A stochastic derivation of the Klein-Gordon equation
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Several years ago Nelson succeeded in deriving the nonrelativistic Schrodinger equation within a stochastic
model which included Newton’s second law as the fundamental dynamical rule. Unfortunately, the
relativistic extension of Nelson’s work is not so straightforward as might at first be supposed. This paper
examines the difficulties inherent in such a relativization and proposes supplemental axioms which resolve
those difficulties. A stochastic derivation of the Klein-Gordon equation is then presented.

1. INTRODUCTION

Quantum mechanics and the theory of stochastic pro-
cesses are normally perceived as being rather separate
branches of physics. It is possible, however, to estab-
lish a formal relationship between them by exploiting
an obvious similarity, viz., that each embodies the con-
cept of probability as an irreducible element in its
axiomatic framework. The most widely cited effort
along these lines was made by Nelson,! who succeeded
in deriving the nonrelativistic Schrddinger equation as
a theorem within a stochastic model based upon Newton’s
second law. Nelson® suggested later that it might be pos-
sible to extend his techniques to the relativistic case,
but no extension of this kind has so far been published.

In the present paper we develop a method for obtaining
such an extension, and compare our results with the
work of other authors®* who have attempted alternative
stochastic derivations of relativistic wave mechanics.

2. RUDIMENTS OF STOCHASTIC MECHANICS

The stochastic particle of interest is regarded as a
classical punctiform mass, occupying at every instant
a single point in space and traveling, therefore, along
a trajectory. The probabilistic element, which is es-
sential to provide a link to quantum mechanics, is in-
troduced by assuming that this trajectory is continually
influenced by a hidden thermostat similar, for example,
to those suggested by Bohm® and deBroglie® in connec-
tion with hidden-variables theories. While the exact
properties of the thermostat-particle interaction are
unknown, the fluctuations of the particle position re-
sulting from this interaction are presumed to be de-
scribable as a Markoff process.

Accordingly, the position probability density p(x, #)
must obey the Smoluchowski equation

px, t +af) = [P(x - Ax, t| Ax, 8)p(x - Ax, H)d(Ax),

(1)
where P(x-Ax, t| Ax, Al) is the conditional probability
density that a particle at position x — Ax at time ¢ will
be displaced by AX during the interval Af, thus reaching
position x at time /.

Similarly, let F(x+ Ax, ¢| &%, At) denote the probability
density that a particle with position x + Ax at time ¢ has
been displaced through Ax in the preceding interval Af
and thus would have been found at x at the earlier in-
stant { — Af. The analog of Smoluchowski’s equation with
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F instead of P is therefore

p(x,t - Af)= [ F(x + Ax, t| Ax, Af)p(x + 8%, t)d® Ax.

(2)
Since the motion of the particle is to be conceived as a
stochastic process, it follows, strictly speaking, that
x(#) is not differentiable, To meet this difficulty, Nelson
suggested two possible alternatives for the time deriva-
tive of position, the mean forward derivative Dx(¢)
and the mean backward derivative D*x(¢), defined
respectively as

e x{t+ A1) - x(2))
o K=

=lim f (x(ﬁ%’ﬁ) P(x, t| ax, ADd?(Ax),
At =0

3
(0 = 1im (O =Xt an)*

D*x(¢
x At=0 at
A“) Flx, t| ax, a8)d(ax),

s x(t) - x(¢ -
- iltrzlo.[ ( at

By hypothesis the motion x(¢) is regarded as being
separable into two parts, an ordinary functional part
and a Wiener process w(f), i.e.,

ax(t) =b[x(t), t]dt + dw(t), (5)

(4)

where

{dx) =bdt, (8)

((dx)® = ((dw)®) + 0(dt?), (D
or,

((dx)?) =2v dt, (8)
where v is, by definition, the diffusion constant.

