )  as a consequence of  the uncertainty theorem: 

[(a, -- (A)) ( (A)  -- a2)(bl  - -  ( B ) ) ( ( B )  - -  be)] I/2 

t3E(A × B ) ' ( A  × B) + 3A(B × E ) ' ( A  × B) + 3B(E × A)" (A × B) t 
(24) 

I E . A × B  

Suppose H were such that (A)  = a~ ; then, A A  = 0 and 3A = ½(al --  a2). 
The right side of (24) must therefore vanish; hence, ~B and 8E are no longer 
independent. 

Actually, the observation (A)  = a~ alone suffices to fix p = [ al)(a~ f, as is 
easily proved. It might therefore be conjectured, perhaps in defense of the filtration 
idea, that only one observable, rather than the minimal set, is adequate to determine 
a pure density matrix. This reasoning is fallacious, however, since (i) there is in general 
no way to know a p r i o r i  that a state is pure, and (ii) finding that specific observable A 
for the given H such that (A)  = al would require a s e a r c h  through an infinity of 
observables. By contrast, our method involving a minimal set of noncommuting 
observables is a definite procedure for determining the p belonging to any /7  whatever. 

4. CARTESIAN MINIMAL SETS 

From equations like (8) and (24), it is obvious that our results would be greatly 
simplified if the three vectors A, B, and E were mutually perpendicular. We shall call 
a minimal set of noncommuting observables E, A, B for which E, A, B are mutually 
perpendicular a Cartesian minimal set. In a representation diagonal in E, a Cartesian 
minimal set may be expressed as follows: 

E = ½(el + es) eo + ½(el -- e~) ~3 

A -= 1(al q- as) eo -? ½(ax -- as) al (25) 
1 B = e(bl + b2) % q- ½(bl -- bs) ~s 
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Within this set, we have the following: 

E ° A X B : ~(al -- a2)(bl - -  b2)(el - -  e2) 

A - B - - B - E = A - E = 0  
(26) 

and 

A X B =- E(al  - -  az)(bl - -  bz) (27) 
2(el -- e~) 

and two similar relations. Since E has only the one component, Ez = ½(e 1 -- e2), 
A × B also has only the one component, [A × B]a = k(al --  a~)(b~ --  b~), and the 
components of p in (8) become 

8A 3B 8E ) (28) 
a ~ - - a s  ' b a - -b2  ' e~--e~ 

so that the density matrix is 

1 ~A 3B ~E 
P = 2 % + ( a l - - a 2 ) ~ l ÷ ( b l - - b 2 ) ~ 2 ÷  (e 1 _ e 2  )cr~ (29) 

Using (27) and (29) in (18) yields the following set of uncertainty relations: 

A A  A B  >1 ½ ~E(a l  - -  a2)(bl - -  b2)/(el - -  e~) 

A B  A E  >/½ 3A(bl  - -  b2)(el - -  ez)/(a~ - -  a2) (30) 

A E  A A  >/½ 3B(el  - -  e2)(a 1 -- a2)/(bl - -  bz) 

Note that (30) implies that, to obtain a precise value of, say, the observable E, A E  =- 0, 
both ~A and ~B must vanish. 

When a Cartesian minimal set is used, it becomes possible to derive a rather 
simple formula for the density matrix in terms of  the relative frequencies of measure- 
ment results. Le t f~ ,  denote the relative frequence with which E-measurements yMd e,;  
then, since ( E )  = fe le l  -~-f, e2 and f q  @ f% ~--- 1, we have 

f ~  = ((E} -- e~)/(el -- e2) (31) 

The relative frequency f q  is just the mean value of the function Pa(E) defined by the 
spectral expansion 

2 

PI(E)  = ~ Pl(e~) l en)<en ] (32) 
n = l  

where Px(en) = 3 1 n  ; i.e., 

PI (E)  = I el)<el I ~ P,1 (33) 

(Pel) = fe~ (34) 



The Empirical Determination of Quantum States 141 

From (6) and the fact that Pz(E) is a projector with trace unity, we now obtain 

Combining (31) and (35), we obtain 

(35) 

3p~l __ (E)  -- e2 1 
el -- e2 2 (36) 

But since, by (6), (E)  = ~E + ½(el --k e~), we get 

8P, 1 -= 8E/(ez -- e~) (37) 

Comparison with (29) then yields the following simple expression for the density 
matrix: 

p = ½io -k 3Paziz -k 8Phi~ + 3P~liz (38) 

where ~Pa~ = f,~ -- ½, etc. 
Note that, if E, A, B had been chosen as projectors at the outset, Eq. (29) would 

have taken the form (38) automatically, since the eigenvalues of any projector are 
0 and 1. Since, in quantum theory, projectors represent observables variously known 
as dichotomic variables, propositions, or questions, we shall use the term Cartesian 
questions to designate a Cartesian minimal set of projection operators. Equation (38) 
now suggests a simple reformulation of our procedure for determining the density 
matrix corresponding to a given H: Select three kinds of measurement apparatus 
capable of giving "yes" or "no"  answers to three Cartesian questions P~, P , ,  P~ ; 
i f f~ ,  fb ,  fe are the measured relative frequencies of "yes" answers, then the density 
matrix characterizing the preparation under investigation will be, in a representation 
diagonal in P~, 

/9 = lif o @- (fa - -  21--) i l  -t- (iv -- ½) Or2 q-- (f~ -- ½) % (39) 

5. EMPIRICAL SIGNIFICANCE OF PURE AND MIXED STATES 

In Section 1, we argued that an operational definition of the density matrix 
cannot reasonably presuppose any particular spectral structure for the matrix; for, 
until data become available, it cannot be known that a system prepared in the 
manner H has a state vector at all, nor can it be known that the system has some 
"probability wn of having a prescribed state [ en)." Accordingly, we have developed 
the method of minimal noncommuting sets for determining the density matrix 
without making a priori assumptions about its mathematical form; it has been 
demanded neither that p = l e)(e[ ,  with re) to be determined, nor that 
p = ~ w,~ ] e~)(e. I, with the "possibilities" j e~) known and the wn to be determined. 

