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Abstract 

In this sequel to an earlier paper on quantal state preparation (Park & Band, 1972), the 
simple model used before is adapted and somewhat generalised to enable an exact treat- 
ment of the causal evolution of a system immersed in a statistical ensemble constituted 
of replicas of the system itself. The ensemble is initially in a state of statistical equilibrium, 
but the initial state of the system is arbitrary. It is established as a purely dynamical theo- 
rem that the system is eventually coerced into the same equilibrium state as that of the 
replicas in the ensemble. From this general result we obtain as a special case mechanical 
justification for the common assumption in statistical thermodynamics that an ensemble 
can function as a thermostat. 

1. The Dual Role o f  the Ensemble in Statistical Thermodynamics 

The statistical e n s e m b l e - a n  imaginary col lec t ion  o f  replicas o f  an actual 
system o f  i n t e r e s t - h a s  for decades played a basic role in mos t  formula t ions  o f  
statistical physics, the only  notab le  except ions  being kinet ic  theory  and the 
m o d e r n  in format ion- theore t ic  version o f  statistics. Str ic t ly  speaking, the for- 
mer in its pure form would  no t  really be statistical at all since it  would  invoke 
no probabil is t ic  assumptions;  the lat ter ,  on the o ther  hand,  is deeply probabil-  
istic, bu t  the probabil i t ies  are in te rpre ted  subjectively so that  the no t ion  o f  

ensemble becomes  unnecessary (Jaynes,  1957; Hobson,  1971). 
When the statistical ensemble  is employed ,  its significance for the theory  is 

always at least this: it permits  an object ive in te rpre ta t ion  o f  the probabi l i ty  o f  
an event  as a quan t i ty  opera t ional ly  def ined as the relative f requency  o f  occur- 
rence o f  that  event  among  the members  o f  the ensemble.  This type  o f  ensemble 
is fundamenta l  in every science that  treats probabi l i ty  always as a measurable  
construct .  It  gives empir ical  meaning to  abstract  quan tum theoret ical  deriva- 
tions o f  coll is ion cross-sections, and it is indispensable to  the t ransformat ion  
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into profit of the alluring design of a roulette wheel. In physics, such an 
ensemble-introduced in order to objectify probability-is properly termed 
Gibbsian, in recognition of its powerful entry into theoretical physics in Gibbs' 
now classic treatise (Gibbs, 1902; Tolman, 1938). 

A Gibbsian ensemble is defined simply as a set of independent replicas of a 
system. Especially noteworthy is the qualifier 'independent': the elements of 
the set need not even exist simultaneously. Indeed the relative frequency defi- 
nition of probability is normally considered to be valid only to the extent that 
the replicas do not interact. Thus an assembly of 1020 systems mutually inter- 
acting is not in general the statistical equivalent of an ensemble comprised of 
the same systems studied in isolation at the rate of one annually for t 020 
years, but an assembly of 10 20 non-interacting systems (like a perfect gas) may 
without contradiction be regarded also as a Gibbsian ensemble. 

In statistical thermodynamics, the ensemble is often used in a manner which 
transcends these Gibbsian strictures by allowing, or rather demanding, that 
each system in the ensemble be in weak interaction with its replicas, the latter 
to be interpreted collectively as a heat reservoir, or thermostat. Such a con- 
struction, despite its transparently non-Gibbsian character, is nevertheless 
popularly termed a 'Gibbsian ensemble'. Now, at first it would appear that 
this is simply a misnomer for a rather strange model of a thermostat. However, 
in the ordinary practice of statistical thermodynamics, the 'ensemble' is in fact 
forced into an abashedly schizophrenic position; it functions as a thermostat, 
a role requiring mutual interactions and dynamical correlations imposed by 
conservation laws, and it is used to assign probabilities, via the relative fre- 
quency definition, to the states of its constituent systems, a role requiring 
mutual independence. We shall refer to the statistical ensemble interpreted in 
this dualistic fashion as thermostatic rather than Gibbsian. 

