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When quantum scattering theory is applied strictly from the point o f  view that 
the state o f  a system is completely described by the density matrix, whether 
pure or mixed, it is not possible to assume that colliding particles are at all 
times individually in pure states. Exact results are significantly different from 
conventionally accepted approximations, hz particular, it turns out that the 
cross section as ordinarily defined in the S-matrix formalism is an adequate 
parameter for deciding the outcome of  interactions only when the particles are 
earefidly prepared in matching pure states. In general the use o f  the cross 
section in studying pair collisions in a real gas" is s/town to be analogous to a 
repeated "collapse of  the wave function" after each collision, and involves 
arbitrary removal o f  nondiagonal elements o f  the density matrix, thus violating 
the basic' laws o f  quantum dynamical evolution, 

1. INTRODUCTION 

As Goldberger and Watson state in the Preface to their authoritative 
monograph on collision theory, m it is generally agreed that to describe 
particle collisions one should prepare both projectile and target particle in 
wave packets aimed at each other and watch them evolve according to the 
standard time evolution formula of  quantum mechanics. Like all treatises on 
quantum scattering, their work was concerned with the calculation of differ- 
ential cross sections under a variety of circumstances, and they eventually 
introduced standard formal techniques, but only after assuring themselves 
"that  there are no serious conceptual problems involved." 

In this paper we investigate a conceptual problem in quantal collision 
theory that has evidently escaped general notice, presumably because it is 
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possible to ignore it if one is only interested in scattering cross sections. It 
does, however, have a deep significance for such questions as the role of 
molecular collisions in the dynamical behavior of a gas not in thermal 
equilibrium. 

The first point is briefly the following: while the transformation from 
two actual particles (A, B) to the two fictitious particles, center of mass (C) 
and reduced mass (R), certainly reduces the two-body problem to two one- 
body problems in classical theory, the separation is not complete when 
quantum mechanical wave packets are involved, except under special 
conditions, which we shall describe. 

The second point: a pair of particles prepared for a collision in arbitrary 
individual pure states will not, in general, after the collision, asymptotically 
approach individual pure states, although the overall pair state of course 
remains pure. Under these circumstances it is easy to show that the scattering 
cross section, as defined in the S-matrix formalism, is not an adequate 
parameter for precisely determining the result of the interaction. 

This situation becomes more evident in terms of Hilbert space concepts. 
Let ~ ,  ~ be the Hilbert spaces appropriate for the two actual particles, 
whose Hamiltonian includes an interaction operator that acts on the tensor 
product space ~A @ ~ • Going over to the description in terms of "quasi- 
particles" R and C separates the Hamiltonian into Hc and HR operating 
in two Hilbert spaces ,'~f'c and -~'#R which constitute a refactoring of the global 
Hilbert space 

~ = ~ ® ~  = ~ ® ~:~ (1) 

Here HR contains the potential for quasiparticle R, and Hc is a free-particle 
Hamiltonian for the quasiparticle C. Now the AB pair may be prepared in 
separate pure wave packets, and this state would be represented by a 
statistical operator (density matrix) that is factorizable: 

PAB = p,4 ® p~ (2) 

This means that the two particles are initially uncorrelated, and their states 
PA, p~ are pure projection operators in the spaces ~ ,  ~ ,  respectively. In 
going over to the CR picture, the equality 

P,4B = P c R  (3) 

induces a well-defined change in the appearance of the statistical operator, 
but it is in general not true that pcR can be factorized into operators in the 
spaces Ygc and ~#'R ; i.e., 

PAB = P c R  =/= Pc @ PR (4) 
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To determine the reduced statistical operators for the individual quasi- 
particles, one has to take the partial traces: 

Pc = TrR PcR, PR = Trc PcR (5) 

While the operator p~a (=pcR) is a pure projection operator in the 
example contemplated above, neither p~ nor pc as defined in Eq. (5) need be 
pure-- in  general they are not. Thus while the collision would not change 
the purity of  the state of  the pair as a whole, a mistaken interpretation of  the 
parts played by PR and Pc in the quasiparticle problem could lead one to 
suppose that the collision had caused a transition from a pure state to a 
mixed one. 

We shall give a clear example of this peculiar behavior of  wave packets 
in the CR picture, and discuss its significance both for collision theory and 
for the larger question of  thermodynamic irreversibility. 

2. MINIMUM UNCERTAINTY PACKETS 

To establish the formalism, we discuss the standard minimum uncertainty 
wave packet for a single free particle, which is given in the Schr6dinger 
representation by the normalized wave function 

~b(q) = (2rrAq2)-a/a exp[--(q -- (q))2/(4Aq~) + iq '<p)]  (6) 

where q is the position vector, (q)  is the mean position, (p)  is the mean 
momentum, Aq ~ is the common dispersion in each of the three Cartesian 
dimensions of  space, and h = 1. 

