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Generalized Two-Level Quantum Dynamics. 
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I f  the ordinary quantal Liouville equation ~ p  ~ ~ is generalized by discarding 
the customary stricture that ~ be o f  the standard Hamiltonian commutator 
form, the new quantum dynamics that emerges has sufficient theoretical fer- 
tility to permit description even o f  a thermodynamically irreversible process 
in an isolated system, i.e., a motion p(t) in which ent~vpy increases but energy 
is conserved. For a two-level quantum system, the complete family o f  time- 
independent linear superoperators ~ that generate such motions is derived; 
and a physically interesting example is presented in detail. 

1. INTRODUCTION 

A persistent enigma of theoretical physics inheres in the fact that entropy- 
increasing, energy-conserving processes in isolated systems are commonplace 
in nature but are strictly impossible within the framework of Hamiltonian 
mechanics, classical or quantal. We believe that the rational way to approach 
this dilemma--the famous problem of irreversibility--is to seek an elegant 
modification of basic quantum dynamics such that, from this new axiomatic 
structure, the second law of thermodynamics may be deduced as a theorem. 
In an earlier communication m (Part I of this series), after several fashionable 
alternative approaches had been examined, we developed a physical rationale 
for the hypothesis that the new quantum law of motion for a closed system 
ought to be of the form 

~ep(t) = ~(t) ( l )  

a natural generalization of the Liouville equation wherein the time-indepen- 
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dent linear superoperator ~ (the generalized Liouvillian) is not restricted 
to the traditional Hamiltonian form 

~CaHp = (1/i)[H, p] (2) 

Since the statistical operator (quantum state) p(t) must at all times remain 
Hermitian, positive-semidefinite, and of unit trace, not every linear super- 
operator is an admissible candidate to be the generator ~ in (1). Necessary 
and sufficient mathematical conditions on ~ have been discussed recently 
by Kossakowski3 ~) 

To explore the theoretical fertility of the postulated law (t), we have 
focused attention on the simplest possible case--the two-level quantum 
system. Every Hermitian operator A associated with such a system may be 
represented as a real linear combination 

A = ~/2 a~v~, = ~ aovo q- anv~ (3) 
og=O 

where the basis for operator space has been chosen for convenience to be 

{,,~} -= {1/V'~, ,,/V~} (4) 

which obeys, because of the properties of the Pauli spin matrices ~, the ortho- 
normality relation 

Tr(v~v~) = 8~e (5) 

In this format every statistical operator is expressible in the form 

1 ~ 2  1 ( ) 1 p =- ~ s~v~ = Soy o ~- £ s~v~ = ~ (SoVo -t- s .  , )  (6) 
~z 

where 
s 0 =  1 and s ' s ~ <  I (7) 

From (6) and (7) we see that there is a one-to-one correspondence between 
the statistical operators of a two-level system and the points of the surface 
and interior of the unit sphere in an auxiliary 3-space Y in which s is the 
radius vector. 

The quantal mean value of an observable A in the state p is then given 
in terms of a and s as 

Tr(pA) = ao + ~ a~sn = a0 + a" s (8) 

Moreover, if we define matrix elements for the superoperator ~o by 

~ ~ Tr(vB~v~) (9) 
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then (1) is represented by 

We have already noted that not every ~ will be acceptable; to be more 
explicit, we adopt the following terminology: 

Definition 1. A linear superoperator ~ generates a dynamical evolution 
if and only if every solution p(t) of S~p = / 5  is a statistical operator if the 
initial condition p(0) is a statistical operator. 

In a previous paper (3) (Part II of this series) we derived the following 
criterion for determining the admissible (~=) matrices for a two-level system. 

Theorem 1. A superoperator A ° generates a dynamical evolution for 
a two-level quantum system if and only if (a) S0~ = 0; (b) K,,,~, the symmetric 
part of ~e,~n, is a negative-semidefinite matrix; and (c) ~a~ 0 meets one of these 
requirements: 

(i) I f  det(K~,) < 0, the ellipsoid in d described by ~ n  K~sms,  + 
A'~moS,, ~ 0 must have no points external to the unit sphere in ~ ;  or 

(ii) I f  det(K,,~) = 0, then £~a~ 0 - :  0. 