The stochastic derivative of a function f(x) is given

by means of Ito’s rule’:

Df(x) = (a% +b-V+ VVZ) fx). (9)

The value of v to be selected in any particular realiza-
tion of stochastic mechanics depends upon the nature of
the thermostat. In order to match the predictions of non-
relativistic quantum mechanics, Nelson chose v = 3%/
2m.

For the backward case, there are relations analogous
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to Eqgs. (5)—(8), viz.,

{dx)* =b* dt, (10)
{(dx)® * =v dt = (3n/2m) dt, (11)
D*f(x):(%+b'V—vV2)f(X)o (12)

By using the mathematical properties of x(#) de-
scribed in Egs. (5)—(12), it is now possible to gener-
ate Taylor expansions of the integrands in the
Smoluchowski equations (1) and (2) and thereby extract
the normal Fokker—Planck equation

% _ 7o
2 Y (pb) + 2 * P (13)

and its backward counterpart

W _ g (pp*) — e
at__v (oD )_2171VD' (14)

Adding (13) and (14) then yields the continuity equation

P

5= (pv), (15)
where v denotes the average of b and b*. The quantities
b, b*, and v are called, respectively, forward, back-

ward, and total drift velocity.

3. FORMULATION OF THE RELATIVISTIC CASE

To construct a specific quantal wave equation from
the elements of the general stochastic mechanics just
reviewed requires the adoption of some specific dy-
namical rule. Thus to obtain the Schr&dinger equation,
Nelson assumed the Newtonian rule F =a, the acceler-
ation a being defined as follows:

a(t) = 5(DD* + D*D)x(t)

l((b(t) =Db(t— anyx  (o*(t+ 1) - b*(t))>
af at )

=lim
at-02

(18)

Kracklauer® has criticized this definition of a on the
ground that Nelson failed to provide an adequate physical
rationale for it. However, careful scrutiny® of the op-
erational meaning of an acceleration measurement does
indeed produce the desired rationalization and rebut
Kracklauer’s objection to Nelson’s theory.

By combining this stochastic version of Newton’s
second law with the continuity equation, Nelson derived
two real equations which are equivalent to the complex
Schrddinger equation.

At first glance one might conjecture that the relati-
vistic wave equations of quantum mechanics should be
similarly derivable simply by substituting for the F
=ma of Nelson’s theory the analogous rule in classical
relativistic mechanics. There are, however, certain
unexpected difficulties.

First, Hakim'® has shown that, if the limit A7—0 is
used to calculate conditional probability densities like
P and F, the only value for the diffusion constant v
compatible with relativistic invariance is zero. To cir-
cumvent this difficulty, we shall discretize the time
variable in the stochastic description, so that in the se-
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quences of events which define trajectories, adjacent
events have a nonzero minimum temporal separation

7. Obviously the value of this time period must be suf-
ficiently small to ensure that, in any “practical” refer-
ence frame, there can be no conflict between the pre-
dictions of the stochastic theory and actually realizable
macroscopic observations. A specific value for 7 will
be given later when we develop the model in detail.

A second difficulty in extending Nelson’s work arises
in the fact that the nonrelativistic formulation assumes
that the particle could traverse even an infinite distance
in a finite period of time, since both P(x, | Ax, £)d®(Ax)
and F(x, 1] Ax, Af)d®(Ax) are nonzero for the free par-
ticle no matter how large | Ax!| becomes. To eliminate
these spacelike trajectories from the theory, we pro-
pose to restructure the stochastic development around
a postulate inspired by a curious feature of Dirac’s
relativistic theory of the electron. According to the
latter, the operator for the magnitude of the instan-
taneous velocity of a free electron possesses just one
eigenvalue, the speed ¢ of light in vacuo. Thus if
Dirac’s theory is correct, the only possible result of
such a speed measurement on a free electron would
indeed be ¢. Dirac himself rationalized this proposition
through an ambiguous discussion of the Heisenberg
uncertainty principle. However, we simply adopt it as
an axiom of the stochastic model, i.e., we postulate
that ¢ is the instantaneous speed of the relativistic
stochastic particle between interactions with the hidden
thermostat. Of course the particle cannot travel too
far at the velocity of light, for such behavior would
surely be incompatible with known facts. In the Dirac
theory, the particle executes the physically unexplained
Zitterbewegung. In our stochastic model such an oscil-
lation will also appear, but with an evident physical
cause, viz., the interactions with the thermostat. That
is, the particle travels for a short period of time at the
speed of light, then interacts with the thermostat, in-
stantaneously changing direction but not speed.

