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When the state o f  a physical system is not fully determined by available data, 
it should be possible nevertheless to make a systematic guess concerning the 
unknown state by applying the principles o f  information theory. The resulting 
theoretical blend o f  informational and mechanical constructs should then 
constitute a modern structure for statistical physics. Such a program has been 
attempted by a number o f  authors, most notably Jaynes, with seeming success. 
However, we demonstrated in a recent publication that the standard list o f  
so-called "mutually exclusive and exhaustive" quantum states that is commonly 
employed by these authors' is in fact not exhaustive. I t  follows t.hat the in- 
formation-theoretic foundations o f  quantum statistics must be reformulated. 
The present paper discusses the fundamental problems involved and establishes 
a format for  the correct application ofinJbrmation theory to quantum mechani- 
cal situations. 

1. REFORMULATION OF THE CENTRAL PROBLEM OF Q U A N T U M  
STATISTICS 

The orthodox information-theoretic treatment a-3) of  the foundations of  
quantum statistics starts from the premise that a given quantum system may 
be regarded as being in some unknown pure state [ ~ } ,  which is one among a 
complete list of  orthonormal alternatives {1 ~b,,}}. The members of  that list 
are in one-to-one correspondence with quantal state propositions of  this 
form: System 5 P is in state I ~).  This collection of  propositions is assumed 
to be exhaustive and mutually exclusive, so that, in accordance with normal 
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procedure in information theory, a subjective probability distribution { W,~} 
may be defined over the propositions, which satisfies the constraint 

y = 1 (1) 

The information-theoretic entropy, or missing information function, may 
then be defined in the usual way as 

I =- Z w .  In w .  (2) 

where K is an arbitrary constant. By maximizing I subject to physical con- 
straints on the {Wn}, it is possible to obtain the fundamental theorems of 
quantum statistics by well-known procedures. 

The density operator formalism of quantum mechanics is customarily 
introduced into the analysis as a compact artifice for describing "states of 
ignorance" as to which among the {I ~,)} is the correct J g J). Thus the 
informational situation wherein each subjective probability in { W~} represents 
the likelihood that its associated state vector in {[ ~b~)} is the correct one is 
said to be characterized by the density operator 

p = Z w . I  I (3) 

Due to the orthonormality of the {I ~b,)}, it is immediately possible to 
combine (2) and (3) to derive an expression for information-theoretic entropy 
which is often called the Gibbs-von Neumann form: 

I = --~: Tr(p In p) (4) 

It is true that this formula was introduced for thermodynamic entropy 
by yon Neumann (4) in the course of his investigations concerning the density 
operator. It is also true that it bears a mathematical family resemblance to 
the classical construct Gibbs TM called 7, the average index of probability 
of phase. However, we shall find shortly that the functional of p given by 
(4) is not the proper quantal analog to ~ and that Gibbs does not deserve 
the blame for von Neumann's formula. 

Once the formula (4) has been adopted as the information measure in 
quantum statistics, that discipline acquires a formal elegance in its founda- 
tions which is easy to admire. Unfortunately, the entire framework has 
been erected, as it were, on pseudo-quantum-mechanical quicksand. In a 
recent publication (~) we scrutinized the traditional arguments that have been 
advanced in behalf of the basic list of quantal state propositions described 
above. We found that the list has been derived from a set of common miscon- 
ceptions concerning the foundations of quantum theory. Moreover, the list 
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does not possess the crucial property of  exhaustiveness, which is necessary if 
Eq. (1) is to be valid. To be sure, the propositions in question are mutually 
exclusive, but not, as is usually stated, because the vectors {I ¢~)} are mutually 
orthogonal. 

We do not argue in the present paper that the informational approach 
to quantum statistics is intrinsically bad. On the contrary, we believe that 
abstract information theory offers perhaps the most cogent foundation for 
quantum statistics ever given; but we do assert that information theory has 
never been applied correctly to modern quantum mechanics. Indeed the 
program of discussing quantal situations involving incomplete information 
has never even been initiated properly. The first step in an information- 
theoretic analysis is to identify an exhaustive list of mutually exclusive 
propositions over which to define the subjective probabilities that enter into 
the missing information function. Since this first step has been taken im- 
properly in the past, we must reformulate information-theoretic quantum 
statistics by starting anew from the very beginning. 