Thus the most general admissible ~ is given in matrix form as 

, ooo  . . . . .  o),i o  ooo) 
(5¢B=)= | 0 i + (II)  

| 0 I | 
\ 0 1  

where the symmetric and antisymmetric parts of ~°,~,~ are defined, respectively, 
by 

J~.~ ~ ½ ( ~  -- 5a,,m) and Kmn ~ ½(~ , .  + L.m) (12) 

The S,,, o and K~n in (11) are of course subject to the constraints of Theorem 1. 
Now if  the generalized equation of motion (I) is truly adequate for the 

incorporation of closed-system irreversibility into the framework of  
mechanics, there will have to be (~aB~) matrices of the form (11) that generate 
non-Hamiltonian motion in which energy is conserved but entropy increases. 
We shall find that such generators can in fact be constructed. 
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2. IRREVERSIBLE M O T I O N  

First we seek conditions on the parameters in ( t l )  such that entropy 
will increase with time. For  the measure of entropy we take the standard 
Gibbs-yon Neumann formula 

S(p) = - - k  Tr p in  p (13) 

Normally the time rate of change of S is difficult to manipulate alge- 
braically because it involves the logarithm of an operator. However, in 
case of a two-level system, a useful simplification is described by the next 
result: 

Theorem 2. For a two level quantum system the motion p ( t ) =  
(1/~/2) ~ s~(t) v~ has (a) S(t) > 0 or (b) S(t) -- 0 if and only if, respectively, 

where 

(a) G(t)  < 0 or (b) G(t)  = 0 (14) 

6(t) =_ ~ s13(t) ~s~( t )  (15) 
t3~ 

Proof.  In matrix form, (6) becomes 

( I + ,3 , , -  % (16) 
(P) = ½ s,  + is,2 l - s 3 /  

and the eigenvalues are readily found to be 

r+ = ½[1 ~ (s" s)~t ~] (17) 

In terms of these eigenvalues, (13) takes the simple form 

S = --k(r+ lnr+ + r_ In r_) (18a) 

and since r+ ÷ r_ = 1, the time derivative of (18a) reduces to 

S; = - -  k~ + ln(r +/r_) (18b) 

It is apparent from (17) that for I s l  > 0, r+ > r _ ,  hence from (18b) 
we conclude that S and e+ are always opposite in sign or else both are zero. 
The exception, s = 0, which corresponds to p = ½1, has S = 0 regardless 
of the sign of ~+. 

To complete the proof, we note that (17) implies that i+ is zero or negative 
whenever s • g is zero or negative, respectively. From (6), (7), and (10) we 
obtain 

s "  g = ~ s~g,~ = E s~13 = E s13£'eB~s~ = G (19) 
~z 13 Bc¢ 
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In the exceptional case s = O, since So ~ 1, we have 

G = ~ s~Zes~s~ = ~oo = 0 (20) 
Ba 

where the last equality is a consequence of Theorem 1. It follows that in all 
cases G = 0 is necessary and sufficient for ~ --  0, while G < 0 if and only if 
~¢ > 0, and the theorem is proved. 

Incidentally, from (17) and (18a) it is easy to see that the isentropic 
surfaces in the auxiliary space -5 e are concentric spheres centered on the 
origin and ranging in size from a point (Sma:~ = k In 2) to the unit sphere 

( S m i  n = 0) .  

