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In this paper we wish to illuminate the axiom that the quantal state describes a statistical
ensemble of similar systems identically prepared, and is not to be identified with any single
system. The mathematical representative of the general quantum state is the density matrix
or statistical operator in Hilbert space. We demonstrate how this operator may be
determined empirically by calculations involving only the measured mean values of a set of
observables we call a “quorum.” As an example of this approach a state determination
procedure is described for a spinless particle moving in one dimension; the corresponding
quorum turns out to involve only position data associated with various instants subsequent to

the act of preparation.

I. HISTORICAL REMARKS

Until perhaps the middle 1960’s the quantum state was
quite generally identified with a vector in Hilbert space. In
graduate courses one learned that when the precise state
was not known, the density matrix could be used to make
statistical judgments. However, to paraphrase a quote from
ter Haar’s text on statistical mechanics! (1954), one was
always careful to distinguish between the statistical aspects
inherent in quantum mechanics—the uncertainty princi-
ple—and the statistical aspects introduced by ensembles
and the density matrix. This feeling that the uncertainty
principle had a much “deeper meaning” than the deviations
or fluctuations observed in the results of ensemble mea-
surements, was implicit in the Copenhagen Interpretation,
and persisted in the literature for many years in spite of
repeated disclaimers (Margenau et al.).2 Over the past ten
years it has become more widely recognized that the
probabilistic elements of quantum mechanics are essentially
identical with the statistical nature of all physical mea-
surement. No true measurement exists, even in classical
physics, that does not involve an ensemble of repeated ob-
servations of identically prepared individual systems. The
assignment of a Hilbert space vector to describe the state
of a single individual system is an inadequate mathematical
scheme to take care of this broader understanding. Yet
graduate texts on quantum mechanics of the past decade
have persisted in basing the theory on this assignment, and
restricting the discussion of the density matrix to exotic
exceptional cases, or even relegating the topic to an ap-
pendix.

According to the newer philosophy the “state” of a sys-
tem is regarded as referring not to the individual system,
but to the mode of preparation of the system prior to mea-
surement; repeated identical preparations result in an en-
semble which is describable by the density matrix, or more
properly the statistical operator, p in Hilbert space. The
special cases where p is a projection operator in the Hilbert
space ¥ are, of course, equivalent to the old standard state
vectors. We do not now regard p as merely a device for
handling states that are not precisely known: if p is deter-
mined, then the state is known completely.

We have for some years been responsible for an un-
structured weekly graduate seminar with the broad man-
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date to discuss the foundations of quantum mechanics, and
one of us has for the past ten years taught a graduate course
on quantum mechanics based on the unified statistical
philosophy. There has been no text available that covers the
subject ab initio from this point of view, which, perhaps
facetiously, has been dubbed by our students as “The Pal-
ouse Interpretation.”3 In standard courses, problems are
usually posed in the form: given a system in such-and-such
a state, what are the observable values and how will they
evolve in time? From the new point of view a basic question
comes naturally to mind; how does one determine the state
of a system that has been prepared in some specified man-
ner? In standard treatments this question is seldom asked
and rarely answered satisfactorily. Until this question can
be asked and properly answered, quantum mechanics can
hardly claim to be a completely logical theory.

Hlustrations of unknown states are usually presented in
terms of spin, a system without classical analog. In this
paper we address a purely classical problem—a single
particle without spin in a one-dimensional domain. We do
this repeatedly with the same gun and equivalent domain,
thus preparing an ensemble upon which we can make
measurements. How do we determine the quantum statis-
tical operator that describes this preparation?

The answer to this question demands that we identify a
set of observables we call the quorum, the measurement of
which permits the precise determination of p. Aside from
this identification—which has ot been made before for the
one-particle problem—a significant conclusion of this work
is the following: while it is easy enough to say, for example,
“let a particle be in a pure momentum state,” it is by no
means a trivial matter to make sure that in practice any
given preparation scheme actually results in some desired
state. Even if the system has in fact been prepared in a pure
momentum state, that fact is not really known unless in
principle the entire quorum of observables has been mea-
sured, and that turns out to be a denumerably infinite
set!

II. QUORUM CONCEPT

According to the most general form of quantum me-
chanics, every reproducible state preparation scheme II is
characterized by a statistical operator p in the sense that
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(4) = Tr(pA), (1

where A is the Hermitian operator corresponding to some
observable and (4) denotes the arithmetic mean of data
obtained for that observable from measurements upon an
ensemble of systems each prepared in the prescribed man-
ner IL. Contemplation of this axiom leads immediately to
the following basic problem: given a reproducible opera-
tional procedure II and the empirical means to gather
enough data for computation of the mean of any observable,
find a set of observables {4} whose associated mean values
{{A4)} constitute sufficient information to determine the
unknown p. In earlier work we have termed such a set {4}
a quorum of observables. In this paper we are particularly
concerned with the mathematical identification and phys-
ical interpretation of a quorum suitable for a spinless
quantal particle in one dimension with Hamiltonian of the
form

