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This communication is part I o f  a series o f  papers whivh explore the theoretical 
possibility o f  generalizing quantum dynamics in such a way that the predicted 
motions o f  an isolated system would include the irreversible (entropy-in- 
creasing) state evolutions that seem essential i f  the second law of  thermodynam- 
ics is ever to become a theorem of  mechanics. In this first paper, the general 
mathematieal fi'amework for describing linear but not necessarily Hamiltonian 
mappings o f  the statistical operator is reviewed, with particular attention to 
detailed representations o f  the Kossakowski conditions for the case o f  a two-level 
system. 

1. G E N E R A L  I N T R O D U C T I O N  

For  more  than a century it has been evident that two fundamental  theories 
o f  physics--mechanics  and the rmodynamics - -a re  incompatible with one 
another.  Whether  the mechanics is classical or quantal,  it is a matter  of  simple, 
unassailable logic that  the Gibbs -von  N e u m a n n  ent ropy formula  is invariant 
under  aI1 Hamit tonian motions,  and hence that  some cherished construct  o f  
theoretical physics must  eventually be modified before the second law of  
thermodynamics  can become a theorem of  mechanics. This is o f  course the 
famous problem of  irreversibility. 

The situation is somewhat  reminiscent o f  the historic contradict ion 
between Newtonian mechanics and Maxwellian optics, which was finally 
resolved by the special theory o f  relativity. Something had to be altered in 
one or both  of  those theories. As is well known,  it turned out  to be the 
Galilean kinematics that  Einstein discarded, with the result that  mechanics 
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was dramatically revised, while electromagnetic field theory remained uns- 
cathed. 

Similarly, in the modern irreversibility problem it seems obvious that 
something must be altered in either thermodynamics or quantum mechanics, 
or both; and there have indeed been many proposals to alleviate the dilemna, 
ranging from blind refusals to acknowledge the difficulty to proud assertions 
that the problem has been solved. Although it is not our current objective to 
offer a comprehensive review of the situation, we shall briefly mention several 
approaches that have been suggested in order to establish the context of our 
present investigations. 

According to one viewpoint, Hamiltonian quantum mechanics is to be 
regarded as sacrosanct, so that any change in physical theory designed to 
accommodate the second law of thermodynamics must occur somewhere 
within thermodynamics and its physical interpretation. Included within this 
category are (a) the informational explanation/1.2) wherein the entropy 
becomes subjective or "anthropomorphic" and its increase merely reflects the 
inevitable growth of obsolescence of past knowledge, (b) the random external 
field hypothesis, 13m according to which thermodynamically closed systems 
are actually mechanically open subsystems driven to higher levels of entropy 
by their surroundings, and (c) the theories of the prolific "Brussels school,"lsI 
which has an entropy expression of its own to replace the invariant formula 
of ordinary statistical thermodynamics. We regard each of these attemtps to 
deduce irreversibility as unsatisfactory, for these reasons, respectively: (a) 
Even though we admire the potency of information theory for systematic 
guessing of undetermined states and believe it to be a necessity in the 
practice of statistical physics, ~6) we believe nevertheless that the second 
law is an objective physical principle which would be valid even if the 
quantum states were completely determined; in other words, the thermo- 
dynamic entropy of a closed system will rise irreversibly even if the sequence 
of exact quantum states is known and the information-theoretic entropy is 
therefore zero. (b) About twenty years ago, one of us (W.B.) was among the 
first to advocate the view that the quantal uncertainties of the enclosure 
material drive up the entropy of the enclosed substance; there are recent 
developments ~v) along this line in which the "enclosure" becomes the astro- 
physical universe itself, constrained by cosmological boundary conditions, 
which are regarded as the ultimate source of the asymmetry exhibited by the 
second law. We are not prepared to comment conclusively on the cosmological 
version of this approach; however, the basic flaws in any version involving a 
bounded enclosure are that in Hamiltonian motion the composite system of 
enclosure plus substance will have its total entropy still invariant and that, 
since the overall motion is quasiperiodic, Is~ the subentropy of the substance 
alone cannot display any permanent tendency to increase. (c) The Brussels 
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entropy can only increase for quantum systems characterized by exotic 
mathematical properties which are associated only with the so-called thermo- 
dynamic limit (N--+ co, V ~ o% N / V  finite). Though we would not deny the 
efficacy of this limit concept in the practical computation of intensive para- 
meters, we cannot accept the notion that the second law could be applicable 
only to such obviously fictitious systems. 