Jaynes Iv) has argued that Gibbs himself based classical statistical 
mechanics upon principles that were to be rediscovered and called informa- 
tion theory in a later generation. We are inclined to agree; indeed it seems to 
us eminently sensible to emulate Gibbs as far as possible in our attempt to 
establish a firm foundation for quantum statistical mechanics. However, 
in order to follow Gibbs '  classical footsteps, we must be clear as to which 
quantal constructs are the theoretical analogs to the key ingredients of 
classical statistics. In the paper (6) cited previously in connection with the 
unacceptability of the standard list of  state propositions, we also developed 
a chart (Table I) of correct analogies between classical and quantal constructs. 

Among the analogies in Table I, neither A nor C is unusual. The 

Table I 

Construct Classical representative Quantal counterpart 

A. System Phase space Hilbert space 

B. State, or preparation, Phase point (q, p) Density operator p 
of system 

C. Observable Function of phase Hermitian operator with 
complete orthonormal 
eigenvector set 

Subjective probability 
distribution defined over 
density operators 

D. Ignorance of true state Gibbsian coefficient of 
probability of phase 



252 Band and Park 

significant departures from standard discussions of quantum statistics lie 
in B and D. Analogy B recognizes that the density operator is an irreducible 
feature of  basic quantum mechanics even when there is total information; 
analogy D affirms the same point by noting that ignorance as to the true 
quantum state must be represented by a subjective probability distribution 
defined over the density operators. This format stands in marked contrast 
to the traditional view sketched earlier that an orthogonal set of pure states 
{} ~b~)} surely contains the true state and that a density operator of the form (3) 
merely represents ignorance as to which I ~b~) is correct. 

We begin our new information-theoretic foundations of quantum 
statistics with the definition of a new logical spectrum, i.e., an exhaustive 
list of mutually exclusive state propositions. The typical proposition in 
that list has this form: System 5 ~ is prepared in the manner characterized 
by quantum state O. The new logical spectrum comprises one such statement 
for every density operator O defined on the Hilber t  space of the system of 
interest. 

This list of propositions, unlike its predecessor, is exhaustive. In quantum 
mechanics, it is axiomatic that for every repeatable preparation, there is a 
density operator p. If enough data are gathered pertaining to a given prepara- 
tion, p may be uniquely determined but will not necessarily have the pure 
form [ ~)(~U[- To determine p, what is required is an enormity of data 
sufficient to compute the mean values in the quantal ensemble of a set of 
observables, which we have called a quorum. ~8~ Whenever less than a full 
set of such quorum means is available, the density operator becomes 
unknown; and quantum statistics is born. 

The new logical spectrum is not only exhaustive, but it is also mutually 
exclusive. States that have heretofore been regarded, on the basis of faulty 
quantal reasoning, as not being mutually exclusive are all included. A 
thorough analysis of this point may be found elsewhere, ca) 

Having taken the first essential step, identification of the logical spectrum, 
it is nuw seemingly straightforward to apply information theory to quantum 
mechanical situations where the set of quorum means is incomplete. There is, 
however, an immediate difficulty--the new logical spectrum includes a 
continuum of alternatives. We return later (Section 3) to this rather serious 
complication, but for now let us assume that some kind of physical informa- 
tion has enabled us to eliminate all but a discrete list {p~} of possible density 
operators. The set {p~} is not necessarily of the form {1 ~b,)(~b, I}, as some 
or all of the p~ may be mixed states. To apply information theory, we associate 
with each p~ a subjective probability W, .  Since the {On} legitimately con- 
stitute an exhaustive set of mutually exclusive alternatives, Eq. (1) is valid; 
and Eq. (2) defines the information-theoretic entropy, which is to be 
maximized subject to whatever physical constraints restrict the { W~}. 
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Even if the true p~ were known, all that quantum mechanics could 
predict would be the mean values of observables. Thus if A were measured 
on each element of an ensemble generated by repeated preparations in the 
manner characterized by p~, the data gathered would have an arithmetic 
mean value A given by the well-known formula 

(,4), = Tr(p~A) (5) 

If  p~ has only a likelihood Wn of being the true density operator, then 
the expectation value (of the quantal mean value) for an observable A is 
given by 

(A} = ~ W~(.4)~ (6) 

By combining (5) and (6), we obtain 

(A} = Tr(fiA) (7) 

where 

~ Y~ w~e~ (8) 
iS 

The operator/~ has all the properties of a density operator, and in (7) 
it is seen to be useful for computing the quantum statistical expectation 
value by the same formula (5) that is used in ordinary quantum mechanics to 
compute mean values. Thus it is possible to say that assignment of a sub- 
jective probability distribution { Wn} over a set of alternative density operators 
{p~) is equivalent in its practical consequences to believing that the unknown 
density operator is fi as defined in (8). In this sense, fi retrieves some of the 
spirit of the conventional ignorance interpretation of density operators 
described above for Eq. (3) but rejected later when correct quantal counter- 
parts to Gibbsian quantities were considered. We discuss this point further 
in the next section. 