To characterize the temporal variations in S that may be induced by 
the dynamical law (1), we introduce the following thermodynamic nomen- 
clature: 

Definition 2. A motion p(t) is reversible if and only if for all t 

dS[p(t)]/dt = 0 (21) 

Definition 3. A motion p(t) is thermodynamically irreversible if  and 
only if for all t 

dS[p(t)]/dt >/0 (22) 

and during some time interval, 

dS[o(t)]/dt > 0 (23) 

Using Theorem 2, we can find the subclass of superoperators satisfying 
Theorem 1 that describe irreversible motions. To do this, we first use the 
relations So = 1 and £Po~ = 0 to rewrite (15) as 

G = Z ~cP.~osm q- Z smC~.~,~s. -- Z £~'.~o sm@ Z s~Kmns. (24) 
m 9 n n  9 n  i n  

where the second equality followed from (12). 
It follows from Theorem 2 and Definition 3 that the only superoperators 

that generate irreversible motions exclusively are those for which 

G = Z ~..os,. + Z s,.K,..s. <~ 0 (2.5) 
m m n  

for every s such that s • s ~< 1. In particular, (25) must hold for 

sm = ~ , ~  (26) 

where 
0 < ]e l  ~< 1 (27) 
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Substituting (26) into (25) and rearranging, we obtain 

~o~ ~< --Kraal 

If  E > 0, (28) implies 

whereas, if E < 0, 

(28) 

X', 0 ~< --K,~ ] E 1 (29) 

f~o > Kr~ I, I (30) 

According to Theorem 1, (Km~) must be negative-semidefinite and thus 
K~ ~ 0. Therefore, since (29) and (30) must hold for arbitrarily small 
I e 1, it follows that 

~ o  = 0 (31) 

for generators of thermodynamically irreversible motion. When (29) 
holds, (23) is automatically satisfied because of the negative-semidefiniteness 
of (Km~). However, in order for the strict inequality in (25) and thus in (23) 
to be valid sometimes, it is essential that (Km,~) be nonzero. We summarize 
these results as follows: 

Theorem 3. The general form ( ~ )  for a generator of thermodyna- 
mically irreversible motion in a two-level quantum system is 

. . . .  000)  oo0o 1 
( ~ ) =  l 0 I + I 0 I (32) 

/ 01 (J~.) / 0', (K.~.) 
\ 0  \ 0 1  

where J~,~ is antisymmetric and K,~ is nonzero, symmetric, and negative- 
semidefinite. 

Similarly, we may argue that the only superoperators ~ce that generate 
reversible motions exclusively are those for which the equality holds in (25) 
for every admissible s. This implies not only (31) but also that the matrix 
(K,~) vanishes; whence we have the following result: 

Theorem 4. 
motion in a two-level quantum system is /o ooo) 

(&) - - /  o l 
/ o i  (:o.) 
\ o i  

The general form (£#~) for a generator of reversible 

where Y,~n is antisymmetric. 

(33) 
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3. CONSERVATIVE MOTION 

In the ordinary Hamiltonian quantum dynamics of an isolated system, 
the energy operator H is defined as the generator of unitary time translation, 
so that the fundamental equation of motion has the form 

~ i p  ~ (1/i)[H, p] = 15 (34) 

It is then easy to prove, by combining (13) and (34), that for every t, 

dS[p(t)]/dt = 0 (35) 

and hence by Definition 2 all Hamiltonian motion is reversible. 
When we deal with the non-Hamiltonian motions that are conceivable 

within the generalized dynamical framework in which £,e has the general 
form (11), a new theoretical definition of energy is needed. 

Definition 4. For a two-level quantum system whose dynamical 
evolution is generated by an £,e of the general form (11), the energy operator 
H is given by 

H = ~/2 ~ h~v~ (36) 
c~ 

with 

(37) 

where emr~ is the antisymmetric Levi-Civita symbol. 
Just as in traditional quantum mechanics, where the evolution operator 

only determines H to within an additive c-number, Definition 4 does not 
yield h0 from ~ .  The complete rationale for the form (37) was discussed in 
an earlier paper TM (Part II of this series); there it was established that in the 
reversible limit of (11), when (K,~,) becomes null, we have 

~q~p --+ ~ p  ~ (1/i)[H, p] (38) 

provided that Definition 4 is used to find H from ~o. 
Having thus given a new definition for energy which reduces to the old 

one in the case of reversible motion, we may now meaningfully consider the 
notion of energy conservation. 