To summarize, our stochastic derivation of quantum
dynamics is to be founded upon Nelson's postulates
supplemented by two special axioms: (i) the discretiza-
tion of time in the stochastic model, and (ii) the attribu-
tion of the speed of light to the stochastic particle be-
tween interactions with the thermostat.

Assumption (i) must now be made more explicit. We
begin by recalling (8) and Nelson’s choice of v=3%/2m,
which leads in the nonrelativistic case to the relation

14w _3n

T 2m’

lim 17
at-02 Af

In order to avoid the difficulty mentioned by Hakim,
(17) must be changed in the relativistic description to

1(@x? 3m
iltrii TAF 2m (18)
or,
n 2
lim-l— E ;l (AJQ) ﬁ (19)

“om
where Ax; represents the ith sample displacement in

an ensemble of n# free excursions of the particle between
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interactions with the thermostat. To determine the value
of the free travel time 7, we note that assumption (ii)
implies

|ax,|/T=c, Vox, (20)
which, combined with (19), yields

$c31 =31/2m (21)
or,

T=3%/mc?. (22)

Interestingly, this free flight time 7 is exactly 3/7
times the Zitterbewegung period of Dirac’s electron
theory; it differs by a factor of 3/27 from deBroglie’s
intrinsic vibration period for a quantum particle.!? It
is important to note that 7 is a fixed quantity, not an
average; thus in each interval 7, the particle travels
exactly the free path length

A=cT=34/mc. (23)

Hence the behavior of the relativistic stochastic par-
ticle characterized by assumptions (i) and (ii) is in fact
a physical realization of the mathematical random walk
concept.

Some interesting speculation can be carried out by
examining the free path length of various particles. For
electrons, A=10"'% ¢m; and for protons, =10 cm,
If we now compare these lengths to the effective range
of the strong nuclear force (~10™"® ¢m), we see that an
electron could participate in the nuclear interaction
only if its behavior violated our random walk model,
whereas the proton could be influenced by the nuclear
force without contradicting our assumptions. Thus the
proton could change direction at free path endpoints in
response to the nuclear interaction as well as to the
hidden thermostat. It is of course an experimental fact
that the proton, and not the electron, is affected by the
strong nuclear interaction.

Finally, it is necessary to specify the Lorentz frame
of reference relative to which the stochastic particle
executes the proposed random walk, with characteris-
tic values for period 7T and length X given by (22) and
(23). We shall take this frame to be the drift rest frame
defined precisely in the next section. Physically, the
velocity of the drift rest frame relative to an observer
is the velocity v the observer would assign to the sto-
chastic particle on the basis of ordinary measurement,
in contradistinction to the empirically unmeasurable
instantaneous velocity (of light) actually possessed by
the stochastic particle in each of its free excursions.
To be assured that the assumed value for 7 is small
enough so that its existence would not contradict known
facts, it suffices to note that even for an electron (7
~10"# sec) that had been accelerated to v = 0. 999c, the
time-dilated interval between interactions with the hid-
den thermostat would still be only

_ 7 ~10-19
At-—'—_—vz/—cajm 10 sec. (24)

4. DERIVATION OF RELATIVISTIC QUANTUM
WAVE EQUATIONS

It will now be demonstrated that the proposed rela-
tivistic extension of stochastic mechanics leads to two
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real equations which are equivalent to the complex
quantum equation for the spinless relativistic particle,
the Klein—Gordon equation. Moreover, since each spin
component of the Dirac equation satisfies the Klein—
Gordon equation, this approach could be considered as
explaining the motion of half-integral-spin particles
when the spin can be neglected.