H=(1/2)P2 + V(Q), (2)

where

(@.P] =i (3

In previous articles?-¢ we have developed systematic pro-
cedures for the construction of quorums for physical systems
with N-dimensional Hilbert spaces and, under certain re-
strictions, for systems with infinite-dimensional Hilbert
spaces. Other authors who have considered the problem of
quantum state determination include Feenberg,” Kemble,3
and Gale, Guth, and Trammell.®

IIIl. MATHEMATICAL FORMULATION OF
THE QUORUM PROBLEM FOR THE
PARTICLE IN ONE DIMENSION

For an N-dimensional space, a quorum can be found
mathematically by choosing /V2-1 observables {4} such that
the V2-1 corresponding relations (1) turn out to be a system
of linear algebraic equations possessing a unique solution
set for the N2-1 real unknowns required to define the Her-
mitian, unit trace N X N density matrix representing sta-
tistical operator p.

In the problem posed above, however, the Hilbert space
is infinite dimensional; and an alternative approach proves
superior. We base the development on an old form sug-
gested by Weyl!0 for operators associated with spinless
quantum particles:

p= f dy f A w(y,\)el(y@HrP) (4)

This operator version of Fourier transform theory has been
studied rigorously by Pool!!; there are no physically sig-
nificant restrictions on its application in the present context.
Equation (4) may be inverted by elementary manipulations
to obtain

w(v,A) = (1/27) Tr{pe=i(v@+ AP}, (5)

Using a well-known (Baker-Hausdorff) identity and the
commutation relations (3), we have

e!(YQ+AP) = pivQpilPyiry/2 .
6

e~ iWP+vQ) = e—iAPe—ine—i)\‘y/Z. ( )
Thus (4) and (5) may be combined to yield
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p=— fdA fdy Trip e~ *\Pe—ivQleivQeirP  (7)
Next we derive from (7) a typical matrix element of p in

the g representation; observing that e/*? is a space dis-
placement operator, we find immediately that

(g—Mplg) = %f dy Tripe=i\Pe=ixQ} pivia—)\)  (8)
T
The kernel of this integral may be expanded as

(B o 22,

nm.n

and we shall write
P Q™m! = (1/2)(Bpn + iAmn), (10)

where A,,, and B,,,, are the Hermitian operators

Amn = H(QMP" — PrQ™)/m! = (i/m!)[Q™, P (a0
Bpn = (QMP" + P"Q™)/m! = (1/m! [Q™ P"] 4.

Then Tr {pP"Q™/m!} is to be interpreted as the ensemble
mean of the (complex valued) operator written down in
(10). If the ensemble mean values {(A,,,) and {B,,,) can
be experimentally measured, then the state p of the system
can be determincd from (8)‘ to be explicit

____ t)x)"
(g=X|plg) 53 mZ ]

X ({Bom) + i{ Ay} f dy (=iy)ymea=N, (12)

IV. THEOREM CONCERNING
COMMUTATORS AND ANTICOMMUTATORS

It may appear from the above remarks that the set of
operators defined in (11) could be regarded as a quorum of
observables for the determination of the state p. Mathe-
matically speaking, this is correct. However, the search for
a physically meaningful quorum is a bit more involved; for
there is no known physical apparatus that measures the
rather esoteric operators in question. Moreover, even the
mathematical prescription is unduly cumbersome, since the.
commutators are in fact expressible in terms of the anti-
commutators. To see this, let us write

Om = Q™/m!. (13)
Then it is not difficult to prove by induction that

(i)nk <Z> PrQp—nt

n
—iAmn = 2>
m=nk=n—m

mz2nk=0

n—1

—i)n—k <Z) Om—n+iP* (14)

k=n—m
k=0

=3 o (}) PHOu-nis

) n
= ik () QneneePH]. (15)
The lower limit of the sum is # — m unless n < m in which
case the lower limit is zero. When 7 is even we have,
therefore,
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. 1 n=1
—idp == 3. ()" k<n>Bm nk.k
2 k'odd k
1
21 5 0k (D) Amemis (16)
even

and when »n is odd

it = kezvcn()n— () Brr-nics
421 5 0 (F) Amopri (1)

To each of the commutators A4,,,, on the right side of ei-
ther (16) or (17) we can apply the same equation and pro-
ceed successively to reduce the power index of P in the
commutators by two at each step. If » is even the index
drops eventually to zero, so no commutators remain on the
right side; while if » is odd the lowest index is unity: but we
know that

A1 = i[QmPl = =01, (18)

so again there are no commutators remaining on the right.
We have, therefore, proved the theorem that any commu-
tator of the form [Q,,,P"] can be expressed entirely in terms
of anticommutators, together with perhaps Q, or the
identity operator. This theorem means that in seeking a
physical quorum we need only to find a set of empirical
quantities from which one may compute the mean values
of the anticommutator B,,,.