The truly remarkable potency of the thermostatic ensemble as a predictive 
tool is abundantly illustrated in several treatises (Fowler & Guggenheim, 1939; 
Band, 1955) and this empirical success is often cited as an adequate foundation 
for the theory. But this view does not really alleviate the stigma of irrationality 
conveyed by the simultaneous necessity for distinct interpretations of the en- 
semble. Schr6dinger clearly recognized the problem and offered the following 
concise justification of the thermostatic ensemble (Schr6dinger, 1946): 

Here the N identical systems are mental copies of the one system under 
consideration-of the one macroscopic device that is actually erected on 
our laboratory table. Now what on earth could it mean, physically, to distri- 
bute a given amount of energy E over these N mental copies? The idea is, 
in my view, that you can, of course, imagine that you really had N copies 
of your system, that they really were in 'weak interaction' with each other, 
but isolated from the rest of the world. Fixing your attention on one of 
them, you find it in a peculiar kind of 'heat-bath' which consists of the N-1 
others. 

Even if this explanation is judged to be reasonable, there remains the striking 
dissimilarity between actual heat reservoirs and collections of replicas. This 
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matter, often ignored, is disposed of by Schr6dinger by appealing to empirical 
thermodynamics: 

Now you have, on the one hand, the experience that in thermodynamical 
equilibrium the behaviour of a physical system which you place in a heat- 
bath is always the same whatever be the nature of the heat-bath that keeps 
it a constant temperature, p rovided . . ,  that there is nothing else but heat 
exchange between them. On the other hand, the statistical calculations do 
not refer to the mechanism of interaction; they only assume that it is 
'purely mechanical', that i t . . .  merely transfers energy from one [system] 
to the other. 

These considerations suggest that we may regard the behaviour of any 
one of those N systems as describing the one actually existing system when 
placed in a heat-bath of given temperature. Moreover, since the N systems 
are alike and under similar conditions, we can then obviously, from their 
simultaneous statistics, judge of the probability of finding our system, when 
placed in a heat-bath of given temperature, in one or other of its private 
states. 

Thus for theoretical purposes, an imaginary ensemble of replicas ought to 
be as efficacious as a real thermostat in maintaining a system in statistical 
equilibrium. In this paper we investigate the mechanical validity of this corner 
stone of statistical thermodynamics. A simple quantum system will be placed 
in interaction with replicas of itself, the latter comprising an ensemble in 
statistical equilibrium. In an exact dynamical treatment it will be shown that 
the system, whatever its initial state, will indeed be coerced by this thermo- 
static ensemble into the same statistical equilibrium state which initially 
charactefised the replicas. We have therefore a precise microphysical descrip- 
tion of an ensemble of replicas functioning as a thermostat. 

2. A System in a Thermostatic Ensemble 

Consider a simple quantum system S, characterised by a two-dimensional 
Hilbert space ~ and a non-degenerate Hamiltonian H whose eigenvalues are 
E, F. Thus the eigenkets [E), IF) of H span Jr °, and the most general density 
matrix for statistical equilibrium is diagonal in H, with spectral expansion 

p=a]E) (E]+(1  - ~)]F)(Ft,  0~<c~<~ 1 (2.1) 

Quantum mechanically, O is already implicitly associated with a Gibbsian 
ensemble through which its inherent probability predictions become testable. 
However, to construct a thermostatic ensemble for the system S, we must pro- 
vide a mechanism for interactions among the member systems and yet, at the 
same time, attempt to retain the original Gibbsian meaning for probability 
calculations. 

To get the requisite mutual interactions, the implicit ensemble described by 
/9 must be replaced by an assembly of replicas of S: a composite physical sys- 
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tem comprised of K subsystems $1, . . . ,  SK, with Hilbert space 

~g~°T= ~ l  @ - . .  @ oft°K (2.2) 

To maintain the requirement that ~t~T be somehow identifiable with the 
Gibbsian ensemble characterized by (2.1), we adopt the postulate that for all 
applications of thermodynamic interest the density matrix for the thermostatic 
ensemble may be assigned the uncorrelated structure 

pr=Pl ® P2 ® . . .  @ Pk, (2.3) 

where each reduced density matrix Px has the same statistical equilibrium form 
(2.1). Now, if we were considering a general assembly of K replicas, the form 
(2.3) would of course be quite unreasonable; but in the present context we face 
the powerful constraint that our assembly be capable of playing the dual role 
discussed earlier. Against that background, the form (2.3) seems essential. 

There does emerge, however, a problem of internal consistency; for even if 
(2.3) holds initially, surely mutual interactions among the replicas will breed 
correlations and thereby destroy the form (2.3). We have already avoided this 
seeming dilemma by requiring not that OT as expressed in (2.3) be the true 
density matrix forever but only that that uncorrelated form be equivalent to 
the true density matrix for relevant thermodynamic calculations. Since the 
purpose of even the thermostatic ensemble is to describe statistically only one 
of its members-the actual system which was replicated-it suffices to demand 
only that the reduced density matrix Px for each system Sx always have the 
form (2.1); with respect to observables associated with each Sx alone, this is 
entirely equivalent to using (2.3) as the global density matrix. That this is 
dynamically possible will be explicitly demonstrated below. 