In Nelson’s derivation of the Schrédinger equation
from nonrelativistic stochastic mechanics, conditional
probability distributions P and F had to give probability
estimates over all space for the future and past loca-
tions of the particle. However, in the relativistic ran-
dom walk particle, given that the particle is at x at time
t, the only possible positions for it at time £ - 7 and
t+ 7 are those on the sphere of radius A surrounding X.
Thus we only need to define the probabilities Pg()d$2
and Fp(R) dQ that the particle will go to or came from
the area of unit solid angle & to € +dQ. In general, Py
and Fy will be dependent on the past history of the par-
ticle but it will be assumed that we may describe the
particle motion by a Markoff process so that we can
write Pg(Q) =Pg(x, ¢ 14(R), T) and Fg(R)
= Fp(x, t1#(Q), 7), where n(Q) is a unit vector and
Pr(x, t172(R), 7) describes the probability density that the
particle located at x at time ¢ will be found at time ¢+ T
in the position x + Ax =x + Mi(Q). A similar definition
holds for Fg(x, t17($2), 7). In analogy to the nonrelati-
vistic case, we can define a relativistic forward drift
4-velocity b, = (b, b;}, where

b, =0b* E;./;z‘(Q)PR(x, tA(Q), T) dQ

(25)
(26)

=c{ny,

by==b=—c(T/T)==c.

Similarly, we may introduce a backward drift 4-velocity
bx = (b%, b¥), where

b¥ Eé/;z,FR(x, t](Q), 7) dQ

=C(n,->*, (27)

bf=—c(t/7)==c. (28)

As in the nonrelativistic situation, the exact location
of the particle at any instant in time will be presumed
not known. However, instead of specifying just the po-
sition probability density, which is not a relativistic
invariant, we shall need a probability current density
4-vector j,, where j; is - ¢ multiplied by the probability
density. The definition of the other components will be
given later.

We now consider the problem of the “rest frame, ”
which at first seems a perplexing situation, since the
particle, continually moving with the speed of light, has
no admissible rest frame in the usual sense. However,
a useful definition may be given as follows: The drift
vest frame is that Lorentz frame in which the one non-
vanishing component of j, is jo=~ cp. In this frame the
stochastic particle will obey the Smoluchowski equation

p(x, t+7) = [ p(x— M, )Pr(x - M, t|#(Q), T) dQ.  (29)
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If we expand the left-hand side in a Taylor series about
t, and the right-hand side in a Taylor series about x,
we get

(] 72 92
o(x,t+7)=px, ) + Té'fp(x’ t) +E SFD(X’ ) (30)

and

p(x_ )\ﬁy t)PR(x_ )‘ﬁ) t|ﬁ5 T
=p(x, DPR(X, t|7, T) = \PR(x, t| 5, T)(# - Vo(x, £))

. . LN N
— A[fi- VPR (x, H 7, Vo(x, ) + = 25 [(n%PR(x, t\h, 1)

27
92 . a2 .
x=zh(x, t)) + <nip(x, t) 52 Pr(x, tla, T))‘
i i

+2 (n%%PR(x, t)a, 1) ;;p(x, t))] +0(N%). (31)

Using the relations

fPR(x, tlh, nde=1, (32)

fkn PR(x t|#, lde= A—(n)_T 9 <P, (33)

f xz(i n%) PrdQ= [ MPrdo=X, (34)
t=1

[ W3Prd =0} =53 =3, (35)

where the last equation ensures space isotropy for the
hidden thermostat, we can now integrate (30) and (31)
term by term to obtain (approximately)

dp T 2° AZ
Ptz mp== 7 (ob) + 5= V. (36)

