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Part I o f  the present work outlined the rigorous application of  information 
theory to a quantum mechanical system in a thermodynamic equilibrium state. 
The general formula developed there for the best-guess density operator D was 
indeterminate because it involved in an essential way an unspecified prior 
probability distribution over the continuum ~ a  o f  strong equilibrium density 
operators. In Part II  mathematical evaluation of  ~ is completed after an epi- 
stemologieal analysis which leads first to the diseretization o f  ~ and then 
to the adoption o f  a suitable indifference axiom to delimit the set o f  admissible 
prior distributions. Finally, quantal formulas for information-theoretic and 
thermodynamic entropies are contrasted, and the entire work is summarized. 

4.  D I S C R E T I Z A T I O N  3 

For philosophical reasons, such as parsimony, elegance, and tractability, the 
fundamental physical theories have always been constructed within a frame- 
work of continuum mathematics. Thus space and time are normally regarded 
as continuous, as are classical phase space and the Hilbert space of quantum 
mechanics. Of particular interest here, the Hermitian operator space 5q and its 
density operator domain N are also both continuous. In all of  these cases it is 
epistemologically interesting to realize that the associated data are never 

continuous. For example, the list of  possible instants that can be read from 
any actual clock, no matter how refined, is equivalent to a denumerable set of 
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rational numbers rather than the entire real line. A similar remark applies 
to spatial measurements. 

In quantum mechanics, we have a probabilistic theory that predicts 
values for objective probabilities that may be any number in the continuum 
between zero and unity. Yet the epistemic meaning of quantal probability 
entails an essential discreteness. Quantum theoretical probability is linked 
to empirical experience through the notion of ensemble, and the objective 
probability of a given event is defined operationally as the relative frequency 
of its occurrence in the ensemble. Therefore in any actual experiment designed 
to measure a quantal probability, the list of possible results would not be a 
continuum; for, in any such measurement, there would be a finite number X 
of elements in the ensemble (runs of the experiment). Let x denote the number 
of occurrences of the event of interest. The objective probability w for that 
event would by definition be 

w = x /X  (47) 

Since the numbers x and X in (47) are both nonnegative integers, the most 
complete list of possible values for w that would ever be measured is the set 

~ x  = {0, I/X, 2/X, .... ( X -  1)IX, 1} (48) 

Obviously the X +- 1 elements of :tKx do not comprise a continuum; never- 
theless, when X is sufficiently large, experimental physicists routinely employ 
(47) as the basic empirical rule for testing the probabilistic predictions of 
quantum mechanics. Just as every clock face or ruler has a least count, every 
scattering experiment has a finite number of runs. Time, space, and proba- 
bility alike are theoretically continuous but datally discrete. 

Now, in information-theoretic quantum statistics, we have a similar 
situation. Theoretically the unknown density operator might be any point in 
the continuous domain ~ .  However, if we consider the nature of experimental 
studies that would be required to determine p empirically, we find that the 
list of density operators that could be found by analysis of data is in fact a 
discrete subset of ~ .  

To illustrate this claim, it suffices to take a strong equilibrium case in 
which the coordinates {z~} are for some reason already known. (An example 
would be a system with totally nondegenerate H and hence a unique set of 
projectors {I ¢~)<¢n [}-) The domain ~H{Zk} of possible density operators 
will then consist of all density operators of the form (45) with {z~} fixed at the 
given values: 

~@H{Z,c}~-lp]p = ~ W~(] ~b~)(~b~ ]; {z~}), {wn} ~Ar  I (49) 
n 
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The set ~2~{zk} is theoretically continuous. But let us imagine the sort of 
experiment that would be needed to determine which element of N~{z~} is 
the true p for a specified preparation, i.e., the sort of experiment that would 
determine the {w~}. Physically w, is an objective probability whose measure 
is the relative frequency of "yes" answers to the "question" represented by the 
projection operator (I ¢,}(¢~ I; {zk}). It follows immediately that the list of 
empirically ascertainable values for each w~ is just the set "ff/'x defined by (48), 
and that the actual list of density operators in ~H{Zk} that might be determined 
by experiment is therefore just the discrete subset 

l Xn ' 1 ~X{z~} ~- p i p({x~}, {z~}) = ~ ~ (j %~><%n I; {z~}), {x.} ~.vx (50) 
% 

where 

J/x ~-- l{x,}Fx, >~ O, xn an integer, ~, x ,  = X f (51) 
% 

n 
] 