Definition 5. A motion p(t) is conservative if and only if for every t 

(d/dt) Trip(t) HI --=- 0 (39) 
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The necessary and sufficient conditions for a conservative (5¢e~) are 
then given by: 

Theorem 5. 
motion in a two-level quantum system with nondegenerate H is 

The general form ( ~ )  for a generator of conservative 

0 I 0 0 0 ) { 0 0 O L 0 
- - - - ]  

o ~  o -h~  h~ + o l 

o l -h~ h~ o \ o i 

(~cPB~) ----- 2 ! (40) 

where K~. is negative-semidefinite, and 

h,,,K,,.~ = O, n ---- 1, 2, 3 (4U 

Proof By combining (39) with (1), (10), and (36), we obtain 

hBoCocl~s~ = 0 (42) 
B~ 

for every s~ satisfying (7). 
Since ~ = 0 and So ---- 1, (42) reduces to 

Noting that (43) must 

h,~o  + ~ h~,,,,~s,~ = 0 (43) 

be true for all s such that s • s ~ 1, we conclude that 

h ~ +  0 = 0 (44) 

hm~.q~',.n = O, n = 1, 2, 3 (45) 
9qZ 

From (12) and (37) we have 

J ~ .  = - - 2  ~ E , ~ h ~  (46) 
~o 

so (45) becomes 

h~K~. = Z Z e,~.~lT,~h~, n ----- 1, 2, 3 (47) 

But the right side of (46) vanishes identically since em~ is completely skew- 
symmetric, and we have 

2 h,~K... = 0, n = 1, 2, 3 (48) 
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Because H is nondegenerate by hypothesis, all h~ cannot vanish; thus (47) 
can be valid if and only if det(K,,,) = 0 which, by Theorem 1, implies that 

Y.~o = 0 (49) 

Equations (40) and (41) then follow from (1 I), (37), (44), (45), and (48); and 
the theorem is proved. 

The degenerate H excluded from consideration in Theorem 5 is trivially 
conserved for all ( ~ ) .  

4. IRREVERSIBLE CONSERVATIVE MOTION 

By comparing with the aid of (37) the general forms (32), (33), and (40) 
which occur in Theorems 3-5, we conclude that for any two-level quantum 
system, every conservative motion is either thermodynamically irreversible 
[(K,,~s) nonnull] or reversible [(Km,) null]. Conversely, every reversible 
motion is conservative. There are, however, irreversible motions that are 
not conservative; and there are of course motions that are neither reversible 
nor thermodynamically irreversible, and these cannot be conservative. 
Examples of such exotic possibilities were treated in a previous publication 
(Part II of this series). TM 

At present we are concerned only with the thermodynamically 
interesting case of irreversible conservative motion. It is now clear that 
generators ( ~ )  for such motion do indeed exist, their properties being 
described by Theorem 5 with (K,~s) nonnull. 

To obtain the general solution of the differential equation (10), viz. 

= ( 5 0 )  
c~ 

when (.~.%~) has the form (40), it is convenient to adopt a matrix represen- 
tation in which (£f~,) has as many zero elements as is possible without loss 
of  generality. This may be done by noting that the condition (41) is mathe- 
matically equivalent to a vector analysis problem where three vectors 
{Ks} must be found, each of which is orthogonal to a given vector h, but not 
all of which are zero. Thus 

h" Ks = 0 (51) 

where the {h~} and {K~s} appearing in (40) and (41) are the components of 
h and K , ,  respectively. Since (51) is invariant under rotation, we lose no 
generality by choosing the 3-axis along h (hx : h2 = 0), so that the Ks must 
then lie in the 1, 2 plane. Hence 

K3~ = 0 = K,z (52) 
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where the second equality follows from the symmetry of (K.~.) and implies 
that only Ka and K~ may be nonzero. A suitably chosen rotation about the 
3-axis, which can have no effect on the {hm}, will then yield 

K21 = 0 = K12 (53) 

We conclude therefore that without loss of generality we may study irre- 
versible conservative motion by taking 

(~-q~a) = K 1 - -Z ]  

A G 
0 0 

where 

(54) 

and 

where 

and the representation has been selected such that 

h i = h a = 0 ,  Km~ = 0 ,  m =/=n,  K ~ =  0 (56) 

From (36), (55), and (56) it is easy to see that A is the separation between the 
two eigenvalues of H. 