If we substitute the values for 7 and X from (22) and
(23) and make use of the 4-gradient 3" =(~ 3/3(c#), V),
(36) may be expressed in relativistic notation as

3 (pb,) = (71/2m) Pp=0. (37
In the drift rest frame, the equivalent backward version
of Smoluchowski’s equation will also hold. Hence,

p(x, =7 = [ plx+ N, OF(x + i, t|n, 7) dQ. (38)

As analysis parallel to that given above for the forward
diffusion situation yields the backward analog of (37),

3 (pb¥) + (11/2m) PPp = 0. (39)
If we define

iy =pb* (40)
and

Fixe =p(0*)* (41)

we can construct the total drift current
3* =208 +75%) (42)

and a drift velocity as
v* =3*/p. (43)

Then j, satisfies the continuity equation
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a“ju =0 (44)

as can be seen by adding (37) and (39).

Equations (37) and (39) were derived on the assump-
tion of a special Lorentz frame (the drift rest frame)
and, as written, are not covariant with respect to
Lorentz transformations since p is not a world scalar.
However, we can define the term

(= 1/c¥54 = |p|? (45)

which is a world scalar, and generalize (37) and (39)
to the covariant forms

& (jp), - (1/2m)2{p| =0, (46)

3 (jp*), + (m/2m)2 | p| = 0. (7

When j, =(-c¢p, 0,0, 0), these reduce to the previous
forms (37) and (39).

In order to construct the Klein—Gordon equation, it
is necessary to adopt a definition for 4-acceleration,
a, . Nelsor’s three-dimensional formula was

alt) =3 lim (<b( blt— amy*  (b*(t+ ah) -b*(t)>)_
At-0

Al At
(48)

To extend this to four dimensions, we define a as
follows:

_1 ((b., (O —b,(t—TH*  bFt+T7) - bft(ﬂ))
a, =4 +
o2 T T
=5(baMb, +5(6,")0} +%__2f C2(b, ~ b¥), (49)

where Ito’s rule for differentiation of forward and
backward stochastic processes has been utilized as
in the three-dimensional case. If the substitutions,

v, =3(b, +02), (50)
v, =5(b, - bF) =( (51)

are made, {49) can be written in the more tractable
form

a, =0d'v, — 1y, - (H/2m)CPy, . (52)
For the fundamental dynamical rule, we adopt
Einstein’s relativistic version of Newton’s law,

F,=ma,, {53)

where F, is the force 4-vector. In particular, we shall
consider only the Lorentz force F* associated with
electromagnetic field F*° i.e.,

F* =(e/c)F* v, =(e/c)[a* A" -

where A" is the electromagnetic potential. The Lorentz
gauge will be used so that

9,A* =0. (55)

*A* Tus, (54)

The generalized momentum will be assumed to be de-
rivable from the 4-gradient of the world scalar §,
Hamilton’s principal function of ordinary relativistic
classical mechanics. Thus

*S =mv* + (e/c)A*. (56)
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If (52), (54), and (56) are substituted into (53), the
result is

[l (a*s - -e-A‘) 3, (a"s - gA“) — P o~ EDZV“]
w c c 2
=<[owar - 4] (axs - %Ax) . (57)
If use is made of (55), this reduces to
;1; (2°9)3,(2"5) ~ % " (%A*ahs) +% 2 [(;)ZAAA"]
=mvtav* ~ (7/2) 04", (58)

Since both S and v* = (%#/2m)3" Inlp!| are gradients of
scalars, (58) may be written as

I 1 e 1 fe\?
wy_- Q) - —— A — () A4
) (BXS)(B S) m Axa S+ (C) »