The fact that the theoretically continuous list of possible strong equili- 
librium states ~H{Zk} has a discrete datal counterpart ~J{zk} may be 
naturally interpreted in information theory as a condition on the prior 
probability distribution p((w~), {zk}). Thus we set 

p({w~}, {~}) = y~ ~({w~}, {xJX}) P({x~}, {~}) (52) 
J g "  X 

where the 6-function assigns zero prior probability to all members of ~H{Zk} 
except those also in ~HX{Zk} and P({x,}, {zk}) is the prior probability distribu- 
tion for the unknown p to have eigenvectors determined by {zk} and eigen- 
values (x~/X}, {xn} being an element of the discrete set Jffx. 

5. LAPLACIAN INDIFFERENCE AND THE DISCRETE SET ~nX{zk} 

Having taken into account the empirical countability of the possible 
values of objective probability, we now have the form (52) for the prior 
probability distribution needed in the strong-equilibrium best-guess calcula- 
tion; but P({xn}, {z~}) remains to be specified. In seeking an explicit postulate 
for the function P({xn}, (zk}), we must consider both a priori philosophical 
criteria as well as a posteriori physical consequences. 

From an epistemological standpoint, we would hope to be able to select 
P({x,}, {zk}) in a manner that seems inherently plausible, natural, and 
parsimonious. In past axiomatizations of quantum statistics, the prior 
probability has been specified by such metaphysical chestnuts as the random 
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phase hypothesis or the postulate of equal probability for orthogonal pure 
states. We certainly want to base our choice of P({xn}, (z~}) on more cogent 
and satisfying philosophical grounds than are offered by such blatantly ad hoc 
quantum statistical traditions. 

The a posteriori constraint upon the choice of P({xn}, {zk}) relates to a 
point discussed earlier. It is well verified experimentally that the canonical 
density operator (8) is an excellent quantal description of thermal equilib- 
rium. Accordingly, we shall require that P({xn}, (z~}) be chosen so that it 
leads to the canonical density operator as the strong equilibrium best guess. 

The function P({Xn}, (zk}) has been defined as the a priori joint probability 
that the unknown p has eigenvalues corresponding to the element {xn} of the 
discrete set ~¢'x and probability density that it has eigenvectors corresponding 
to the point {zk} of the continuum ~ H .  To focus attention on the {x,} 
dependence of P, let us assume as in the last section that {zk} is known. Our 
problem then is to adduce sound theoretical reasons for choosing some 
particular expression for the probability P~2(x~}), defined by 

P{oA{x~}) -= P({x.), {z~})/Y~ e({x.}, {z~}) (53) 
~Ar x 

This is of course the a priori probability distribution associated with the set 
~S{z~}. 

Now the set NHX{Zk} is discrete, and it therefore seems appropriate, in 
view of established practice in discrete probability theory, to invoke the 
Laplacian indifference rule as a theoretical guideline for selecting P{~}((xn}), 
However, it is not immediately evident how this should be done; for there are 
at least two physically reasonable ways in which to be "indifferent" to the 
choice of a density operator in 9HX{Zk}. We shall call these two possibilities 
state indifference and data indifference. 

An axiom of state indifference would make the theoretically simple 
assertion that, given no information, equal probability should be attributed 
to each element of the set ~HX{Zk}; i.e., 

P(~({x,}) = 1/~wx (1) = P~{x,} (54) 

To formulate an axiom of data indifference, we continue to emphasize 
the empirical considerations that originally motivated discretization. To 
systematize discussion of an empirical state determination method, l e t / 7  
denote the reproducible operational procedure for preparing the system. What 
is unknown is which density operator p in ~nX{zk} correctly characterizes/7. 
Let us suppose that H is performed repeatedly and followed each time by 
measurement of one of the observables {(I ~b~)(~b~ I; {zk})l n = 1, 2,..., N}, 
where N is the dimensionality of the Hilbert space. Let each question 
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1 2 3 X 

E 1 0 1 0 ist collective 0 x I = 1 

E 2 _i I. 0 2nd collective I x 2 = 3 

E 0 0 0 nth collective 0 x = 0 
II n 

E N 0 0 0 Nth collective 1 x N = 1 

Fig. 1. D a t a  mat r ix  for  de terminat ion  of  p in ~Hx[Z~]. 
A few sample  entries are filled in; il lustrative x values are 
computed  as t h o u g h  all o ther  entries were zero. 