Having noted that only the motion of one (typical) Sk is of interest, we next 
convert the intractable many-body problem represented by the thermostatic 
ensemble into a soluble problem involving only pair interactions. If we envisage 
a thermostat whose parts chaotically interchange energy as equilibrium is 
maintained, we are led to describe the mingling of Sk amongst its replicas as a 
sequence of 'collisions'; i.e., Sk interacts for a time with $1 alone, then with 
Srn alone, etc. 

To complete our model of a thermostatic ensemble, we recall several theo- 
rems established in an earlier paper on quantum state preparation (Park & 
Band, 1972), hereinafter designated I. In the latter a system So interacted 
sequentially with the constituents of an assembly ($1 . . . . .  SK} having an initial 
density matrix of uncorrelated structure like (2.3). It was established that for 
the sake of tracing the time development of So alone the following procedure 
gives the appropriate reduced density matrix: 

(a) Find the unitary evolution of So + St from t = 0 to t = tt; then obtain 
po(tO by using the partial trace technique (von Neumann, t955) to 
reduce the So + St density matrix. 
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(b) Take po(tl) as the initial state of So and find the unitary evolution of 
So + $2 until t = t2; obtain po(t2) by reduction of the S o + S 2 density 
matrix. 

(c) Repeat the procedure until po(tK) is determined. 

In I the assembly with which So interacted did not consist of replicas of $0, 
but it is easily transformed to such an assembly by setting the degeneracy index 
N employed in I equal to unity. Moreover, in I the initial reduced density 
matrix of  each S k was not of the general statistical equilibrium form to be con- 
sidered here, but corresponded only to the o~ = 0 case of (2.1), a microcanonical 
ensemble. By paying attention to these differences and similarities, we can 
readily adapt to the present problem several expressions tediously derived in I. 

As in I, we choose as the interaction potential energy between So and Sk 
the simple operator Vok defined by the matrix 

I v ( 1 - S m n ) ,  1 <m,n<~3 I 
(rn[Vogln) = [0, otherwise ) (2.4) 

where the representation is that given by this basis for Jr:0 @ ~,:g: 

[E)o[E)k-  [1) [E)oIF)k = [3) 
(2.5) 

IF>olE)k------12) ]F>olF>k--14) 

The motivation for selecting (2.4) is thoroughly discussed in I, but we would 
like to reiterate that V merely promotes energy exchange between So and Sk 
without net transfer. Thus Ho + Hk is separately conserved even while Vog is 
operative. We believe therefore that this model mimics rather faithfully the 
dualistic conception of a thermostatic ensemble as an assembly which must in 
a sense exhibit both mutual interaction mad mutual independence of its 
constituents. 

Let So be characterised initially (t = O) by the arbitrary density matrix 

Oo(0) = a]E)oo(E + clE)oo(F[ 
+c*[F)oo(E[ + ( t  -a)[F)oo(F[, 0~<a~< 1 (2.6) 

and let the thermostatic ensemble be in the statistical equilibrium state (2.3). 
If the ensemble of replicas can indeed function as a thermostat, then in the 
course of serial interactions of So with the various Sk, So should ultimately be 
coerced into the state (2. I) common to all the replicas in equilibrium. We shall 
prove that this is in fact the case. 

From I we know immediately that the proposed evolution occurs for the 
special case a = 1, and hence by simple relabeling for the case a = 0. And it 
might seem at first glance that this observation is sufficient to render obvious 
the proposition that So can also be coerced into the form (2.1) which is, after 
all, just an incoherent superposition, or mixture, of ]E) and ]F). Such an argu- 
ment would be admissible if but one interaction, say between So and $t were 
required to accomplish the coercion; for then it could be said that the initial 
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mixed state (2.1) for Sl describes an imaginary quantal ensemble divisible into 
two sub-ensembles, one characterised by [E)I, the other by IF)l, to each of 
which the result in I could be separately applied. This reasoning is spurious, 
however, for a sequence of interactions between So and different Sk, since So 
would have to be regarded as interacting sometimes with an Sx in state IE)e, 
sometimes with an Se in state [F)k. We would therefore not be secure in any 
a priori declaration that the desired result is just an 'obvious' consequence of I. 