In the Dirac notation we have the scalar product 

(q [ p) = (2~r) -3/2 exp(iq • p) (7) 

and we shall wish to write the wave function ~b(q) in the form 

~(q) = ( q [ A )  (8) 

where ]A) is the Hilbert unit vector represented by the wave packet. The 
statistical operator p representing the preparation of  the particle in the state 
described by [A)  is thus 

p = ! A ) < A [  (9) 

The resolution of  the identity 

1 = f lq> d~q ~q] (10) 
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permits us to write, with the help of Eq. (8), 

I A> : f I q> d~q <qbA> = f [q> ~b(q) d~q (11) 

Writing Eq. (6) into Eq. (1 l) yields 

[ A> : (2rr/Aq2)~/4{exp[--(Q --  <q> l)2/4Aq2]} I(P>> (12) 

where Q is the operator 

Q = f I q> q<q[ daq (13.) 

and for any function (e.g., the exponential function) 

f (Q)  = f I q>f(q) <q l d3q (14) 

The symbol I<P>> in (12) denotes the Hilbert space vector associated with the 
mean momentum <p> such that 

<q 1 <P>> : (27r) -3/2 exp(iq • <p>) (15) 

When the system of interest consist of two particles, we need a Hilbert 
space for each, ~A and ~ ,  and the tensor product 

= ~A @ ~ (16) 

becomes the appropriate space for the composite system. Let I A> I B> denote 
the abstract vector in ~ represented by a pair of uncorrelated wave packets, 
I B> being the exact analog of ]A> as written above in (12). The statistical 
operator in ~¢~ representing this pair of uncorrelated wave packets is the 
projector 

pAa = l A> 1B><B l <A i = P~ ® Pa (17) 

This preparation of the system may be chosen as a starting state at t : 0. 
Time evolution of the system will then proceed according to the quantum 
dynamical hypothesis: 

pAB(t)  -~- e -~*~I [ A> I B><B] <A I ei*H (18) 

where the Hamiltonian H, an operator in ~ ,  has the form 

H = H A  × 1 . + I A  × H a + V  (19) 

where HA operates only in Y~A, Ha only in ~ ,  but the interaction term V 
operates in 2/g. As is customary, the identities 1A, la in o~A, ~ will be 
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suppressed henceforth. Since the initial p is a projector and the dynamical 
evolution (18) is unitary, then p(t) is also pure. However, because of V, 
p(t) can in general no longer be factored into separate statistical operators, 
one for each particle, because V couples ~A and ~ .  Therefore a pair 
that has been prepared in two pure packets I A) and [ B) does not in general 
remain separable into two packets during their evolution under the influence 
of the Hamiltonian. 

Nevertheless, it is well known that when the interaction is a centrally 
symmetric potential, a function only of ]QA - -  QB I, we can resort to the 
classical decoupling procedure, the transformation to relative and center-of- 
mass coordinates in which the Hamiltonian becomes 

H =  HA + HB + V - -  Hc + HR (20) 

where Hc depends only on the center-of-mass momentum, and HR only on 
the relative coordinates and momenta. Using this, we form a refactoring of 
the Hilbert space 

= ~ ® ~  = ~ c @ ~ R  (21) 

where the operators Hc and H• perform, only in the spaces ~ c  and ~ .  
As classically, we now have two quasiparticles, C and R, with effective masses 
and motions that differ from those of the physical particles we started with. 

We shall demonstrate below that, under a certain rather special 
condition, the two minimum uncertainty wave packets ! A) and [B) trans- 
form into two uncorrelated quasiparticle minimum-uncertainty wave packets 
] C) and I R) in the new spaces J4°c and ~'R and that they then evolve under 
the influence of their respective Hamiltonians independently and remain 
uncorrelated. To be more explicit, when this special condition is satisfied, 
then 

] A )  F B)  = [ C)  [ R'/ (22) 

and the statistical operator (18) can also be written 

pAB(t) = OCR(t) = e -i~H [ C)  I R ) ( R  [ ( C  [ e i'H (23) 

Hence, using (20) and remembering that because Hc and HR operate in 
separate spaces they commute, we can rearrange the factors in (23) as follows: 

peR(t) = e-itHcf C><C[ e ~mc @ e-i*nR[ R)<RI e ~tHR (24) 

The statistical operator is thus factorizable at all times, 

pcR(t) = pc(t) @ PR(t) (25) 
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and in this case motions of the quasiparticles can be determined indepen- 
dently; and a reverse transformation back to actual particles can give us the 
complete solution for p(t). 

Unfortunately, even though the decoupling indicated by (20) and (21) is 
always possible for centrally symmetric interactions, the factorization (22) 
is usually impossible; and we shall have to reconsider the dynamical problem 
more carefully after studying the general form of p(t) in the next sections. 