However, now that we have a procedure for constructing the density matrix 
from an examination of data, it is possible of course to discover by further analysis 
whether systems prepared in the manner H are in pure states or mixed states. (More 
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accurately, whether  an ensemble of  systems prepared  in the manner  H is pure  or  
mixed.) 

The  condit ion for  the pure  state is 

p2 = p (40) 

which m a y  be writ ten as follows by using the expansion (3): 

o r  

pj~ pke = p m ~  (41) 
ft~=0 

3 3 g 3 

Oo2eo + 2p, Z p,c, -I- Z P,2eo + 2 PJPk~,a,~ = E O~c~ (42) 
j = l  j = l  j~7~=~O m=O 

Because e;ek = - -eke~ ,  the last t e rm on the left vanishes, and,  f rom Po = ½, we 
find (42) yields ~- -5 ~]J=z PJ~ = ½ or 

Pure state: p • p = { (43) 

A trivial example  of  a pure state would be to take .Pz = ½, pl = P2 = 0, when 
1 0  " 1 1 1 - z  • • P = (-^]" Another :  P2 = ~ ,  Pl = P3 = 0: p = ~( .  , ] ,  wh lchcan  be diagonahzed 

- ~oo/ ~z I / 0 

to (10~. On the other  hand,  any density matr ix  can be diagonalized to the fo rm (~11 ), 
\OOl P2~ 

with two nonzero  elements if  it is no t  a pure  case. In  the diagonal  form, it can be 
writ ten as P0% -t- O393, where P0 = ~ and P3 = ½(011 - -  p2~)- In  this case, we have 

p .  p ___ p 2  = ~[Ox21 _~_ (1 - -  pll) ~ - -  2Plz(1 - -  Pll)] ~--- ¼ -~- P~11 - -  Plz (44) 

Since Pax < 1, (44) implies that,  for  a mixture, 

Mixed state: 0 • 0 < ~ (45) 

By combining (8), (43), and (45), we m a y  write the conditions for  pure (or mixed) 
states in terms o f  experimental  data:  

]3AA* + 3BB* -F gEE* 12 ~< 1 (46) 

where we have writ ten A* for  the vector  (B × E)/(E • A × B) reciprocal to A, etc. 
For  a Cartesian minimal  set E, A, B, the criterion for  a pure  state expressed by 

the equality in (46) becomes 

- / A / - !  + + = 1 (47) 

since A* = (I/] A l) A/[ A ], etc., for mutual ly  perpendicular  A, B, E. 
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For a minimal set of Cartesian questions P~, Pa ,  P~, (47) reduces to 

( a e , y  + (ae~):  + ( aP , ) :  = (48) 

since ]Pa I = I Pb I = I Pe I = ½- In terms of  relative frequencies of "yes" answers, 
(48) may be expressed as 

(fo - ~)~ + (fb - ½)~ + ( f ,  - ½)~ = (49) 

This suggests the following simple empirical test for ascertaining whether or 
not a given preparation 17 is producing a pure state: Select three Cartesian questions, 
"ask" the questions of  systems prepared in the manner /7  (i.e., measure the observables 
represented by the projectors), compute the relative frequencies of "yes" answers. 
I f  these relative frequencies satisfy (49), H is a pure-state preparation scheme; if (49) is 
not satisfied, H produces a mixed state. 

If  the state prepared in the manner H is pure, then any one of  the relative 
frequencies is determined by the other two through (49). This represents the fact 
that only two independent real numbers are required to specify a state vector in the 
present Hilbert space. Any state vector I ¢)  may be expanded in terms of  the eigen- 
vectors of E as follows: 

] ~b) = r l e l )  + c l e ~ )  (50) 

where r may be assumed real and positive due to the arbitrary overall phase of t  ~b}. 
Moreover, r is determined by the modulus of c through the normalization requirement: 
r = +(1 --  I c 12) 1/3. Hence, only the modulus and phase of c-- two real numbers--  
are needed to find ] ¢}, provided it is known that a [ ~} exists (an assumption made 
implicitly in Feenberg's method ~5) for determining nonrelativistic wave functions). 
However, to know whether a [ ~b} does exist for a given H,  it is necessary to "ask"  
all the questions in a minimal set and successfully apply the criterion (49). If  (49) is 
satisfied, it is then a simple algebraic procedure to determine the coefficients in (50) 
from the elements of p. 

Similarly, if it could be known in advance that a mixture is present and can be 
subdivided into pure states ]el} and ]e2), then only one real number would be 
required to specify the density matrix in the present Hilbert space; i.e., if 

p = wl ] e l)(el  I + w2 [ e~)(e2 I (51) 

where w2 = 1 -- wl, then the real number wl determines p. Thus, measurements 
of Pe alone would determine p. But, of course, to learn whether the density matrix 
for a given H admits of the particular expansion (50), it is first necessary to "ask"  
all the questions in a minimal set. 

The reader is free to interpret the formalism used above in terms of the spin 
observables of a fermion, when, of course, e 1 = al = bl = ½, e2 = a2 = b2 = -- ½. 
We have, however, deliberately refrained from this throughout the work because the 
accidental simplification of  various formulae that occurs for spin components does 
little more than obscure the statistical significance of the formalism. 

825/1/2-4 
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