Substituting (54) into (50), we obtain 

~o = 0 (57) 

~ = 0 (58) 

2 
L~qs~ = G (59) 

~,q=l 

Equation (57) expresses the constancy of Tr p; and, since in this represen- 
tation H has the diagonal form 

H = V2 (h0v0 + hava) (61) 

we have, using (6) and (8), that 

Tr(pH) = ho q- h3sa (62) 

which implies that (58) expresses conservation of energy. The motion of 
s in the auxiliary space 9 ° is therefore confined to a circle and its interior, 

A =--- 2ha, K.  ~ K.  ~ 0 (55) 
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where the circle is the intersection of the plane s3 = s~(0) with the unit sphere, 
the plane being perpendicular to h. 

The motion within the circle is described by (59). To solve this differential 
equation in the standard way, we first note that the eigenvalues of (L~q) are 

A± = 9" ~: ( ~  --  A2) 1/~ (63) 

where 

9' ~ ½(K1 + K2), 8 ~ ½(K1 -- Ks) (64) 

Then (e~L)~q may be found by solving the two simultaneous equations 

e t~± = ~ + A~:fl (65) 

and using the solutions ~,/3 in the formula 

(etL)~q = c~8~q @ /3L~q (66) 

Routine calculations now yield as the solution of (58) 

[ sl(t)] e "~ [3 sin f2t -/- D cos sgt --A sin £2t ] IS1(0)] (67) 
se(t)J = -~-  [A sin Dt --3 sin f2t + g? cos Dt] [s~(0)l 

where 
~¢~ ------ ( A2 - -  82) 1/2 (68)  

If  (Kin.) is null, then y = ~ = 0 and the motion (67) reduces to 

sl(t)] [cos X2t --sin f2t] [sl(0)] 
s2(t)J = Lsin Dt cos f2t J Ls2(0)J (69) 

which is the usual Hamiltonian motion of a two-level system, reversible and 
periodic with "Larmor frequency" 

¢2 = • (70) 

On the other hand, if (K,..) is not null, then 8 < 0 and 

lim [ Sl(t)] = [~] (71) 
,--> ~ ts2(t)l 

Recalling that the insentropic surfaces in ~9 ° are concentric spheres about the 
origin [cf. (17) and (18a)], we see that (58) and (67) describe motions in which 
energy is conserved but entropy increases to the maximum value compatible 
with t h e f i x e d  energy, which is of course the classic textbook description of 
an irreversible process in an isolated thermodynamic system. 
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5. A SPECIFIC EXAMPLE 

In attempting to set up a "physical" illustration of irreversible conser- 
vative quantum dynamics, naturally we have no prior intuition for the new 
parameters ~ and 7. From (67) it is evident that 7 determined the speed with 
which the thermodynamic equilibrium is attained, and thus we might dub 
7 the "serenity" of the system. The quantity 3 does not admit of so simple 
an interpretation. Equation (68) does indicate one obvious meaning for 
g--a  measure of the departure of D from its reversible-case value A during 
irreversible motion. In fact, the formula (68) is reminiscent of the classical 
frequency of a damped harmonic oscillator, in which A would be the natural 
frequency and 3 the adjustment due to damping. Unfortunately, such an 
analogy is flawed since in the damped oscillator case 8 would also be the 
attenuation factor, whereas here the independent parameter 7 plays that role. 

To find a thermodynamically interesting interpretation for 3, we consider 
the time rate of change of  entropy in the general motion described by (67). 
By combining (17) and (18b), we obtain 

_ k d l s l  l n r + = - - k ( s ' s )  in 1-+-Is[  (72) 
2 d t  r _  1 - l s l  

Using (67) we then find that at t = 0, 

s • g = 7(sl ~ -]- s22) -I- 3(sl 2 -- s22) (73) 

Hence S may be expressed generally in terms of s as follows: 

= - -k  (in t -+- Is I)[7( I s I ~ - -  s32) + 8 ( s l  z - -  s22)] (74) 
1 - / s l  

Now since values of S are in one-to-one correspondence with values of  
F s T through (17) and (18a), and s3 is fixed at a value determined in (62) by 
the thermodynamic parameter 

U --= Tr(pH) (75) 

it follows from (74) that S will depend only on the extensive parameters S 
and U rather than on finer details of the microstate p if and only if 8 = 0. 
It would seem therefore that the case 3 = 0 would be of paramount interest 
in irreversible thermodynamics. The illustration to be discussed next falls 
in this category. 