3. Coercion o f  the System to Equilibrium 

To prove mechanically that an ensemble of replicas can function as a thermo- 
stat, we first apply the general method reviewed above to determine the reduced 
density matrix for So after a sequence of interactions with the replicas $1, $2, 
. . . .  SK. Let rk denote the duration of the time interval during which So inter- 
acts with Sk. The mathematical manipulations required involve three stages: 
(i) time evolution of So + $1 from po(0) @ pl(0), as defined in (2.1), (2.3), 
(2.6), through the interval ~-i; (ii) reduction of the final density matrix in (i) to 
obtain Po(h = T1); (iii) iteration to find po(t2), t2 = Za + r2 . . . . .  po(tK), 
t K = ~K= 1 7 k. Since at any given step only So + Sk is involved, it is convenient 
to display the matrix representation of operators using the representation given 
by (2.5): 

O) So + $1 Dynamics 

0o~(O)- (oo(O) ® px(O)): 
a ba 0 

0 a~ cf3 

0 c*~ b~ 

(3.1) 

where 

[ 3 - - l - a ,  b= l - a  (3.2) 

The Hamiltonian matches that studied in I, provided we set N = 1. There- 
fore the evolution operator may be copied directly from I (with~/= 1): 

exp [-i~-(Ho + H1 + Vol)l = i,o o y ( X  + 1) y X  

y X  y ( X  + t )  

0 0 

(3.3) 

where 

e = e -ir2E, f-= e -ir2F, 

y =- e -ir(E+F-v), X =- 1/2(e -ir2v - 1) 
(3.4) 



T H E  S T A T I S T I C A L  E N S E M B L E  A S  A T H E R M O S T A T  

By matrix multiplication we obtain the So + S, state for time tt: 

421 

pol(tl) = (exp [-ir,(Ho + H 1 + Vol)l)(pm(O))(exp [ - # i  (Ho + Ha + Vol)]) 

/ aa ecay*(X* + 1) 

bo~(X + 1)(X* + 1) + 
y(X  + 1)c*~e* a~XX* 

bag(X* + 1) + 
yXc*ae* a~X*(X + 1) 

0 fc*~y*X* 

ecay*X* 0 

b~X*(X + 1) + 
a[3X(X* + 1) yXc{Jf* 

baXX* + 
a~(X + 1)(X* + 1) y (X  + 1)c~f*/ 

/ 
fc*(3y*(X* + 1) b~ / 

(3.5) 

(ii) Reduced Density Matrix (po(tl)) 

(po(t,)) = (TrlPo,(t,)) 

[ aa + baXX* + a[3(X + 1)(X * + 1) 
I 

\ y ( X  + l)c*ae* +fc*~y*(X*+ 1) 

\ 

ecay*(X* + l)  +y(X+ 1)c~f* 
] ba(X + 1)(X* + 1) + aI3 X X  * + b~ 

(3.6) 
By substitution from (3.2), (3.4) and application of trigonometrical half 

angle formulae, (3.6) finally simplifies to 

(Po(h)) = {a(t~) c(h) ] (3.7) 
\C*( t l )  1 - - -a( t l ) ]  

where 
a(tt) = a(1 - el) + ael 

c( t , )  = X(zOc 

E 1 ~ COS 2 127" 5 

X(r) -~ aey*(X* + 1) + ~f*y(X + 1) (3.8) 

(iii) lteradve Determination o f  p o(tk) 
Let a(t), c(t) be defined for all t by 

(po(t)) = [c * ( t )  1 - a ( t ) ]  (3.9) 

Note that a(0) = a, c(0) = c. 
Now, by the same reasoning that produced (3.7) and (3.8) we immediately 

obtain a recurrence relation describing the evolution ofa(t)  and c(t) in the 
interval [tk_a to tk] : 

a(tk) = a (  t - ek)  + a ( t k _  1)t~ t (3. 1 O) 
c(tg) c(&_l)X(rk) ) 

/ 
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Repeated application of  (3.10) yields 

a(t/c) = a(1 - e/c) + a(r/c_l)e/c 

= 0~(1 - eK) + [a(1 -- e/c_l) + aK_2eK_l]eK 

= a(1 - eK-leK) + a(tK_2)eK-leK 

= . . .=o~  1 -  II ek +a H ek 
k = l  k = l  

and 

(3.11) 

C(tK) = ~ ( t K - 1 ) X ( r / C )  = e(tK_2)X(¢/C_OX(rK) = . . .  