A second logical alternative for unifying mechanics and thermodynamics 
is to accept the premises of the latter as facts which contemporary quantum 
mechanics fails to predict, and to seek therefore some refinement of mechanics 
which would enable it to describe irreversible processes in a direct rational 
manner. This point of view is certainly the minority position, but it has been 
suggested before and to some extent developed by Sudarshan (9-1~) and his 
colleagues, and by Kossakowski 113a4) and Ingarden/15j6) 

The present series of papers investigates all possible linear dynamical 
postulates applicable to the simplest imaginable model, the two-level quan- 
tum system. The idea is to explore the theoretical possibility of generalizing 
quantum mechanics so that it can easily describe both reversible and irrever- 
sible (entropy-increasing) motions. The remainder of the present communica- 
tion (part I of the series) establishes the mathematical framework for dis- 
cussing linear generalizations of quantum dynamics, with particular attention 
to the two-level system. In part II we shall classify in a geometrically visuali- 
zable manner all possible motions that can be linearly generated for a two- 
level system. Finally, in part III we shall consider the thermodynamically 
interesting class of energy-conserving, entropy-increasing motions. 

2. OPERATOR SPACE F O R M A L I S M  

Let the system of interest be characterized by a Hilbert space ~ ,  the 
self-adjoint operators on . ~  corresponding as usual to the physical observales 
associated with the system. Let {X c~n>}, a complete orthonormal set spanning 
~ ,  be chosen as a representation so that any observable B can be written as 

enn 

where B~.~ are c-numbers with B ~  * . = Bnm, When B operates on any vector 
/ t35 in .~a we have a new vector 

f¢/'> = B I t / >  = Z / ~ m . ( ~ .  'i¢/5 ! ~,,~5 (2) 
mn 

The preparation, or quantum state, of the system is represented by a statistical 
operator 

8 2 ~ [ 7 / I  I / I 2 -  3 
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where p~,n = p*~,  Tr p = 1, and the p~,~ are elements of a positive-semi 
definite matrix. The mean value of the observable B as measured over the 
ensemble described by p is given by the basic interpretive formula 

(B)  -- Tr(Bp) (4) 

We adopt the Schr6dinger picture, in which the observables are indepen- 
dent of time while the statistical operator evolves with time, so that the 
expectation value evolves with rate of change 

(d/dO(B) .... Tr(B dp/dt) (5) 

The general dynamical problem then is to describe the time dependence of the 
statistical operator. Thus, given p(0) at time zero, we wish to find a linear 
law which determines p(t) at a later time t. [The restriction to linear mappings 
is suggested by the fact that any mixed quantal ensemble may be subdivided 
into or composed from distinct subensembles which are assumed to evolve 
independently. Thus, if p:t(0)-+ pl(t), pz(O)-~ p~(t), then by hypothesis 
p(0) = WIPI(0 ) @ W~p2(O)- ,p( t )= W~p~(t)+ W2p2(t).] This essentially 
means that we wish to find a linear superoperator #-(t)  which, when operating 
on p(tO, produces p(t~): 

3-(t2, q) p(tO == p(t~) (6) 

This is closely analogous to the behavior of the operator B on the vector 
] fi) in (2), which prompts one to set up a new linear vector space ,.~ whose 
elements are the operators on ~ .  We shall wish to decide arbitrarily on sets 
of  operators of ~ that can serve as the basis, or "quorum, ''~6) for ~ .  The 
most obvious choice is the dyadic set 