It is extremely important to observe that the yon Neumann formula (4) 
will play no role in our (general) reformulation of inf ormation-theoretie statistics, 
since 

I = --K ~ W, In Wn v a --K Tr(/~ in fi) (9) 
n 

Finally, let {W~} denote the subjective probability distribution for 
which I has its maximum value compatible with available information. The 
best guess for fi would then be given by 

fi = Z l~p~ (10 

The calculation of fi is the central problem of quantum statistics. 
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In a future publication treating equilibrium statistics from the perspective 
developed here, we shall find that the general inequality in (9) sometimes 
becomes an equality when fi is substituted for t~. In this sense the von Neumann 
entropy formula sometimes acquires a limited informational meaning, but 
our rejection of (4) as a general measure of quantal missing information still 
stands. 

2. S U B J E C T I V E  A N D  OBJECTIVE PROBABILITIES 

Philosophers concerned with the foundations of probability theory have 
long been divided into two famous camps. The subjectivist school promotes 
the notion that a probability is primarily a measure of likelihood or a degree 
of rational belief. According to this thesis, a probability can be meaningful 
even when it is inherently unmeasurable, for it is an abstract tool of thought 
which serves to regularize intellectual processes involving inductive inference. 
The antipodal view is that of the objectivist school, which holds that the 
probability concept acquires meaning and utility only after it has been 
equipped with an operational definition. That definition is of course the 
well-known identification of the probability of an event as the relative 
frequency of occurrence of that event in a statistical ensemble of identical 
situations. In spite of the philosophical gulf which separates these two 
schools of thought, there seem to be at least two bridges between them: 
Both employ the same mathematical calculus of probability, and the sub- 
jectivists regard the frequentist viewpoint as a special case valid whenever an 
ensemble is available. 

Both versions of probability have been used in physics, often without 
careful distinction and hence without much controversy. However, with the 
advent of modern quantum mechanics, physicists encountered for the first 
time a probabilistic theory which claimed also to be a fundamental theory. 
Thus quantum mechanics is supposed to supplant classical mechanics as the 
irreducible theoretical framework with which we comprehend nature; yet 
quantum mechanics does not make exact predictions even in principle. 

Of course it has always been the case that the exact predictions of the 
old mechanics were too precise for empirical verification and that a layer 
of probabilistic reasoning, the theory of errors, had to mediate between 
the exactitude of the theory and the comparative haziness of empirical 
experience. But this use of the probability concept in physics can be regarded 
as a means to cope with ignorance due to the crudity of laboratory 
mensuration, a technological difficulty. 

In quantum mechanics, on the other hand, probability would remain in 
the fundamental predictions even if technological innovation enabled in- 
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finitely accurate measurement of every observable. Thus the probabilities in 
quantum mechanics have nothing to do with human ignorance; instead the 
quantal probabilities are themselves, so to speak, fundamental attributes of 
physical reality. It follows that for basic quantum theory, the appropriate 
version of probability is that of the objecfivists. 

We are of course aware that in the past a subjectivist interpretation of 
quantal probability has sometimes been promulgated even by eminent 
quantum theorists, ~91 so that in effect the subjectivist-objectivist dichotomy 
in philosophy exists also in the world of theoretical quantum physics. 
However, it would be inappropriate here to elaborate on the mischief that 
has been visited upon the foundations of quantum theory by this intrusion 
of subjectivist thought; for that we refer the interested reader to the 
literature. (10)-c12) 

In previous work (8,13) we have adopted the following statement of the 
axioms of quantum theory, which leaves no doubt as to the objective meaning 
of quantal probabilities: 

I. With every physical system, there is associated a Hilbert space J4 ~. 

II. Each linear Hermitian operator A with a complete orthonormal 
eigenvector set corresponds to an observable of the system; any 
function of A corresponds to that same function of the observable 
represented by A. 