3. TRANSFORMATION TO RELATIVE COORDINATES 

Let the particles have masses MA and MB, with MB > M A  , and define 
the quasiparticle masses: 

M = M A + M n ,  

Writing 

M A / M  = a, M ~ / M  = 1 - -  ~, 

Ix = M A M B / M  (26) 

~ ½[1 -- (1 -- 4IX/M)I/z I (27) 

we may then express the familiar classical coordinate transformation between 
qa ,  qB and qR, qc as 

q c = c ~ q A = ( 1 - - ~ ) q B  q B = q c - - a q a  

with the corresponding momentum transformation given by 

IPR = (1 - -  ~ ) P A -  ~PBI  ~PA= ~Pc + PR (29) 
t p c = p ~ + p B  ~ ~PB (1 -- c 0 p c - p R  

From these it follows that 

Pc = M i l e ,  p~ = IXdtR, p~Z/2M4 q-pB2/2Mn = pc2 /2M + pR2/2IX (30) 

All of these equations are immediately valid also for the corresponding 
quantum mechanical operators and their mean values <qA>, (q~), (qe>, (qc>, 
<PA>, etc. 

To study quantum states under the transformation from A B  to CR, we 
need the following delta function analogs of  the classical transformations. 
Corresponding to (28) we write 

(q~ I (qB 11 qc> ] qR) = g(qR --  [qA -- qB]) 8(qc -- [aqA -? (1 -- c 0 qn]) 

= ~(qA --  [qc + (l -- ~) qR]) 8(q8 -- [qc -- aqR]) 

(31) 
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and  co r re spond ing  to (29) we write 

<p.4 ] <P~ I I Pc> PR> = ~(PR - -  [(1 - -  o 0 PA - -  ~PB]) 8(pc - -  [PA -k PB]) 

= S(pA - -  [~Pc -k p~]) S(p,  - -  [(1 - -  ~) PC - -  PR]) 

(32) 

W e  are now m a pos i t ion  to t r ans fo rm the wave packe t  [ A )  I B )  into 
the  new coord ina tes  and m o m e n t a  o f  the quas ipar tMes .  To do, this we can 
opera te  on  I A )  B )  with the ident i ty  in J¢' to ob ta in  

] A)  B) = ( d3qc d~qR J qc) i qe)(qR [ (qc  !] A )  [ B )  (33) 

and  then use the fo rm (12) for  each o f  the or iginal  packets ,  which yields 

I A )  I B )  = (2~r) z (27r AqA2) -z/4 (2rr AqB2)-z/' f dSqc f d3qR ! q c )  [qR) 

× {(qR [ ( q c  ] e x p [ - - ( Q a  - -  (qA)I)~/4AqA 2] [(PA)) 

× e x p [ - ( Q ,  - (q,) l)2/4Aq, ~] ] (p , ) )}  (34) 

W h e n  the opera to r s  are wri t ten out  in full. the quant i ty  in curly brackets  in 
(34) becomes  

f daqA f daq~ (qR [ (qc I[ RA) ~:q~) (2rr) -a 

× exp{i[qA • (p~)  -~ qB " (P~)]} 

× exp[ - - (q~  - -  (q~))Z/4AqA 2 -- (q~ -- (qB))~/4AqD ~] (35) 

Per fo rming  the in tegra t ion  using the second form of  (31) and  the classical 
t r ans fo rmat ions  for  the averages (qA), (qA),  etc., we reduce the expression 
in (35) as fol lows:  

(2zr) -a exp{i[qc ÷ (I - -  o 0 qR] " (o~(Pc) -k (PR)) 

_ i(qc -- ~qR)" [(1 - -  ~) (Pc)  - -  (PR)] 

- -  (qc - -  (qc>)2[1/(4Aq.42) -k 1/(4Aq~2)] 
- -  (qR - -  (qR))2[(1 - -  o02/(4Aq,4 ~) -k o~2/(4Aq~)] 
- -  2(qc - -  ( q c ) )  " (qR - -  (qR))[(1 - -  oO/(4AqA 2) -- c~/(4Aqs~-)]} 

U p o n  rea r rangemen t  o f  the exponents ,  this becomes 

(2~r) -3 exp{iqc • (Pc )  - -  (qc - -  (qc))2[1/(4AqA 2) q- 1/(4AqB2)]} 
× exp{iqR • (PR) - -  (q~ - -  (qR))2[(l - -  °02/(4AqA 2) q- °z2/(4AqB2)l} 
× exp{- -2 (qc  - -  ( q c ) )  " (q~ - -  (q~))[(1 q- oO/(4AqA ~) -- cz/(4Aq~)]} 

(36) 
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Substi tut ing (36) into (34), we obtain  finally 

i A )  t B) : (27r /lqA2)-3/~ (27r AqB2)-~/a f d~qc f d3qR [ qc) [ qn) 