{Q~,.~} ~ {] o~.,~)@.~ r} (7) 

Any operator B then can be written as 

We shall write t Q ~ )  for the vector in d corresponding to the operator Q~,~ 
on ~%f, and define a scalar product in d by 

(A t B) --= Tr(AtB) (9) 

so that 

and 

(10) 

--- A~B~m (t 1 ) ( A I B )  Z * 
q'~rtz 
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if 

[A) = ~ A~,~ ] O~,~) 
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3. G E N E R A L I Z E D  D Y N A M I C A L  P O S T U L A T E  

Any superoperator on ,.~ has the form 

"Y- - -  ~ [ Q m n ) ~ S ~ , ~ k ( Q j k  I (12) 
m n j k  

while the statistical operator becomes a vector 

l p) = Z P,~-IQ~,)  (13) 
B Z ~  

Hence in this representation the law of evolution (6) becomes 

pm.(t~) = Z J~m..jk(tz  , q )  pj,~(t,) (14) 
tie 

Returning to the more general notation, we shall postulate that the evolution 
superoperator -Y- for an isolated system depends only on the difference 
(t2 -- q) and 

Y ( t n  - -  t O  Y ( t ~  - -  h )  = J - ( t .  - -  h )  (15) 
with 

.Y'(0) = l ~  (16) 

the identity in ~ .  In other words, just as in ordinary quantum dynamics we 
continue to assume that time is homogeneous and evolution is transitive. This 
postulate amounts to the statment that there exists a superoperator ~ on ~¢, 
the generator of temporal evolution, such that 

.Y-(t2 - -  q )  = e (t2-q)'~ (17) 

I f  the matrix JT~n,j~ in (12) has an inverse, it is possible to invert (14). Thus, 
writing (14) in the form 

p(  t2) = e %-t l)~ep( q )  (18) 

we also have 

p( t l )  = e -(t2 q)~p( t2)  (19) 

Equation (19) would imply that, given a statistical operator at time t2, we 
can compute the state from which it must have evolved at an earlier time h;  
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but the essence of thermodynamic irreversibility is that once entropy is 
maximized, such a retrodictive computation must be impossible. Therefore, 
to obtain irreversible motion, we must have some evolution superoperators 
that do not possess an inverse. 

Setting t2 = t and differentiating (18), we express the law of evolution as 
a differential equation 

~p(t)/et = X(~e~t-q)Lep(tl) : ~L.f~p(t) (20) 

If  there exists an operator H on ~ such that 

~ p  = (1/i)[H, p] (21) 

then (20) becomes the familiar Liouville-von Neumann equation of motion 
for the statistical operator, which has no capacity for describing irreversible 
motion. However, we do not intend to restrict the Liouville superoperator, or 
Liouvillian, ~ to the Hamiltonian form. In the dyadic representation of 
the equation of motion can also be written 

y '  ~ 7 _  [ Q~,~) = ~ ~ga ,j~pj,~ I Q,~) (22) 
m n  ' m n j k  

o r  

where 

/5~. = ~ £a g~pj~ (23) 
jk 

~ . , ~ k  ~- (Q~.  I £~'1 QJ~:) (24) 

The main objective now is to investigate the conditions that must be met by 
the matrix £~a~.,jk to qualify as an acceptable generator of dynamic evolution. 

4. THE KOSSAKOWSKI CONDITIONS 

An elegant theorem due to Kossakowski a4~ enunciates the necessary and 
sufficient conditions that the Liouvillian be an acceptable dynamical evolu- 
tion generator, which means that et£ep must be a statistical operator if p is a 
statistical operator; i.e., if p has the form (3), then so must et~ep. We shall 
state the theorem without proof: 

Let {P~} be orthogonal projectors (elements of ~ )  onto a complete set 
of finite subspaces of ~/o; i.e., {P~} gives a resolution of the identity in Jg': 

P.P.,, = 8n~ P~,  Tr P .  < oo, ~ P~ = 1 (25) 
n 
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Then &o generates a dynamical evolution if and only if for all possible sets 
{P.} 

(P~ I Se [ r~) ~< 0; (P~ I A° [ P~) ) 0; n :# m (26) 

and 

(P~ ~ ~9 ° [ P~) = O, for every m (27) 
n 

[Note that the subset of operators {Q~.} from (7) is a particularly simple 
example of a {P~}.] 