III. With every repeatable empirical method of preparation of the 
system, there is associated a statistical operator p, the quantum 
state; the arithmetic mean A of a collective of A data gathered by 
measurements of A upon an ensemble of systems each prepared 
(identically) in the manner O is given by 

= Tr(pA) (11) 

With this axiomatization, the concept of probability can mean nothing 
more than relative frequency in an ensemble. A quantal probability is simply 
a mean value, in the sense of Axiom III, of an observable A whose eigenvalues 
are 0 (no) and 1 (yes). We hold that these postulates capture the essence 
of basic quantum theory, and that they are in fact the ones actually employed 
in the analysis of empirical findings. 

Nevertheless, as is already evident in Section 1, we are not thoroughgoing 
objectivists concerning every conceivable application of the probability 
concept. Indeed there are interesting situations within and without physics 
where a paucity of knowledge should not be construed as an insurmountable 
obstacle to analysis. In just such cases, the subjectivist interpretation of 
probability coupled with information theory provides a systematic method 
for making educated guesses. Statistical physics is a splendid example of the 
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potency of the subjectivist methodology. As we have already explained, 
when less than a quorum of mean values is known for a given preparation, 
the density operator p cannot be determined; and quantum statistics is born 
when information theory with its subjective probabilities is used to make the 
best guess. 

This conception of quantum statistics as a blend of objective quantal 
probabilities and subjective information-theoretic probabilities is not 
qualitatively new. In the present work, however, the line of demarcation 
between the two types of probability is not in its orthodox place. Given a 
density operator displayed in a spectral expansion, 

p = ~ w~ I ¢.>(¢~ I (12) 

we do not make the traditional ignorance interpretation that the system is 
really in one of the states {I ~ ) }  and that the {w.} are subjective probabilities 
reflecting a lack of knowledge as to the true state. The irrationality of that 
interpretation as a general principle has been demonstrated elsewhere. ~6~ 
The {w~} do have a probabilistic interpretation, but they are relative fre- 
quencies rather than degrees of belief. Consider the projection operator 
] ¢,~)(¢,,~ I; its eigenvalues are 0 and 1 and it represents a "yes-no" question 
concerning a physical system. If  that question is posed and answered through 
measurements performed upon the systems of a quanta1 ensemble generated 
by a repeatable preparation characterized by the density operator p in (12), 
then according to quantum mechanics, the quantity 

Tr(I ¢,~)(¢~ I p) = w m  (13) 

will be the relative frequency of "yes" answers. Thus, contrary to a popular 
though ill,founded custom, we regard all probabilities that may be extracted 
from the density operator p, including the eigenvalues {wn}, as objective 
relative frequencies. 

Now, as has been explained in Section 1, if there is a set of density 
operators {p,~} but uncertainty as to which one is correct, we may describe 
this lack of knowledge, or state of ignorance, by defining a subjective prob- 
ability distribution {W~} over the set {p~}; and this is equivalent to guessing 
that the unknown density operator is given by 

fi = ~ W.p. (14) 
~Z 

Thus in quantum statistics it is possible to use the density operator formalism 
in a manner which explicitly displays subjective probabilities {W.} arising 
from ignorance, and keeps them separate from the objective probabilities 
which inhere in the alternative quantum states {p.}. The point we wish to 
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emphasize here is that {p~} will not generally be a set of orthogonal projectors, 
and hence the W~ will not generally be the eigenvalues of/5. This guessed 
density operator fi does of course have its own spectral expansion of the 
form (12): 

This expansion, however, does not admit of an ignorance interpretation in 
which the eigenvalues {v~} would be probabilities for the eigenvector states 
{I ~n>}, for such an interpretation would contradict the hypothesis from 
which ~ was derived. The only exception would be the rare situation where 
{p~} happened to be a set of orthogonal projectors, in which case, by coinci- 
dence, the {~} would match the { W~} and the spectral expansion of ~ could 
be given the old ignorance interpretation. 

In general, the only density operator decompositions that can safely 
be given an ignorance interpretation are those of the form (14) which have 
arisen in the context of an information-theoretic analysis and explicitly 
constructed to exhibit the subjective probabilities. 

3. Q U O R U M  PARAMETERS AND THE CONTINUOUS CHOICE 
PROBLEM 

The abstract structure of quorum theory (8) may be explained as follows. 
Let ~ denote the Hilbert space associated with a system, and let ~ denote 
the space of linear Hermitian operators whose domain is ~ .  If J f  is N- 
dimensional, then 5f is N~-dimensional. Among the operators of 5f are 
the density operators, defined by the requirements that a density operator 
must be nonnegative definite and of trace unity. The set of all density 
operators constitutes a convex region ~ within 5e. 