(1 ¢~)<¢~ I; {zk}) be asked X times; in other words, there are to be X runs of 
the experiment d~. consisting of  preparation H followed by measurement of  
the observable (I ~b,~)(¢~ [; {z~}). The resulting numerical data may then be 
recorded (cf. Fig. 1) in the form of a matrix whose N rows are each labeled by 
an d~ and whose columns are numbered 1 through X to correspond to the X 
runs of g~ .  Each entry in the data matrix will be either zero ("no")  or unity 
("yes"). If  X is sufficiently large, each row of  the matrix becomes a statistical 
collective of data associated with an ensemble of identically prepared systems, 
as contemplated in the axioms of quantum mechanics. Let x~ denote the 
number of times unity occurs in row g , .  If  X is in fact large enough and 
quantum mechanics is a valid theory, then it will be true that ~ x,~ = X; i.e., 
{x~} ~ JVx, and the density operator may be computed by substituting the 
{x~} and X into the formula 

p = Z (x,/X)(I ¢.><¢. !; {z~,)) (55) 
n 

Now, information-theoretic quantum statistics becomes necessary only 
when such a state determination procedure is infeasible in practice, i.e., 
when all or most of  the information in our hypothetical data matrix is 
unavailable. Thus it seems reasonable from an empirical standpoint to 
identify total ignorance as to which p in ~HX{Zk} is the correct one with total 
ignorance as to the entries in the data matrix. An axiom of data indifference 
would assert that, given no information, equal probability should be attri- 
buted to every possible data matrix. Possible data sets consist of  all conceiv- 
able entries in the matrix for which the associated {x,} belong to ~4/'x. The 
number of such data sets describable by a given {x~} may easily be converted 
to a standard combinatorial problem. There are X entry slots in each row, 

82Sl719tlo-6 
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and x~ is the number of times unity appears in the row g , .  Hence the number 
C(x,} of ways to have Xl units in row g l ,  x2 units in row ~ ,  etc., so that the 
sum of the {x,} is X, is given by 

= ( 5 6 )  

Superficially this resembles the old statistical formula for the Boltzmann 
"complexion count." It should be evident, however, that the philosophical 
premises underlying our derivation of (56) and hence our interpretation of 
that formula are incompatible with the archaic and quantally absurd concept 
of complexion. 

The quantity C{x,~} is the number of different data matrices that would 
determine the same density operator (55). Thus, if the axiom of data indiffer- 
ence is adopted, it follows that the a priori probability P(~((Xn}) is given by 

P~A{x.})  = C{x . } /~  X C{x.} - P~{x.} (57) 

Comparison of (54) and (57) reveals at once that the axioms of state 
indifference and data indifference lead to unequal prior probability distribu- 
tions over the set ~HX{Zk}. Unfortunately, no metaphysical or aesthetic 
criterion seems to favor state indifference over data indifference, or vice versa. 
State indifference--reminiscent of Gibbsian considerations in phase space-- 
effects a certain theoretical beauty; but data indifference seems closer somehow 
to the true empirical situation in statistical physics. Hence the decision as to 
which, if either, of these axioms to adopt in the present reformulation of 
quantum statistics will have to be made on a posteriori grounds. 