× exp(iqc " (Pc) )  exp [ - - (qc  - -  (qc))~/(4Aqc ~') 

× exp(iqR • (Pe) )  exp[--(qR - -  (qe))~/(4Aqe~) 

× exp[ - -2 (qc  - -  ( qc ) )  " (qR - -  (qe))~'] 

where 

7 ~ (1 - -  c~)/(4dqA 2) -- ~/(4AqB 2) 

(37) 

and  

ltAqc 2 : IlAqA2+ 1/Aq~ 2, 

(3s) 

1/AqR ~ = (1 - -  o@/AqA ~ + o~Z/AqB ~ (39) 

4. DISPERSION MATCHING C O N D I T I O N  

I t  seems clear f rom (37) tha t  i A)  I B)  can factorize into the fo rm [ C )  [ R )  
if  and only if the last  exponent  in (37) varies with neither qR nor  q c .  Thus  
the necessary and sufficient condit ion for  this separabil i ty would be 

(1 - -  c0/(4AqA 2) : ~/(4Aq~) (40) 

which becomes,  after  insertion o f  the definition of  ~ f r o m  (27), the simple 
expression 

M A AqA 2 = M~ Aq~ 2 (41) 

which, incidentally, when combined  with (39) yields 

AqJ AqR ~ = AqA2 AqB 2 (42) 

I f  (42), which we shall call the dispersion matching condition, is satisfied, 
(37) assumes the f o r m  

I A)  I B )  : (2~ AqA2)-a/~ (2~ Aq,~) -3/4 

f d~qc ] qc) exp{iqc " (Pc )  - -  (qc - -  ( q c ) )  2 x 

× [I/(4AqA~ ) + 1/(4Aq,Z)]} 

f d3qR] qR) exp{iqR • (PR) - -  (qR --- (qn))  2 X 

× [(1 - -  ~)2/(4AqA ~) + ~2/(4Aq.2)]} (43) 
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and therefore we have, as contemplated in (22), 

I A )  I B )  = [ C)  I R )  

where 

(44) 

I c5 = (27r) 3/~" (2 rc A q02)-3/~ exp [-- (Qc - (qc51 c)2/4A qc 2] [(pcS) 

JR)  = (2~r) ~/~ (2~r Aqe~)-8/a exp[--(QR --  (qe)lR)2/4AqR 2] [(Pc)) 
(45) 

The expressions in (45) are precise analogs of the expression for ] A) in (12), 
and represent minimum uncertainty wave packets of the two quasiparticles, 
which will evolve independently of  each other. Again we stress, however, 
that this result is not a general theorem, but has been derived only under the 
proviso that the dispersion matching condition (42) is satisfied. 

To establish beyond doubt that the dispersion matching condition is 
necessary and sufficient for the state factorization (44), we next extract 
from the statistical operator 

pA~ = I A )  I B ) ( B  I <A I = pcR (46) 

the reduced statistical operator OR for the R quasiparticle alone in the 
general case where the dispersion matching condition is not assumed. 
Substitution of (37) into (5) yields 

pR = Trc pcR = f d3qc ' (qc'  J P ] qc ')  (47) 

= (2rr AqA2)-z/2 (27r Aq.2)-z/' f d~qR f daqi(] qR) I(R, R')(qR'i (48) 

where 

R') = f daqc {exp[--(qc --  (qc))2/(2Aqc2)]} I(R, 

× e x p { - - 2 ( q c -  (qc))" {(qn -- (q~)) + (qR' -- (qR))]7} 

× e x p [ - - ( q . -  (qe))2/(4Aqg2)l 
× exp[--(qR' --  (qn))2/(4AqRg] exp[i(pe) • (qR -- qR')] (49) 

= f d~qc exp{--[1/2Aqc2][(qc -- (qc)) 

+ (q~ - ( q ~ )  + qR' - ( q ~ ) )  2AqcS'] 2} 
× exp[(qR -- (qR) + qR' -- (qR)) 2 2Aqc2y ~] 

× exp[--(qa --  (qz~))2/(4AqR2)] exp[--(qR' --  (qR))~/(4Aq.~2)] 

× exp[i(p) • (qR --  qk')] (50) 

8z5/8/9/'IO -3 
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The integral  is e lementary and we have 

I (R,  R')  = (27r Aqc2)3/~ 

× exp{--[(q~ - -  (qR}) 2 + (qR' - -  (q~})2][1/(4AqR 2) - -  2Aqc2~'~]} 

× exp[4Aqc272(qR - -  (qR)) " (qR' - -  (qR))] 

× exp[i(pR) " (qR - -  qR')] (51) 

TO determine if the R quasipart icle is in a pure  or mixed quan tum state, we 
consider 