In the operator space 5¢ we may select N 2 linearly independent operators 
{Qj} to serve as a basis, and then expand other operators as linear combina- 
tions of the {Qj}. A standard definition for the scalar product of two operators 
A, B in ~ is the trace formula 

(A [B) ~ Tr(AB) (16) 

It is then convenient to say that two Hermitian operators are orthogonal 
whenever the trace of their product vanishes. 

Now, since N is a region of ~ ,  any arbitrary density operator p may be 
expanded in terms of the {Qj}: 

N 2 

p{qj} = ~ qjQj (17) 
j= l  
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To get a physical interpretation of the real parameters {q~}, suppose that 
measurements of the N 2 observables {Qj} are performed on systems prepared 
in the manner characterized by p. If a collective of data is obtained for 
each Qj and the corresponding arithmetic mean value ~)~ computed, we 
could then write N z relations of the form 

N 2 

J = l  

In principle, if p were unknown, Eq. (18) could be inverted to determine 
the {qj} and hence p as a function of the data {L)k}- Because the set of observ- 
ables {Q~} is just sufficient to determine, through its quantal mean values, 
an unknown quantum state, such a set is the quorum of observables mentioned 
earlier. In previous publications, (s) we have considered the problem of 
physically identifying quorum observables; but for the present analysis that 
practical matter is unimportant. 

It is convenient to think of the quorum parameters {qj} as the coordinates 
of a point in an auxiliary space 5O', which might be construed as a quantal 
"phase space" in that a point {qj} determines via (17) a unique quantum 
state p. There is, however, a flaw in this analogy, due to the requirement that 
p be nonnegative definite. This essential property of P imposes very com- 
plicated constraints upon the values of the {q~.}. The additional restriction 
that p have trace unity further constrains the {qj}. As a result the quantal 
"phase space" is only a convex region 9 '  rather than the whole auxiliary 
space 5 °' defined by unrestricted quorum parameters. 

Because of this complication, we have yet to discover a really tractable 
scheme for writing down the full list of elements of ~ or 9 '  which index the 
propositions of our new logical spectrum for quantum statistics. However, 
in addition to that technical difficulty, we confront also a more serious 
dilemma--the domain ~ is a continuum. 

The continuous choice problem has plagued probability theory for 
centuries, and our encounter with it here is in no way peculiar to quantum 
mechanics. Nevertheless it is instructive to look at the difficulty as it appears 
in the context of quorum theory. Suppose for some reason we have assigned 
equal subjective probability to every density operator in N and wish to 
compute the expection value of an observable A. Expanding A in terms 
of a quorum {Q~-}, 

A. = ~ a~Q~ (19) 
k 

and substituting into (11) and (17), we obtain 

A{qj} : ~ qja~(Qjf Q~) (20) 
jk  
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Equation (20) expresses the mean value of observable A as a function of the 
coordinates {qj} in "quantal phase space" ~ ' .  To compute the desired 
expectation value, we next average (20) over ~ ' :  

Unfortunately this value of (A) is not really independent of the choice of 
quorum {Qj} and hence of quorum parameters {qj}. In fact even with a 
fixed quorum {Qj}, a convention different from (17) for defining quorum 
parameters would lead to a different value of (A}. To see this, consider a 
general one-to-one coordinate transformation in ~ ' :  

{q~ = qj({Yk)); Yk = Yk({qJ})} (22) 

Still using the same hypothesis that every density operator in N is 
equally probable, we can now recompute (A) by averaging A{q;(Yk)} over 
N' in terms of the new quorum parameters {y~}. This procedure gives 

( ] s [ ] : [ f  A{qj} J \ ~ 1  ~ dq,]/[f \ - ~ ]  ~ dqj] (24) 

where J denotes the Jacobian of transformation (22). 
Obviously, the values of (A) in Eqs. (21) and (24) will in general be 

unequal, and quantum statistical mechanics thus confronts the unsolved 
problem of the continuum of alternatives. 