It is apparent from (69) that in reversible conservative motion generated 
by an ~ H  of the ordinary commutator form (2), the end point of s moves 
uniformly on a circle; in fact the equation of motion may be written as 

= 2 h  × s ( 7 6 )  
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To describe an irreversible thermodynamic process, we need a motion in 
which the end point of s moves inward toward the axis where the entropy 
is a maximum for the given energy. This would involve an s velocity in the 
direction h × (h X s), and one may therefore speculate that a term in A°p 
of the form -- [H, [H, p]] would produce the desired motion. Motivated by 
this clue, we now propose to consider the following, more elaborate equation 
of motion: 

/5 = (1/-r)(e-~'Fpe i ~  - -  p) (77) 

where -r is a parameter, and F is a traceless operator related to H but as yet 
not defined explicitly. When ~--~ 0, the exponentials converge rapidly, 
the dominant term being - - i [F ,  p] and the next term --½~-[F, [F, p]]. We shall 
retain the complete series and make no assumption regarding the magnitude 
o f  T. 

To derive the matrix (d~)  associated with (77), it is convenient to intro- 
duce the symbol 

0 = ~-f (78) 

where f is related to F by 

Then from the identity 

it is easy to prove that 

F - -  "V'2 (f"  v) = f .  a (79) 

(o • ~)2 = I o r21 (8o)  

exp(i~-F) = exp(i0 • a) = 1 cos 0 + i (0 • o) sin 0/0 (81) 

where 0 :-- [0l.  
Substituting (6) and (81) into (77), we obtain 

(~. ~) = 1 l ( s .  ~ ) (cos  2 0 - 1) + i [ s .  ~, 0 .  ~] 
~- 0 

q- (0" ~)(s" a)(0- a) sin2 0 t (82) 
02 1 

Using the standard formulas, 

[ a ' ~ , b . a l = 2 i ( a  × b ) ' a  

sin 0 cos 0 

and 

( a ' a ) ( b ' a )  = a ' b + i ( a  × b ) "  

we may convert (82) to the form 

~'im = --(2/02)(sin 20)(02sm - -  2 sjOjOm) - -  (l/0)(sin 20) ~ Oksjejk ~ 
J ]~j 

(83) 

(84) 

(85) 
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which is to be compared  to (50) in order to find the (~ , . . )  elements of  the 
matr ix  ( ~ )  associated with (77). I t  is obvious f rom the algebraic fo rm of  
(77) tha t  the 5eo~ and 5('~ o vanish. Denot ing  the direction cosine of  0 (or f) by 

= 0~/0, 7/ = 02/0 , ~ ~ 0~/0 (86) 

we have 

r0  0 0 0 -, 
0 2(sin 2 0)(~ 2 - -  1) 2~:-q sin 2 0 2 ~  sin 2 0 

- -  ~ sin 20 + ~7 sin 20 
- r ( ~ )  = 0 2se~/sin 2 0 2(sin 2 0)@ 2 - -  1) 2 ~  sin 2 0 

÷ ~ sin 20 - -~  sin 20 
0 2~ :  sin ~ 0 2 ~  2 sin 2 0 2(sin 2 0)(~ 2 - -  1) 

- -  r /s in 20 q- ~: sin 20 .~ 

I f  the representat ion is chosen to diagonalize F, we have ~ = 1 
= ~7 = 0, and £f~ becomes 

r ( ~ )  = 0 - - 2 s i n 2 0  - - s in  20 
+ s i n  20 - - 2  sin20 

0 0 

(87) 

and 

(88) 