2m 2m
m_ o, B,
-8 - =
5 - lnlpi] 0, (59)
or
1 € 2 2 T e —
7—}’[- (8,¢S - CA)') + 7)7(1/)) - o ) lnlpl —A/[, (60)

where M is a constant. To determine the value of M,
consider the classical limit case (% negligible) with
vanishing vector potential A*. Then (60) becomes

(1/m)(3,8P =M (61)
or
mo vt =M. (62)

Since in the drift rest frame

n=_(-¢,0,0,0) (63)
it follows that
M=~ mc2, (64)

Thus the two basic equations of relativistic stochastic
mechanics are (44) and (60). Both of these equations
are of manifestly covariant form; all of the terms in
them are either world scalars or, with the exception of
j* and A*, the 4-gradients of world scalars. Moreover,
since both j* and A*, when contracted with covariant
4-vector operator 9%, form the world scalar zero, they
must be covariant 4-vectors. Therefore the stochastic
model satisfies all the necessary requirements of in-
variance with respect to Lorentz transformations.

To compare the stochastic relativistic model with
orthodox quantum formalism, we recall the Klein—
Gordon equation

2,2
<a“ - ;;‘A“) e (’”?C—) b=0. (65)

Separating (65) into its real and imaginary parts, we
obtain

ug_€An Z_Ea_Dz — 22
(asc ) " OR = - e (66)
and
o[ s-4)] -
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where R and S’ are real functions which determine ¥
through

v=Rexp(iS’/n). (68)
The term D2R/R? obeys the vector identities

DZR DeRz 1o 22

—R__TR"“‘Z(a InR? (69)
and

U?(InR?) = (1/R?®) T2R? - (3* InR?%)2, (70)

By substituting (69) and (70) into (66) we get

2 2
1 a“s'-fA") —m(-ﬁ—a“ 1nR2) P e Re o et
m c 2m 2m

(71)

Now, if the identifications, R*=1p| and $=S’ are made,
(67) and (71) become identical to (44) and (60), respec-
tively. These stochastic results are not totally equi-
valent to the standard quantum formalism, since the
Klein—Gordon equation allows both positive and negative
energy eigenvalues. By contrast, in the stochastic mo-
del we have

E/c=p"=mv’=mc >0, (72)

and, thus, the stochastic derivation has been only for
positive energies. However, negative energies can be
easily incorporated into the theory if one redefines 5,
(and b%) to be

by=~clA(x, ) - B(x, 1)], (73)

where A(X, #) is the probability that the particle at

(x, 1) will have positive energy during the time span T,
and B(x, t) is the probability that it will have negative
energy. A similar redefinition holds for ¥ and hence
for vy=3z(by+b%). Alternatively, one may adopt the in-
terpretation that A is the probability the particle will
go forward in time and B is the probability that it will
go backward in time. Our derivation has thus far as-
sumed A =1 and B=0. For a negative energy particle,
the reverse would be the case.

Aron® and de la Pena-Auerbach® have also construct-
ed derivations of the Klein—Gordon equation from sto-
chastic concepts. Aron’s approach yields two real equa-
tions which are not equivalent to the complex Klein—
Gordon equation except in special cases.

De la Pena-Auerbach, by studying the properties of
stochastic derivatives under time reversal, has ar-
rived by a quite different theoretical route at equations
essentially equivalent to our two basic relativistic sto-
chastic equations. Surprisingly, he did not require the
particle to have a fixed free speed ¢ but did assume that

1{(ax)®» 31

27 &t 2m’ (74)

where Af=T,

However, it is easily demonstrable that (74) must be
reduced to the more stringent requirement of our ran-
dom-walk model in order to avoid inconsistency. Indeed
if in a particular excursion, we had |8x| >c¢7, the
world line of the particle would be spacelike and hence
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inadmissible. If, however, we always require | Ax|
< ¢7, then necessarily

1 (a0h 1t _an
2 7T 2 7 " 2m’

The equality sign holds only if |Ax| =c¢7, for all Ax,
which corresponds to our stipulation (20).

<
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