The question naturally arises here as to why Gibbs did not run aground 
at this point in classical statistical mechanics, for there, too, the choice of 
states is continuous. By reinterpreting the {qj} and {y~} as coordinates in 
classical phase space, and regarding A now as a function of phase representing 
some classical observable, the formulas (21) and (24) immediately become 
valid classical expectation values for the analogous equal probability case. 
Yet in classical statistics there is no ambiguity; the two values for (A) are 
equal. The reason may contain a clue to eventual resolution of the problem 
for quantum statistics. In classical statistics there is an agreement, sometimes 
tacit, sometimes explicitly postulated, that only canonical coordinates shall 
be used in formulating expectation values. Since the Jacobian of any canon- 
ical transformation is unity, the classical counterparts to expressions (21) 
and (24) are identical. 

Perhaps in quantum physics there is some similar aesthetic criterion 
of elegance or symmetry or parsimony that would incline us to prefer one 
class of quorum parameters over another; at present we cannot imagine what 
it would be. It may be that the ultimate resolution will be similar to the 
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invariance argument recently used by Jaynes (14) to discuss the classic 
continuous choice problem due to Bertrand. 

4. LAPLACIAN INDIFFERENCE AND INFORMATION- 
THEORETIC ENTROPY 

In normal applications of information theory to lists of discrete alterna- 
tives, the familiar information-theoretic entropy function of Eq. (2) is the 
starting point. However, it should always be borne in mind that the form (2) 
is derived from abstract premises which include the Laplacian doctrine of 
insufficient reason, or indifference. According to this principle, if there is no 
known reason to prefer one alternative to another, the best approach is to 
regard all alternatives as equally probable. That the principle of indifference 
is embedded in normal information theory is easily seen by maximizing (2) 
subject to no constraints other than (1), an exercise which immediately 
yields equal a priori probability for each alternative. 

Thus in statistical mechanics there has always been an axiom asserting 
that the logical spectrum consists of "a priori equally probable" alternatives. 
Applied to a discrete list of orthogonal state vectors, this axiom is customarily 
invoked to justify the use of (2) in the traditional version of quantum statistics. 
In classical statistics, on the other hand, where the alternatives comprise a 
continuum, this axiom only makes sense when coupled to the convention 
noted in the last section which requires the use of canonical coordinates. 
Without that convention, classical statistics rests upon ambiguous 
foundations. 

In the present development of quantum statistics, we confront a situation 
where the notion of "a priori equal probability" is ill-defined due to the 
nondenumerability of the points in 9 ' ,  and where there is no natural, or 
"'canonical," set of quorum parameters which would eliminate the trouble- 
some Jacobian in (24). We must therefore abandon the principle of Laplacian 
indifference, and adopt a definition of information-theoretic entropy which 
does not presuppose that principle. The generalization of (2) needed in 
continuous choice problems is available in the literaturea~-17~; in terms of 
our quorum parameters it takes the form 

I ~ --x  I_, w{qj} ln[w{qj}/p{qj}] ]-I dqj (25) 
J 

Here w{qj} and p{qj} are subjective probability densities defined over N'. 
The function p{q~} is the prior probability density; when I is maximized 
subject only to the constraint of normalization of w{qj}, the result is 

~{qj} = p{qj} (26) 
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The assignment of a prior distribution p{q~} is the analog, in the case of a 
continuous logical spectrum, to the familiar Laplacian rule of equal a priori 
probabilities in the discrete alternatives case. Under parameter transforma- 
tions (22), both p{qj} and w{qa} transform as scalar densities: 

P{qj} -~  P{qJ(YT~)} J({ Y~}/{qJ}) 
(27) 

w{qj}-4  w{q~(yk)} J({Yk}/{qy)) 

The expression (25) for I is therefore invariant under a change of quorum 
parameters. 

The ambiguity displayed by (21) and (24) would therefore be resolved 
if  p{qj} were given. Thus the theoretical impasse arising from the lack of 
a criterion for choosing quorum parameters is now reduced to the problem of 
finding some rational metaphysical principle for the selection of a prior 
probability distribution p{qj} appropriate for quantum statistics. We shall 
explore this vexing question further in a future paper devoted to the case of 
thermal equilibrium. 

Our present objective of establishing a format for the correct application 
of information theory to quantum mechanical situations has now been 
achieved: the missing information function I in the form (25) is to be 
maximized subject to whatever physical constraints define the empirical 
situation, and the best-guess quantum state fi is then given by 

= (_, ~{q~)p{q~} ]7I dq, (28) 
J 

where ~{qj} maximizes (25) and p{@} is defined by (17). In the aforementioned 
sequel on equilibrium statistical thermodynamics, we shall apply this method 
to obtain a new and quantally correct derivation of the canonical density 
operator. 
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