To obtain the strong equilibrium best guess fi, we combine (52) and (53) 
to get an expression for the prior probability density: 

Either (54) or (57) is to be substituted for P(~}({x,}) in (58), depending on 
which indifference axiom is adopted. In each case the quantity P(~}((x,}) is 
independent of {z~}, an important property easily deduced by inspection of 
(54), (57), and their derivations. The prior distribution (58) therefore assumes 
the multiplicative form 

p({w,}, {z~}) = pw{w,}p~{z~} (59) 

where 

pw{w,} = ~ 3 ({wn}, !x• t] P{x,} (60) 
I x l ]  

,A~ x 
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and 

p~{zk} = ~. P({x.}, {zx}) (61) 
j f"  X 

The new symbol P{x.} in (60) represents either the state indifference proba- 
bility P°{x.} defined in (54) or the data indifference probability Pa{x, d defined 
in (57). Substituting (60) into (46) and integrating over JV', we obtain an 
expression for the strong-equilibrium best guess which incorporates the 
indifference axioms of interest: 

where 

and 

~ ~ Qt/XQ (63) 

Q~ ~ ~ x~P{x.} ~I exp(--flxnE./X) (641 
..4/" x n 

Q =- ~ P{xn} l~ exp(--flx,yn/X) (65) 
.A/" x n 

6. CALCULATION OF wl BY THE SADDLE POINT METHOD 

The quantity ~ has a mathematical form similar to well-known expres- 
sions occurring in the Darwin-Fowler 1~-41 approach to statistical physics. 
This suggests that ~3~ can probably be evaluated by the saddle point method. 
We attack this problem in turn for the cases of state indifference and data 
indifference. 

6.1. State-Indifference Calculation of wt 

Let M(z), a function of complex variable z, be defined as follows: 

M(z) ~ ~ z~'~"I~ exp ( X ) (66) 

where ~{~,~ signifies independent, unrestricted summation of each integral 
index x~ from 0 to co. Hence M(z) may also be written in the form 

M(z) = ]~ ~ [z exp(--fiE,JX)] ~ (67) 
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Summing the geometric series in (67), we then obtain 

M(z) = ~[ [1 -- z exp(--~E./X)] -1 
n 

Finally we differentiate (68) to get the expression 

(68) 

OM fiM(z) -1 
a E t -  X [z-i (exp ~ ) -  l] (69) 

Now consider the following contour integral along a closed path about 
the origin in the z plane: 

M(z) dz dz = Z ~I exp ( [dx.E. ,~.} . X ) ~  (70) ZX+I-~ren 

where (66) has been substituted for M(z). Since X q- 1 -- ~ x .  is always an 
integer, z 0 is never a branch point and we have by the calculus of residues 
that 

Hence 

dz _ to, {x.} ¢ d/}  
(71) y zX+i-Y~*, t2rci, {x~} ~ JV" x 

M(z) dz zX+i -- 2~ri Z l~[ exp fix.E.~ (72) 
X 

W X - 

A similar derivation leads quickly to the expression 

OM(z) dz __ 2~ri(-- fi-~ ~ x~ -) (73) 
~w x X 

where OM(z)/6Et is derived directly from (66) rather than (69). 
To obtain the state-indifference version of ~ ,  we substitute (54) into 

(63): 

Wx X 

By comparing (72), (73), and (74), we are led immediately to the expression 

~ z :  ( fOM dz c~ Mdz~ (75) 

When (69) is substituted, (75) assumes the simpler form 

ffh= l~ M dz (76) 
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Equation (76), with M(z) given by (68), is mathematically identical to an 
expression encountered as an intermediate step in the Darwin-Fowler 
treatment of a Bose assembly, and its evaluation by the saddle point method 
proceeds as follows. The function M(z)/z  x has one saddle point ~ within the 
circle [ z i < 1, and ~ is real and positive. If  the contour about z = 0 passes 
through ~ along the path of steepest descent, the major contributions to the 
integrals in (76) are from values of the integrands in the neighborhood of ~. 
This approximation becomes more and more accurate as X increases, and in 
our analysis X is necessarily large, since it is the number of elements in a 
quantal ensemble used to define objective probabilities. Therefore an excellent 
approximation to (76) is given by 

g~l ~ = X-I[~ -1 exp(f lEjX) -- 1] -1 (77) 

where the superscript ~ indicates that (77) is based on the axiom of state 
indifference. 