Tr  OR z = (2~v AqAZ) -3 (27r Aq,2) -3 (2~r Aqc2) 3 

× f d~qR f daqR ' I (R,  R ' )  I (R ' ,  R) (52) 

The  integrals are easily evaluated to obtain 

Tr  pR 2 = (AqR 2 Aqc~/Aq.42 AqB2) a 

X [(1 - -  8AqR ~ Aqc2~,~) ~ q- 8AqR z Aqc~,~]-3/2 (53) 

Using the relat ions in (38) and  (39), this can be reduced to 

Tr  pR 2 = (1 - -  B2)a [ (1  - -  ½BZ) ~ + ½BZ]-3/z ( 5 4 )  

where 
B~ ~ [(1 - -  cO AqB 2 - -  o~ AqA2] ~ 

AqA ~ d q ,  2 -t- [(1 - -  a) AqB ~ - -  o~ AqA2] ~ 
(55) 

I t  is a wel l -known theorem tha t  a density opera tor  p~ is pure  if  and only 
if 

Tr  OR ~ = 1 (56) 

Substi tut ing (54) into (56), we find that  B ~ - -  0 is the only real, nonnegat ive  
roo t  o f  the resulting equat ion in B 2. Setting B 2 = 0 in (55) leads again to  
the dispersion matching  condit ion (42), which appears  here as the necessary 
and sufficient condit ion for  PR to be  pure. 

According to a theorem due to yon Neumann ,  (2) if  pR is pure,  then the 
total  state PAB = PCR will be given by Pc @ OR, where Pc is the reduced 
statistical opera tor  for  the C quasiparticle;  i.e., 

PAB --  I A )  ] B ~ ( B  L ( A  I = Pc @ PR = PCR (57) 

Thus,  since PcR = PA~ is pure,  it follows tha t  either bo th  Pa and pc are pure  
or  else bo th  are mixed. The  dispersion matching  condit ion for  the pur i ty  
o f  PR is therefore also the necessary and sufficient condi t ion for  the fac tor-  
ization (44), as expected. 
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I f  ~ --~ 0 (M~/MA ~ 0) and AqB °" -+ O, then B 2 --+ 0, whatever one may 
choose for Aqff .  This corresponds to the fact that scattering by a fixed force 
center cannot cause a pure state to become mixed. However, if  the two 
masses are comparable,  c~ not near zero, there is no way to make B 2 approach 
zero except by satisfying the dispersion matching condition (41). I f  we prepare 
both particles in nearly pure momentum states ApA and Ape both small, 
we may use the relation ApA AqA = ApB AqB ----- ½ to convert (55) into 

B 2 = X2/(1 @ Xe), X = (1 - -  c 0 ApA/ApB -- o~ Ap~/Apa (58) 

and again there is no way to make this vanish except by satisfying the same 
dispersion matching condition (41) in the form 

(1 -- ~)lAp~ = ~IZlp2 (59) 

On the other hand, with heavy targets the situation is better. One might 
prepare the projectile A with sharp momentum (ApA small) and the target 
with sharp location (AqB small). To make estimates we go over f rom natural to 
cgs units so that h appears explicitly (ApA AqA = Ap~ AqB = ½h) and write 
in place of  (55) the equation 

B 2 =  Y2/(4Aq~ ApA2/h~+ g 2) (60) 

where 

Y ~ (1 -- a) 4Aqn2/lpff/h z --  

Consider a neutron, mass ~ 1 0  -2~ g, with a speed ~105 cm/sec; we would 
consider the momentum sharp if ApA ~ 10 -2~ g cm/sec. I f  the target were a 
nucleus of  atomic mass ~100,  so that ~ = 0.01, then purity of  the R particle 
demands 4AqB ~ × 10 -42 ~ 0.01 × 4 × 10 -53, or AqB ~ ~ 10 -~,  which is a 
realistic enough result. Similarly, an electron projectile and proton target 
with ApA ~ 10 -z4 would demand AqB 2 ~ 10 -~a for approximate purity ofpR • 
Evidently it is only for particles of  similar mass that the dispersion matching 
restriction could have any noticeable impact on the conventional scattering 
theory, which routinely assumes that PR is pure. Finally we note that f rom 
Eq. (55) 

B2 = [(1 - -  a) tz - -  ~12 where /z = AqB----~ AP '42  (61) 
/zq-  [(1 - -  ~ ) / z - -  ~]2 Aqa~ = ApB~ 

and alternatively, provided c~ =/: ½, 

B2 [I - -  c~fi(1 - -  a)] ~ 1 Aqc 2 ApR2 (62) 
--  8( 1 _2c0~  where f i - -  2 q ~ =  Zlpc 2 

( N o t e  = - 1 ) / [ I  - (1  - 005  8 ] . )  
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From these expressions it is clear that the dispersion matching values are 