Because all possible sets {P~} are involved in the theorem, we shall need 
below a lemma concerning the transformations induced in ,-g by transforma- 
tions in o~. The unitary transformation in og~ 

' /c 

induces {Qm.} -~ {Q;~}, where 

so that 

(28) 

c~,~,)<~ [ = ~ l  ~k')<c%' [ c%,,)(c~ ] %')<~/ I (29) 
/c] 

f 
k ]  

(3o) 

and 

Finally, from 

we have the desired lemma: 

~}g.,ej = 2 (Q}o 

: =  2 <Cg/' 

(30 

~ . ~ , ~ ' z  - -  (Q~,., F sPI Q~z) (32) 

Q.~,)(Q.~ [ c f j  Qk~)(Q~ r Q~j) (33) 

c~m><~ i %'><~: ] %'><%' ] c@ Af.,...~ I (34) 

5. THE TWO-LEVEL QUANTUM SYSTEM 

We turn from the general theorem to a particular application--a system 
whose observables have only two eigenvalues. Associated with the two- 
dimensional Hilbert space ~ are only two classes of {P~}: (i) sets of two one- 
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dimensional projectors like [O~1)<O~1i and I~>(~ul, and (ii) one two- 
dimensional projector, the identity in ~ ,  

All pairs in class (i) are connected by unitary transformations. In ~f2 the 
Kossakowski conditions (26) and (27) for class (i) projections are therefore 

(81 ] ~cf [ P,) ~< O, (P~ ] oLf [ P=) ~> 0 
(35) 

(P2 [ 2~' ] P1) ~ O, (P2 ] c~ ! P2) ~< 0 

and 

(Pl l  y ]  P2) - r (P2  S [  P~) = 0 
(36) 

(P1 [ ~ L P 1 )  -J- (Pz ! ~(' J el)  = 0 

where Pl, P2 are arbitrary orthogonal one-dimensional projectors on J ~ .  
In the notation of  (32) these read 

~11,1I ~ O, ~22,22 ~< O, 6~n,2Z >~ O, ~22,~1 >~ 0 (37) 

~q~,~ + & 2 , ~  = o, ~e11,~1 + &~,~l = 0 (38) 

and these equations are to be true for all orthonormal pairs {~} in ~ .  
The class (ii) of projections has only one member, the identity; the 

corresponding implication of statements (26) and (27) is 

(1 '~ Le I 1) = 0 (39) 

from which we have 

0 = ~ ( 1 [ Q ~ )  :L#~,w=j(O,~; [ 1) 
rant# 

= ~ £a,.~,~s Tr Q,.~ • Tr QI,:j 
~'nnkj 

mnlc} rak 

which is an identity if (38) is satisfied. The entire set of necessary and sufficient 
conditions is therefore contained in (37) and (38). 

To investigate the effect of a change of representation, we note that the 
most general unitary transformation in ~ is represented by the unitary 
matrix 

a a 12 i a,bei,~), = = ~ ( b , e i 6  I @ [ b z 1, q~ real (40) H 
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When this transformation is used to generate a new pair of projections from 
the two initially chosen, the arbitrary phase ¢ is redundant. The components 
of u may be written as 

u .... = (c~ l c%') (4t) 

so that (28) becomes 

(i ch')] == ' a b ~[[ c@] (42) 
c~2')J ( - -b* a*]\l ~SJ 

The lemma (34) can then be written in terms of the parameters a and b, the 
coefficients of that transformation being a 16 × 16 matrix 

U1.,i~;1,~..7~(a, b) * * =:= t t fmUonUik~l j l  (43) 