6.2. Data-Indifference Calculation of  w~ 

Let N(z), a function of complex variable z, be defined as follows: 

exp(--~x,~E~/X) 
N(z) =-- Z zr"~" H [ ] 

{x~} n X~ ! a 

Rearrangement of sums and product in (78) yields 

N(z) = I-[ ~ [z exp(--flE,JX)] ~ 
x! n ~ = 0  

which, after the exponential series is summed, takes the form 

N(z) = F[ exp[z exp(--flE~/X)] 
n 

As in the previous case, a derivative of N(z) will also be needed: 

~N fiN(z) ~E~ 
~E~ X z exp X 

From (71) and (78), it follows that 

and 

N(z) dz exp(--flxnE~/ X ) 
zX+l -- 2rri ~ I~ 

• .IV" x n Xn! 

~N(z) dz 
~E~ z x+~ 

-- 2zri (-- ~flX ~ x~ ~V[ exp(--fix, E,~/X)) 
~V x n Xn ! 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 
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To obtain the data-indifference version of @~, we substitute (57) into (63): 

exp(--fix,y,d X) exp(--fixnE, JX) .] (84) / 

By comparing (82), (83), and (84), we are led to write 

@ aN dz Sdz]  
gEt 22X+l-)/(--5 f z~£- ] (85)  

z~z 

an expression which may be simplified, by substitution of (81), to the form 

Ndz~ z~ z = [f ~N dz (z exp -- ~ ) ] / ( X  f z--~T- ! (86) 

Equation (86), with N(z) given by (80), is mathematically identical to an 
expression which occurred as an intermediate step in the Darwin-Fowler 
treatment of a classical Boltzmann assembly. Its evaluation by the saddle 
point method is entirely analogous to the analysis described above under (76). 
The result is therefore 

r~z'* = X-l,1 exp(--~EJX) (87) 

where ~ is the saddle point of N(z)/z x and the superscript d indicates that (86) 
is based on the axiom of data indifference. 

7. EVALUATION OF ~ AND THE FAILURE OF STATE INDIFFERENCE 

By rearranging (62), we may express the strong-equilibrium best guess 
in the form 

b = B{z } I1,o (88) 

with 

B{z~} =-- ~ r~,(] ¢t>(¢~ l; {z~}) (89) 

where either ~ or zaz a is to be substituted for r~,  depending upon which 
indifference axiom is adopted. In both cases, however, inspection of (77) and 
(87) shows that ~z depends only upon the single energy eigenvalue Ez. 
Mathematically this implies that the operator B{zk} is a function of the opera- 
tor H. To see this, we have only to recall that for any {z~}, {([ ~b~><¢a ]; {z~})} 
is an orthogonal set of projectors with the index 1 keyed to the set {Ez} such 
that the spectral expansion of H is given by 

H = ~ E~(I ~bz><¢t I; (zk}) (90) 
t 
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Comparison of (89) and (90) shows at once that B{zk} is a function of H if 
~ is a function of E~. 

The operator Hi s  independent of the choice of  {z~} in yH,  since H may be 
expressed in the form 

H = Z EPE (91) 
E 

where each eigenvalue E, regardless of its degeneracy, occurs but once in the 
summation and Pe denotes the projector onto the eigenspace belonging to E. 
The operator PE is of course invariant to the choice of basis vectors for the E 
eigenspace, and hence independent of {zk}. 

Since His  independent of{zk}, and B{zk} is a function of H, it follows that 
B{zk} is itself independent of {zk}, a property which considerably simplifies 
(88). Removing B from the integrand in (88), we obtain 

fi = B f~. P~{z~} H dze (92) 
k 

Since p~{zk} is normalized over ~H, (92) reduces finally to 

fi = B (93) 

In the state-indifference case, substitution of (77) into (89) yields 

B°(H) = Z Y-l[~ -1 exp(fiEz/X) -- 1]-1(I ¢~>(¢~ [; {z/~}) 
1 

= X-I[~ -~ exp( f iH/X)-  1] -1 (94) 

Similarly, substitution of  (87) into (89) yields for the data-indifference 
c a s e  

Ba(H) =- 2 X-~7 exp(--fiEJX)([ ¢z)(¢~ l; {zk)) 
1 

= X-arl exp(--fiH/X) (95) 

The saddle points in (94) and (95) may be expressed as functions of X 
and of the quantities {~Ez/X} by solving the equation arising in each case 
from the condition that B have trace unity. The solution ~(X; {fiEJX}) 
cannot be given in closed form, but ~(X; {fiEjX}) is easily determined: 