This is clearly an example of  (54) with K1 = / ( 2 .  Hence 

7 = - - (2 / r )  sin 2 0, 3 = 0, f2 = A = sin 20 (89) 

Substituting (89) into (67), we have 

sl(t) ----- {exp[--2( t / r )  sin20]}{cos[(t/'r) sin 20] Sl(0) 

- -  sin[(t/~-) sin 20] s2(0)} 
(9O) 

s~(t) = {exp[--2(t/~-) sin20]}{cos[(t/r) sin 20] s2(0) 

+ sin[(t/r) sin 20] sl(0)} 

which describes a spiral mot ion  that  can be more  easily visualized by noting 
tha t  

s12(t) ÷ s~2(t) = e-2"~(l So 12 - -  sa 2) (91) 

where So is the initial value of  s and s3 is constant.  
The ult imately irreversible character  of  this mot ion  becomes manifest  

when we note that  the evolution matr ix  [cf. Par t  I, m Eq. (17)] 

(i o 0 e °~ cos £2t - - e  v~ sin ~Qt (92) 
(T~(t)) ~ (e ~se~) = e ~t sin g2t e ~ cos ~ t  

0 0 1 
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evidently approaches as t - ~  0o a matrix with two zero eigenvahies, hence 
a zero determinant and no inverse. The process described by T(t) is therefore 
literally "irreversible" in the sense that once the destination (equilibrium) 
is reached, retrodiction becomes impossible. 

Since F is diagonal in the chosen representation, we have 

F = fi,~ (93) 

and the conserved energy associated with (88) is given by 

H = (1/2~-)[sin(2~f)] v3 ----- [1/(2 ~/~) r] sin[(2 C2) rF] (94) 

In the limit when r --~ 0, F and H become identical. Both are conserved in 
general. In terms of  the parameters determing ~ ,  we find that 

, = --VI[2(h32 + kV2)] (95) 

Thus only in the reversible limit 7 -+ 0 does r --~ 0. 
I f  we imagine a spinning electron in a magnetic field of about 1G, the 

energy coefficient h3 would be around 10 -2° erg. Since such systems in isolation 
are not observed to evolve spontaneously toward states of higher entropy, 
we see that even if the hypothetical ~ of (88) were correct, t ~' 1 must be 
quite small--less, say, than 10 -6 sec to guarantee that the spin would seem 
to execute ordinary Hamiltonian motion for months. Using these values in 
(95), and restoring Planck's constant, we see that it would be necessary 
to postulate a characteristic time ~- of about 10 -19 sec in this case. By contrast, 
a similar theory for macroscopic systems, which do as a matter of  common 
experience exhibit thermodynamically irreversible behavior, would require 
a much larger ~'. It should perhaps be emphasized that such a r would not be 
a "relaxation time" but rather in the nature of an "interaction time" between 
the parts of the structured system. We believe that such a characteristic time 
exists for every isolated system and that it should appear naturally in a 
suitably generalized quantum mechanical description of the system. The 
present analysis of the two-level system, though not of direct practical utility, 
has nevertheless demonstrated that adoption of a dynamical postulate of 
the simple form (1) is a theoretically fertile hypothesis, for it permits the 
logical deduction of thermodynamically irreversible motion within a distinctly 
mechanical context. 

N O T E  A D D E D  I N  P R O O F  

A referee has kindly called our attention to an interesting and related 
article on irreversibility [G. Ananthakrishna, E. C. G. Sudarshan, and V. 
Gorini, Rep. Math. Phys. 8, 25 (1975)] and to some very recent papers 
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that also appear to have some points of  similarity with ours but which were 
published after our manuscript was communicated [G. Lindblad, Commun. 
Math. Phys. 48, 119 (1976); V. Gorini, A. Kossakowski, and E. C. G. 
Sudarshan, J. Math. Phys. 17, 821 (1976)]. 

R E F E R E N C E S  

1. J. Park and W. Band, Found. Phys. 7, 813 (1977). 
2. A. Kossakowski, Bull. Acad. Polon. Sei. Math. 21, 649 (1973). 
3. W. Band and J. Park, Found. Phys. 8, 45 (1978). 