/x~ = c~/(1 -- o 0 and /3~ = l/a(1 --  ~) 

I f  one maintains a given ratio/~ or/3, different from ~ or/3~, then B 2 remains 
nonzero even when ApA 2 --+ O, and Ap~ ~ --+ O. Thus, incident particles in pure 
wave packet states that are almost pure momentum states map into quasi- 
particles that are not pure states, even though their respective dispersions 
Apc2 and ApR ~" approach zero. For example, with a heavy target, ~ -+ 0, we 
have B z --*/~/(1 -5/~) = 1//3 and to achieve purity in pR we must be sure the 
center of mass of the system is much more precisely located than either of 
the two particles, so that Aqc 2 ~ AqR 2, 1//3 --, O. 

This point is a good illustration of the inadequacy of the "ignorance 
interpretation" of the density matrix, which regards the latter as a technique 
for handling the "odds"  on the true pure state when that is not known. 
Here we have two particles A, B prepared in precisely known pure states 
(wave packets) and yet in the CR representation the perfectly well-defined 
quasiparticles turn out to have mixed states when their dispersions are not  
matched. On tile ignorance interpretation of  the density matrix this would 
be understood to assert that a known transformation has produced unknown 
states from known states! In our work we maintain that the true state is 
described at all times by the density martix; there is no ignorance involved 
in the mixed cases. 

5. DYNAMICAL CONSIDERATIONS 

The S-matrix formalism leads to considerable clarification of  these 
questions. It is usually presented (a) as a powerful technique for calculating 
cross sections for particles prepared in pure states, while the density matrix is 
usually introduced for mixed states with the ignorance interpretation. Here 
we outline very briefly how the formalism should be handled from the newer 
point of view, using the statistical operator as the state, whether represented 
by a pure or a mixed density matrix, evolving in time through collision 
processes. 

We have quite generally (Ref. 3, Chapter 3 and §4.6) 

pout = SpinS t (63) 
where 

S =-- [Lira exp(-- iHt)  exp(iH°t)][LiI_n exp(iHt) exp(--iH°t)] (64) 

Here H is the total Hamiltonian, while H ° is the kinetic energy part of the 
Hamiltonian. Going over to the quasiparticle CR representation, we have 

g = 1R ® Hc + HR × l c ,  H ° = 1~ ® Hc ° + HR ° × l c  (65) 
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The two parts of  H and the two parts of  H ° commute, so we have 

S = l c  @SR (66) 

where 

SR : [Lira exp(-- iHRt)  exp(iHR°t)][Li_m exp(iHRt) exp(--iHR°t)] 

We may now write Eq. (63) as 

pout : S~ptnS"R t (67) 

and adapt  the formalism to collision situations by writing 

SR = 1~ + iK (68) 

as the definition of  K, the part  of  S that is effectively the scattering operator. 
Then we have f rom (67) 

pout = pin @ iKpia - -  ipin[(, t -]- KpinK* (69) 

At this point we have a choice, either the A B  or the CR representation for p. 
Since K operates only in ~ e ,  the simplest procedure is usually to write Pen 
for the state p, and to define the state of  the quasipartiele R as 

PR : Trc pc~ (70) 

Then Eq. (69) becomes 

pR,ou t  : PR, in  @ iKpR,in --  ipR,inK* -~- KpR,inK* (71) 

I f  pR,in is a pure momentum state, we may write 

pR,in = I P°>fP ° I (72) 

and the probability of  finding the momentum p in pR,out is 

( P  ] pR,out I P> = ~(P - -  pO) ~(p _ pO) + i<p [ Kip°>  3(p - -  p0) 

- -  i ~(p - -  p° )<p  o ] K* ]p> + ]<p ] K I p°>i ~ (73) 

To "remove the unscattered wave" we assume tha tp  # p0, and so derive the 
standard result 

<p ! pR,out i P> = ]<p i K l p°)l 2 = ~ ( G  - -  E~,o) da/dff2 (74) 

Essentially we may regard this as the formal definition of  the cross section. 
As a second example, let pR,~n be a mixture of  momentum states: 

pR,in : :  ~ wz I Pk><P~ I (75) 
k 
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and again assume that none of the incident unscattered momenta are to be 
observed; then from (71) and (75) we find 

(p  I OR.out I P) = ~ w~ I(P [ K[P~)I 2 (76) 
k 

which permits the standard interpretation of the total cross section as a 
weighted average of the cross sections for the components of the mixture-- 
incidentally, the same result as would be obtained from the ignorance inter- 
pretation of the density matrix. 