32 (96) 
~7 (X; l ~ l ) =  Trexp(--~H/X) 

Hence 

exp(--~H/X) 
B~(H) = Tr exp(-- ~H/X) (97) 
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Now if we recall from Part I that/3 : 1/cT, c being a proportionality 
constant used to fix the temperature scale, and then compare (97) with the 
canonical density operator (8), we find that Be(H) takes the canonical form, 
provided we set 

c = k/X (98) 

where k is Boltzmann's constant, which appears in (8). On the other hand, 
B°(H) approaches the canonical form only in a high-T approximation. 
Consequently we are motivated through hindsight to render a verdict in favor 
of the axiom of data indifference, since from it we can deduce the empirically 
valid canonical density operator as the strong-equilibrium best guess: 

exp(-- H/k T) 
f3 Tr exp(--H/kT) (99) 

By contrast, the best guess (91) based on state indifference is physically 
unacceptable. 

8. T H E R M O D Y N A M I C  A N D  I N F O R M A T I O N - T H E O R E T I C  
E N T R O P I E S  

The so-called Gibbs-von Neumann entropy expression 

I oc Tr p In p (100) 

was disavowed in Part I on the ground that it is not an appropriate measure 
of missing information in a quantally rigorous information-theoretic approach 
to statistical physics. Instead of (100) with its attendant ignorance inter- 
pretation of the density operator, we adopted the more general information- 
theoretic entropy function defined by an integral over the continuum of 
alternative quantum states. In the strong equilibrium case, this missing 
information function has the form 

I :  --,¢ Yx I] dw,~ f~H I~. dz~ w({wn}, {zT~.})In w({wn},p({w~}, {zk}){z~}) (101) 

Choosing ,¢ ---- c, we obtain from (21) the connection between thermo- 
dynamic entropy S and the constrained maximum I of (101): 

S : [ -k So (102) 

According to (24), (102) may be expressed as 

S = e In R -k (U/T) q- So (103) 
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To derive R for the case of strong equilibrium, we replace 9 '  by ~H' in (24), 
the integral definition of R, and substitute (43), (57), (69), and (60); hence 

R = fw H d)% f% ~ dz, p({w.}, {z .})H exp(--w.E./cT) (104) 

where 

FI. (1/x.t) (lO5) 
Z~x rI. (1/x.D 

UV" X 

When (105) is substituted into (104) and the integration is performed, R 
assumes the form 

R= (~ y lexp( -~ ' /XcT) ) / (~  ~ + )  (106) 
LAP X n " ./V" X 

which, according to (56) and (82), may be rewritten as 

a z / \  X. ~ x  

For large X we may approximate the integral in (107) by recalling that ~7 is 
the saddle point of  N(z)/zX; thus 

R = X! NOT)/~xc (108) 

where 

c-~ ~ C{x.} (109) 
./g" X 

and where N(~?) is given by (80) as 

N(~7) = I-[ exp[~7 exp(--E~/XcT)] (110) 
n 

Therefore 

In R = In X! + ~ ~ exp(--E~/XcT) -- X In 7" -- In C (111) 

which, upon substitution of  (96) and (98), becomes 

lnR=lnX!4-X--XlnX-+-XlnTrexp(--H/kT)-- lnC (112) 

For large X, the first three terms of (112) cancel by Stirling's approximation, 
and when the surviving terms are substituted into (103), the following 
expression is obtained for thermodynamic entropy: 

S = k In Tr exp(--H/kT) -;c (U/T) ÷ So -- (k/X)In C (113) 
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We are now in a position to understand why the yon Neumann functional 
(100) may successfully be taken as a measure of thermodynamic entropy 
despite its general inappropriateness as a measure of missing information in 
quantum mechanics. As is well known, if t3 is the canonical density operator, 
then 

- -k  Tr t3 In t3 = k i n  Tr exp( - -H/kT)  + (U/T) (114) 

Comparing (113) and (1 

S----- 

If, as is customary, 

14), we therefore have 

- -k  Tr/3 lnfi + SO -- (k/X) In C (115) 

we assume that the ground state of H is nondegene- 
rate and then determine So by invoking the third law in the form (23), we are 
led by a straightforward computation to select 