K 
= c I I  X(~k) (3.12) 

k = l  

We now have only to show that when the number o f  systems in the thermo- 
static ensemble is large, S0-whatever  its initial state-will be coerced into the 
common statistical equilibrium state (2. t )  o f  the replicas. We are interested 
therefore in these limits: 

a(too) = Lim a(t/c) (3.13) 
K-*~o 

c(t~) = Lim c(tK) (3.14) 
g--+ eo 

To evaluate (3.13), note that ek = cos z vrk; hence 

O<.ek<~l 

It follows that 

( 3 . 1 5 )  

1~ ek = 0 (3.16) 
k=O 

unless only a finite number of  the {ek} differ from unity. But eg --- 1 only for 
certain discrete points in the continuum of  possible interaction times rk; thus 
(3.16) will 'almost never' be incorrect. From (3.16) we immediately obtain 

a(t~) = ~ ( 3 . 1 7 )  

The evolution of  (3.14) is a bit more involved since X(r) defined in (3.8) 
and (3.4) is complex. By straightforward algebraic manipulation we first find 
that 

tX(T)I 2 = X*X = cos 2 vr (3.18) 

Hence 

0 ~< X(r) ~< 1 (3.19) 
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Now from (3.12) and (3.14) we have, taking absolute values, 

Finally (3.19) and (3.20) together imply 
c(t~) = 0 (3.21) 

Combining (3.9), (3.17), (3.21) we now have the desired result: 

(P° ( t=) )=(0  0 ) 1 - ~  (3.22) 

i.e. 

po(to~) = ~lE>oo<EI + (1 - oOIF)oo(FI (3.23) 

which is identical to (2.1), the statistical equilibrium state shared by members 
of the thermostatic ensemble. 

4. Conclusion 

We are now in a position to validate the claim made in Section 2, that each 
system in a thermostatic ensemble can, despite the mutual interactions, remain 
at all times in a statistical equilibrium state described by a reduced density 
matrix of the form (2.1). This behavior is an immediate consequence of (3.7), 
(3.8); for if we place into the thermostatic ensemble a system So already in 
the same equilibrium (2.1) as the ensemble members, then, the coercive pro- 
cess being complete ab initio, no state transformation occurs. We set a = a, 
e = 0, and find 

a(h) = a(1 - el) + ael = a (4.1) 
c(t ,)  = x( r , ) (0)= 0 

Hence 

(P°(t~)) = ( ;  0 1 - a  ) = (Po(0)) (4.2) 

Our specific, exactly soluble, illustration has shown therefore that the con- 
cept of a thermostatic ensemble is entirely rational so far as its dynamical 
realisability is concerned. Left to itself, the thermostatic ensemble is stable: 
the reduced density matrices, any one of which would characterise the entire 
ensemble in the Gibbsian sense, remain stationary in spite of the mutual inter- 
actions which were required in order to justify the thermostat interpretation. 
In interaction with an arbitrarily prepared system So, the thermostatic en- 
semble (constituted of replicas of So) coerces So ultimately into the same 
statistical equilibrium state that originally characterised each replica. Finally it 
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should be noted that after the interaction of  So and Stc, the latter system is no 
longer described by the density matrix (2.1); hence every replica that actually 
participates in the coercion of  So towards equilibrium is itself thrown out of  
equilibrium. However if the thermostatic ensemble is infinitely populous, and 
so chaotic that systems which lose equilibrium are unlikely to be exposed to 
each other, then each participating Skjust  begins, after interacting with So, its 
own forced march back towards equilibrium. 

To see the reasonableness of  this mathematical model, consider a physical 
parallel: when a tiny meteor  falls into an ocean, the final temperature of  the 
meteoroid-plus-ocean assembly will be, for all practical purposes, the original 
oceanic temperature. It is precisely this extreme kind of  thermostatic process-  
involving a small system and an extremely large reservoir-for  which the present 
work has provided a simple yet  exact quantum mechanical explanation. Larger 
questions, mentioned at the end of I, concerning irreversibitity and approach 
to equilibrium in general cases remain unanswered. Nevertheless we are hopeful 
that obvious generalisafions of  the foregoing analysis, coupled with suitable 
approximations, may prove fruitful in the study of more complex systems 
engaged in irreversible processes. 
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