As a third example let OR,in be a pure state wave packet as in Eq. (46): 

pR,~n = [ R) (R  f (77) 

and assume the wave packet sharp enough to be able to remove the un- 
scattered wave from observation: 

(p]  R) = 0 (78) 

Then, applying Eqs. (77) and (78) to (71), we have 

(P t 0R.OUt [P) = (P r K f R ) ( R  { K I p) = f dp' (p  i K ( p ' ) ( p '  { R) z (79) 

Here the factor (p '  I R) is the amplitude of the momentum p' component 
in the wave packet I R), the integral is inside the square modulus, and the 
cross section I(P ] K I P'))~ does not occur in the expression for (p  ] p~,ou, ]p). 
Only insofar as (p '  J R) is very sharply peaked about, say, P0 does Eq. (79) 
reduce approximately to the cross-section expression [(P I K[ Po)(Po I R)[ ~. 

Now consider the case where the A and B wave packets were not 
matched, so that pcR does not factorize into separate operators. In this 
case we can use neither the form (75) nor (77), and must use the more general 
expression 

pe,~n = f dp' f dp" [ p') G(p', P")(P"I (80) 

where G(p', p") is a function of the two momenta, which cannot be factorized 
into separate functions--e.g., Eqs. (48) and (51). Again assuming that OR,in is 
a realistic state prepared for a collision, 

pR,~n I p) = 0 (8l) 

Eq. (71) yields 

(P[eR.out lP)  = f dp' f dp" (p  I K I p')  G(p', p") (p" l K [ p) (82) 
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In principle G(p', p") could be diagonalized in some representation other than 
momentum, say 

pR,u~ == ( d n l n )  Gn(n ! (83) 
d 

and 

<P ] pR,out l P') == f dn Gn I<P i K i n)t °" (84) 

But ! n) is not a momentum vector, so {(Pl Ktn)I  S is not a cross section. 
More precisely we should write 

(plpR,outIp) = f dn G,~l f alp' (Pl  K ip ' ) (p ' I n ) I  ~ (85) 

which, like Eq. (79), does not alIow the use of  the cross section. 
A familiar strategy in the case where pn.in is a mixture that is not 

diagonal in the p representation is to remain in the AB representation for p. 
But because K operates partly in the A space and partly in the B space, we 
must go back to Eq. (69), assume that p is a pure state of  the form (46), 

p m =  ]A)  i B)<B ] (A ] 

and assume that the incoming packets are well enough defined to allow 
removal of  the unscattered waves: 

(p~  I A)  ----- (pB J B )  = o (86) 

so that we have from Eq. (69) 

(pA i <p~ T pou~ t p , )  F PA) 

= (PA[ (P~ I K [ B) [ A)(A I (B [K[p , )  !_PA? 

- - [ f  @/ f @; <p~I<p~{Ktp.'>lp/><p2!<p/iS>]A> ~" (87) 

Just like Eq. (79), this does not involve the cross section unless the wave 
packets are exceedingly sharp, and this method does not really solve the 
problem posed by Eqs. (80)-(85). From all these examples it is clear that 
except in very restricted circumstances, the essential parameter is the complex 
scattering amplitude, not the cross section, when collision theory is extended 
beyond pure momentum eigenstates. One cannot use the cross section to 
predict the outcome of  collisions in any other situations than those specially 
prepared for the measurement of  the cross section ! 
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6. DISCUSSION 

One conclusion is clear: there is much more implied by the A B  +-+ CR 
transformation in quantum theory than there was in classical mechanics. 
In the familiar classical theory one regarded the R quasiparticle simply as 
what an observer would see of the A particle if he took up residence on the 
B particle; or, in the jargon that is often used also in quantum theory, R is 
what A "looks like" to B. In quantum theory a change in "point of view" 
or frame of reference is described by an unitary transformation; but such a 
transformation cannot change PA to PR because, as we have seen, while p~ 
may be pure (Tr pA 2 = 1), in general OR will then not be pure (Tr pR 2 < 1). 
But the trace is invariant under any unitary transformation, so in quantum 
mechanics we cannot consistently interpret the R quasiparticle to be the 
A particle as "seen by" the B particle. 

In adapting the CR picture to the quantum mechanical problem we are 
obliged to realize that the R quasiparticle is not an aspect of the A particle, 
but a fictitious composite of both A and B invented solely for computational 
convenience in a specific problem. The use of the CR picture for any other 
purpose can lead to quite erroneous results, and the classical interpretation, 
while temptingly simple, is most deceptive. 