S o = (k/X) in C (116) 

so that finally the usual quantum statistical expression for thermodynamic 
entropy emerges: 

S = - -k  Tr t3 In t3 (i 17) 

9. SUMMARY AND CONCLUSIONS 

Having produced a new derivation of the canonical density operator and 
of  the established statistical analogs to such thermodynamic parameters as 
temperature and entropy, the present study has achieved its major goals. 
However, because some of the mathematical techniques we employed are 
quite standard in various versions of statistical physics, it may appear in a 
cursory review of our equations that we have merely concocted a somewhat 
eccentric blend of old results rather than creating new foundations for 
quantum statistics. To dispel such an illusion, one must carefully reflect 
upon the meanings of the equations and upon the philosophical underpinnings 
of  our approach. In this regard it is instructive to emphasize again what was 
not assumed as well as what was. 

Our general viewpoint has been to accept appreciatively the modern 
definition of statistical physics as a discipline which unites theoretical 
physics and information theory into a potent schema for making educated 
inferences concerning physical situations in which exact mechanical analysis 
is not feasible. We argued, nevertheless, that the orthodox applications of 
information theory to quantum mechanical situations have not been grounded 
in a rational quantum theoretical background but have instead been based 
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upon numerous misconceptions, which have been scrutinized elsewhere/~,6~ 
The principal consequence of these misconceptions for information-theoretic 
quantum statistics was an incorrect starting point, an unjustifiably restrictive 
--indeed inexhaustive--list of quantum states over which the subjective 
probability distribution of information theory has heretofore been defined. 
The problem we attacked may therefore be characterized as follows: 
Quantum statistics ought to be the result of an information-theoretic analysis 
of quantum mechanics; but no such analysis has ever been performed correct- 
ly, for indeed none has ever even been initiated correctly. 

We began by recognizing that the true logical spectrum of quantum 
states is theoretically a continuum embracing both pure states and mixtures. 
Being a continuum, that spectrum engendered well-known ambiguities for 
probabilistic or information-theoretic reasoning, a dilemma that can be 
resolved only by an axiom specifying an a priori probability distribution over 
the logical spectrum. 

The problem of  thermal equilibrium was formulated in two ways, dubbed 
weak and strong. The case of weak equilibrium, defined by constraints 
normally adopted in orthodox quantum statistics, remains incompletely 
solved due to our lack of  a rational axiom of prior distribution over the entire 
domain 9 of  density operators. The case of strong equilibrium, defined by the 
weak equilibrium constraints plus a stringent but reasonable dynamical 
condition, proved more amenable to detailed investigation primarily because 
the associated set 9H of  possible density operators exhibited certain properties 
notably simpler than those of 9 .  

In the case of strong equilibrium we discovered important clues that may 
lead eventually to the development of  a general axiom concerning the prior 
distribution over 9 .  In particular, it was demonstrated in the present paper 
that 9H is theoretically continuous but datally discrete. It seems likely that a 
simiIar analysis of the empirical meaning of  the more general quorum 
theory for determining points of 9 would lead to the same conclusion. After 
effecting a partial discretization of 9H on empirical grounds, we found our- 
selves for the first time able to enunciate theoretically appealing axioms 
regarding the a priori distribution over 9 ~ ,  axioms based on the ancient 
indifference rule of Laplace. 

The difficult choice to be made was between alternative axioms called 
state indifference and data indifference. Hindsight now informs us that the 
latter is the proper choice, since it alone leads to experimentally verified 
predictions. Philosophically, state indifference had seemed attractive, probably 
because of  its superficial resemblance to the old idea that equal volumes in 
classical phase space are a priori equally probable. However, if we emphasize 
the informational aspect of statistical physics and contemplate in particular 
the nature of physical information, then data indifference begins to seem 
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inherently the more plausible. In this connection, our hypothetical data 
matrix discussed in Section 5 is a useful metaphor. Along with discretization, 
it seems likely that the concept of data indifference could be generalized 
beyond the case of strong equilibrium to provide a universal axiom giving 
the a priori probability distribution over the entire domain 9 .  