Inspection of (34), (37), and (38) shows that the only rows of the U- 
matrix that are needed to determine whether a given G,¢ satisfies the 
Kossakowski conditions (37) and (38) have elements of the form Usl,gg; ...... k~ 
(a, b). Thus the first condition in (37), namely dgs~,ls = 0, for all orthonormal 
pairs {[ c~}} in Yf2, is expressed as follows in terms of the U-matrix: 

£PSI,I1 = ~ Usf,j1:~,~,~(a, b) ~0~,~ ~ 0, f = 1, 2 (44) 
v~n~l 

for everya, b s u c h t h a t  ! a t  2 + ! b l  ~ =  1 

The second condition in (37) becomes 

~97J~'f.~1~ = ~ Uss,~g;.,~,~(a,b) ~ , x : ~  ~ 0, f va g 
m n k ~  

for every a, b such that l a 12 -{- i b 12 = 1 

(45) 

Similarly, Eqs. (38) take the form 

2 2 

2'f}s.o~ = ~ ~ Uff,a~;m..~(a, b) G°.,~.7~ = 0, g = 1, 2 (46) 
f = l  Y = l  ~)~nkt 

for every a, b, such that [ a [~ @ ! b 12 = 1 

Although these statements (44)-(46) do constitute necessary and suffi- 
cient conditions for a Liouvillian ~ to generate dynamical evolution for ~ ,  
it is not feasible to use these conditions to deduce an acceptable ~ ;  rather, 
one must use less direct methods involving postulation of possible super- 
operators followed by an appeal to the conditions for either confirmation or 
rejection of the postulate, 
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6. H E R M I T I A N - Q U O R U M  T R E A T M E N T  OF TWO-LEVEL SYSTEM 

The form of the Kossakowski conditions for ~ given above was 
developed using the dyadic quorums {QH} as bases for the operator space ~¢. 
There are of  course other possible choices, including in particular for the 
case of  ~ the familiar Hermitian set containing the identity (r o = 1 and 
the three Pauli spin matrices ~. 

Let us adopt for convenience the set 

{v~} ~ { 1/~f2, a/~/2} ~ {v0, ~}, ~ = 0, 1,2, 3 (47) 

which is readily seen to be an orthonormal basis for ,.~¢: 

(G lye) = Tr(G~v~) = Tr(Gve) = 3~ (48) 

In terms of {v~} the statistical operator p may be written as 

[ p) = (1/~/2) ~ s~ ] v~) (49) 
c~ 

The properties of  p as described in dyadic form by (3) require several necessary 
and sufficient constraints on the {G}. Since Tr p = 1, 

So = 1 (50) 

and since p is Hermitian, 

s~ = s~* (51) 

Finally, in order to assure that p has only nonnegative eigenvalues, we must 
have 

sl 2 + s ~  2 + s ~  2 ~ 1 (52) 

In general, for any Hermitian operators A and B, we have 

]A) = Z G [ G ) ,  [B) = Zbe lvB) ,  ( A I B )  = Tr(AtB) = Za~b~ 
c~ 13 c~ 

where the {G} and {be} are real. 
The evolution generator G a can now be written in the form 

(53) 

and the generalized dynamical equation 58p = t5 then yields 

G~s~ = Y i~ G~ ~/3 (55) 

Ga = ~ l v~) 5('~e(v/3 i (54) 
~ e  
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In terms of {v=}, the general form of a one-dimensional projector in ~ is 

Pa = (1/~/2)(v 0 + fi • ~), fi • fi = 1 (56) 

Using (56) one may therefore apply the general theorem (26)-(27) directly in 
order to obtain the restrictions on ~ necessary and sufficient to assure that 
(56) will have no solutions s¢(t) that violate (50)-(52) at any time. However, 
since Kossakowski aT~ has already taken this abstract appraoch to the J ~  
case as a means of illustrating his general theorem, we shall not repeat that 
derivation here. 

Instead, we shall derive the necessary and sufficient conditions on 5¢B~ 
in a more straightforward manner, which will indicate the geometrical origin 
of  the Kossakowski inequalities. 