The general results of Section 5 are important for the kinetic theory of 
gases. Classically, it is assumed that the cross-section theory of scattering is 
adequate for the discussion of such phenomena as diffusion and viscosity, etc., 
where the physical picture has always been based on the concept of a mean 
free path between successive pair collisions. But here we have found reason 
to doubt the basic validity of this assumption. Any particle emerging from 
one collision, even if that first collision were prearranged to satisfy the 
validity conditions, cannot possibly be in a state that would validate the 
cross-section theory of any subsequent collision with another particle. To see 
this quite clearly, we may imagine two particles A and B1 prepared in 
dispersion matched pure wave packets and write 

p~n,1 = I A> I BI><BI I <A I = I RI> I Ca><Ci I <RI I (88) 

They undergo a collision and emerge in the state 

pout.1 = [ RLout> ] CI>{C1 I {Rl.out 1 (89) 

The emerging state of A is then 

pA,OUt,1 = Trgl(I Ri,out> ] CI><C1 I <Ri.out 1) (90) 
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whose matrix elements are 

pA,ou,a [ PA'> = <P ~ I f dp~ <PB I Rl,out> ] C1><C1 I <Rl,ou~ I PB> I PJ> <PA I 
(91) 

× (PAl (PB I PR> [Pc)(Pc'[ (PR'[PB) [PA') 

X (PR I Rl,out)(R,,ou, I PR')(Pc I C~)(C~ I Pc') (92) 

Assuming [cf. Eq. (45)] that (pRIR)  and (pc]C1) have the factors 
exp(--pRZ/4,dpR z) and exp(--pc2/4Apc2), and using the transformers of  
Eq. (32), we see that the matrix element of Eq. (92) has the factors 

f dp~ exp{--[(1 -- o O p ~ -  apB]2/(4Ap~Z)} 

× exp[--(pA + pB)2/(4Apc2)] exp{--[(l -- c~)p/--  ~pB]2/(4ApR°-)} 

× exp[--(pA' + p~)2/(4Apc2)] (93) 

Thus the outgoing state of the scattered particle is neither pure nor diagonal. 
This is analogous to the expressions in Eqs. (49) and (80). This state, pA,OUt.1, 
is effectively the " in"  state for any subsequent collision between A and any 
other particle B2: 

pin,2 = PA,OU~,I @ PB,in,2 (94) 

Since we have just seen that PA,out,1 is neither pure nor diagonal, the corre- 
sponding factorization into PR2 × pc2 is impossible, and one has to resort 
to such procedures as used to derive Eqs. (80)-(85), or (87), and cross sections 
cannot be used to deduce the result. 

To recover the standard kinetic theory one would be obliged to discard 
the off-diagonal elements of the matrix pA,OUt after every collision, so that 
particle A appears to have been reprepared in a state appropriate for another 
good cross section encounter with the next target. 

The situation here visualized is a particularly dramatic example of the 
"paradox" surrounding the once fashionable nonsense about the "collapse 
of the wave function." When particle A has been scattered by B~ and then 
observed to collide with B2, which presumably was prepared in a packet 
remote from the unscattered part of  the A state after the first collision, it 
would seem convenient from the standpoint of  ordinary scattering theory 
to obliterate this unscattered part of  the A state and look at the second 
collision with a redesigned incident A packet. We might even imagine a 
Maxwell demon who could follow each molecule of  a gas and reprepare 
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each pair after every collision, replacing its emerging state by pA(t) @ pB(t), 
where 

pA(t) : Tr~ pAB(t) and pB(t) = TrA pAB(t) (95) 

This would permit each particle to be ready for another routine collision. 
Every such repreparation would destroy correlations and increase the entropy, 
and would in effect be the quantum mechanical analog of  Boltzmann's old 
Stosszahlansatz, which postulated the reestablishemnt of  randomness at each 
collision. These comments also recall the once popular assumption of random 
phases, which allowed one to ignore the off-diagonal elements of  the density 
matrix in certain representations despite the fact that their actual values as 
determined by the exact quantum dynamical equations would generally be 
nonzero. In this way p.~, could be forced at all times to have the factored form 
pA @ PB" However, even though this procedure may be an acceptable 
approximation in cross-section calculations, it would clearly be an inappro- 
priate subterfuge in the context of a fundamental theory concerning the 
long-term history of  an assembly of  interacting systems. 

A rigorous quantum theory of the behavior of a gas o f  molecules will 
of  course refuse to accept the services of  any such demon. One might at most 
imagine some practically superhuman preparation at time zero in which 
there would be free particles in mutually dispersion-matched Gaussian 
wave packets headed for close interactions, so that every first pair collision 
would follow conventional scattering theory. Even with such elaborate 
preparation, however, subsequent states will no longer match, wave packets 
will become mixed, and it cannot take many sequential interactions before 
all the wave packets of  all the particles will fill the entire enclosure sur- 
rounding the system in a bewildering pattern. Moreover, if we are to trust 
the general quantum mechanical theorem that every interaction is unitary, 
the global statistical operator is still a pure case with zero entropy. Only the 
intervention of  the demon can alter that! We interpret these considerations 
as supportive of the conclusion that while ingenious applications of standard 
collision theory may seem to explain certain irreversible phenomena and to be 
compatible with the second law of thermodynamics, such theories are really 
in direct conflict with the basic postulates of quantum mechanics. 
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