In the present work we were content to finish just the strong equilibrium 
case. This was accomplished by borrowing some mathematical methods 
popularized in the early days of quantum statistics by Darwin and Fowler, but 
it would be philosophically incorrect to say that we have merely reproduced 
their statistical method. The quantum statistics of Darwin and Fowler 
treated the quantal ensemble as an noninteracting assembly of systems each 
of which possesses some definite if unknown pure state vector chosen from a 
complete orthogonal master list of eigenvectors; and every such configuration, 
or complexion, of vector assignments to the systems was regarded as a 
priori equally probable. Obviously this point of view is utterly contradictory 
to the quantal foundations (5,~) upon which we have based our analysis. 
Nevertheless, since our partially discretized, strong equilibrium case did 
involve mathematical forms that are also characteristic of the Darwin- 
Fowler model, we naturally exploited this similarity. We do not yet know if 
related mathematical techniques will be helpful in more general cases, such 
as weak equilibrium, that may be developed within our new framework. 

Finally, a few remarks concerning the concept of entropy seem in order. 
It is generally well accepted that information-theoretic entropy--missing 
information--and thermodynamic entropy should be regarded as distinct 
concepts originating in different disciplines. Nevertheless, in orthodox quan- 
tum statistics this important distinction is effectively forgotten when an 
ignorance interpretation is given to the density operator and the formula 

S = - -k  Tr  p In p (118) 

becomes erroneously for every p both the missing information and a general- 
ization of  thermodynamic entropy. In our theory, on the other hand, the two 
entropy constructs never merge. The information-theoretic entropy, or 
missing information functional, I does not depend on any single quantum 
state p but only on a subjective probability distribution defined over all 
density operators. The thermodynamic entropy S has been identified for 
thermal equilibrium only and found to be given by the usual formula (117); 
but even at equilibrium, S and / ' a re  unequal, the statistical analog for S 
being not I but /'+ (k/X) In C [cf. (102), (116)]. This thorough- 
going nonequivalence of equilibrium thermodynamic and information- 
theoretic entropies raises an interesting question--which one is the appro- 
priate generalization of thermodynamic entropy to nonequilibrium cases ? 
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I f  the informational aspect of entropy is considered primary, then it 
would seem natural to adopt  a formula like 

S = I +  (k /X)  In C (119) 

as the general (not just equilibrium) statistical analog to thermodynamic 
entropy. Through L such a nonclassical S would be dependent upon both 
prior and posterior probability distributions, and thereby perhaps offer, for 
example, an elegant means for treating nonequilibrium systems having 
"memory. '"  If, by contrast, the function-of-state aspect of  entropy is regarded 
as fundamental, then the trace formula (118) would seem to offer the most 
satisfying extension of thermodynamic entropy to nonequilibrium cases. In 
this series of papers 11,5,61 and in our continuing research, we have been 
motivated by the belief that entropy should be defined as a functional of  the 
state of  the system as described by the density operator, whether that state 
is an equilibrium one or not, and that information theory is to be used to 
assist us to make the best guess at entropy when the state is not completely 
determined by available data. We do not at present believe that the missing 
information functional should in general be linked closely with entropy, 
even though in special cases, such as thermal equilibrium (weak or strong), 
the contrained maximum [ is indeed strongly associated with thermodynamic 
entropy. We regard this association as confirmation that missing information 
was correctly assessed to describe the actual physical situation, not as evidence 
that generalization (119) may be valid. Nevertheless, we do not propose here 
any final judgment as to whether (118) or something like (119) offers the more 
suitable generalization; but it is our firm conclusion that, outside equilibrium, 
(118) and (119) are not equivalent, and that (118) cannot be both entropy 
and missing information, since it is definitely not a measure of  the latter. 

R E F E R E N C E S  

1. J. L. Park and W. Band, Found. Phys. 7, 233 (1977). 
2. R. H. Fowler, Statistical Mechanic's (Cambridge Univ. Press, 1936). 
3. H. Margenau and G. Murphy, The Mathematics of Physics and Chemistry (D. Van 

Nostrand, New York, 1943), pp. 436-449. 
4. E. Schrrdinger, Statistical Thermodynamics (Cambridge Univ. Press, 1946). 
5. J. L. Park and W. Band, Found. Phys. 6, 157 (1976). 
6. W. Band and J. L. Park, Found. Phys. 6, 249 (1976). 