From (50) it follows that ~0 = 0, so we must restrict 5¢~ by 

3 

~ o  + Z ~°0.~. = 0 (57) 
n = l  

which must be true for all sets {s,} satisfying (52). This implies 

s00 = ~ .  = o, ~ = l, 2, 3 (58) 

Writing (55) in the form ds~ = ~=~=s= art and recalling that the s= are all 
real, and must remain real throughout the evolution, we conclude immediately 
that all the coefficients 5~B= must be real. These findings can be summarized 
by writing the matrix form of ~o as 

0 0 0 O ~  

/ 
(59) 

where all components 2 are real. It remains to discuss the further restrictions 
on these components required to ensure that as p evolves, it continues to have 
only nonnegative eigenvalues. 

Consider an auxiliary real three-space 5 ¢ whose points s have coordinates 
(51, s2, s3). The elements s that lie on and within the unit sphere are in 
one-to-one correspondence with the statistical operators, through (49). F rom 
the dynamical evolution equation ~ p  = /5  we obtain 

n 

(60) 

o The transformation relating the elements ~.ce~ of (59) to the dyadic matrix elements 
£.e,~,a~ defined in (32) is given in the appendix. 
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No acceptable dynamical evolution can permit the end point of s to 
travel outside the unit sphere; therefore, whenever that point is on the unit 
sphere, we must have s • s ~< 0. Hence from (60) we deduce that a necessary 
and sufficient condition for maintaining positivie-semidefiniteness of p( t )  in 
all motions generated by ~ is that ~ satisfy 

(o f ~ It,) < o  (60 

for every p whose corresponding s lies on the unit sphere. Comparing (49) 
and (56), we see immediately that (61) is equivalent to the assertion that 

(P ] 2~o I P) ~ 0 for every projector P (62) 

which is just the first Kossakowski inequality in (26). The form (59) and the 
condition (62) together are equivalent to the results obtained by 
Kossakowski (17) when he applied his general theorem (26)-(27) to the two- 
level system; our derivation from first principles therefore affirms his conclu- 
sion. 

In part II we shall analyze in detail the various possible motions that can 
be generated by Liouvillians satisfying (59) and (62). 

A P P E N D I X  

We can obtain the Liouvillian matrix elements in the Hermitian quorum 

from the dyadic representation ~c~,~.7,,~ by expressing the {v~} in the form 

where %~ is the dyadic form of the Pauli spin %.  For example, i %) is 
represented by the column vector (0, --L +L  0); (% I by the row vector 
(0, +i ,  --L 0). The resulting transformation is 

2~io = Li2ii @ Li222 @ L2iii @ L~iee 

2Aa2o : i(Li~ii @ Li22e -- L2iii -- L2i22 ) 

2~3o = Lml + Ln22 -- L2~II -- L2222 

2&°ii = LI~I~ + L1221 + L2m + L~I21 

2£°2~ = L1212 --LI~21 --L~iI~ + L2m 

2~s  = Lml -- Lm2 -- L2m + L2222 

2~q~1~ = - - i (L i2 i2  - -  Li221 + L2i12 - -  L2121) 
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2 ~ 2 i  := i(Li~l~ + Li22i -- L2,1z L2i2i) 

2 ~ 3  ....... Li21i -- Li222 @ L2iii -- L2i~2 

2~31 : Llii2 @ Lil2i -'-° L2212 --  L222i 

2Lf23 -- i(L~2~ --  L~22 -- Lm~ ÷ L2~2) 

2~3~ =: --i(Lille -- Lli~l -- L22i2 @ L~221) 

2~oo .... Lilii @ Lii22 @ L22ii @ L2222 

2~foi .... Lili2 @ Lliei @ L22i2 @ L2221 

2~02 --" i(LII12 - -  Lil21 @ L2212 --  L222i ) 

2~03 =: Lilll -- Lii22 @ L22tl -- L2222 

This transformation can easily be reversed. 
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