V. PHYSICAL QUORUM FOR A PARTICLE
IN ONE DIMENSION

We adopt now the hypothesis that there do exist empir-
Jcal procedures for directly measuring position and all of
its nth time derivatives and seek to prove now that such a
set constitutes a physical quorum for the particle in one
dimension. Let

0= (2) "0, (19

where s and n are any integers, positive or zero.
Using (2) we obtain first the well-known relation

d .
X - igm=r, (20
which with (19) makes the identification
P=0q: (21)
We can then prove easily that
d ,
Os1 = Z;Qs+1 = QP — (1/2)iQs-1. (22)

For the special case of a free particle [V(Q) = 0], by in-
duction it now follows generally that:

0un="3" =% (3) () @riprr. 23)

k=0
Alternatively we can also show that

Os.1 _—Qs+1 PQ; + (1/2)iQs— (24)

and again in the free-particle case by induction

0= "%" =iy (-3)"(})Pr0rs 29)

k=0
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(The upper limit on k is in each case the lesser of s or n.)
Combining (23) and (25) we have

0= "3" (3)" 1% (7) Byt

k even 2
in(s,n) k+1
o

We select any value of s and write down from (26) the ex-
pressions for the first few values of 7 in increasing order:

Q50 = (1/2)Bso = Q°/s!, (272)
Q51 = (1/2)Bs, (27b)
Q2= ("h)Bsy — (g)Bs—20 ~ (\h)As—11,  (27¢)
0s3 = ('h)Bss — Ch)Bs—21 ~ () As—12. (27d)

The left sides of these equations are all directly measurable.
We learn at once that the anticommutators By and By, are
therefore measurable. But in (27¢) 4,—1,, = i[Q,-1,P]
= —Q,—, which is measurable, so that (27¢) indirectly
permits B;, to be calculated. Also in (27d), A;—y, =
i[Qs—1, P?] = 2(d/dt)Q;—1 = —2Q;~;, and is therefore
measurable. Therefore from (27d) B,; can be calculated
from measurements. Quite generally we can compare Qs ,+2
with g ,, and note that the only terms contained in Q; ,+»
that are not contained in Q; , are B; 4+, and 4,—| ,+. But
(16) and (17) show that 4;_ ,4+, can be expressed entirely
in terms of the B,,,, already taken care of in Q; ,. Thus each
successive Os ,+2 can be used to calculate Bj ,,+, from di-
rectly measurable observables by going through the se-
quence started in (27). We therefore regard this set {Q; ,}
as a physical quorum for the free particle in one dimen-
sion.

It is not difficult to prove that this same physical quorum
Qs.n is also sufficient when the Hamiltonian has the more
general form (2) in which V(Q) # 0. Because in this case
P does not commute with H, the expressions replacing (26)
contain terms involving the space derivatives of V. Provided
only that V(Q) is an analytic function, the proof is not es-
sentially different from the free-particle case. In general
it can be asserted again that any product of the noncom-
muting operators can be expressed as a sum of commutator
and anticommutator; the commutators can all be reduced
to lower-order anticommutators and commutators, and
eventually to a sum of anticommutators alone, of succes-
sively lower order in P. Every Q; , can, therefore, be ex-
pressed as a linear combination of anticommutators whose
highest order in P is n, and hence by measuring all the
means {{Q; )} one can determine the means of the anti-
commutators. The theorem of Sec. 111 is independent of the
Hamiltonian, so that again, through (12), the density ma-
trix can be determined.

Incidentally it is now easy to prove also that the statistical
state of a spinless particle in three-dimensional space can
in principle be determined by measuring the foliowing
quorum of observables:

N _ (d/dt)”“QaS“+”“
{QSa‘ﬂu} - (sa + na)!

where the @, are components of the position operator Q.

], =123  (28)

VL. EMPIRICAL DETERMINATION OF p

The notion of direct measurement of the quorum of ob-
servables {0 ,} may be understood in the following way. The
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particle is prepared in some prescribed fashion IT described
theoretically by the unknown statistical operator p. At some
specified time ¢ following the completion of Il a measuring
device M is caused to interact with the system, 4 being
designed to record the position g(z) of the particle at time
t.

Because the interaction with Ji is expected to disturb the
particle either the latter must be reprepared in the manner
II or a duplicate system must be subjected to II before the
M interaction is used again to record the position, again at
time ¢ following the completion of II. From the ensemble
of results {g()} obtained by many such repeated measure-
ment interactions it is then possible to calculate the value
of (@) at time ¢. In order to measure the quorum set {Q; ,}
an ensemble of measurement results ¢(¢) must be recorded
for each of a series of ¢ values, say 0,7, 27, 37,...,n7,....
Then, for example, a reading of Q; , is given by the com-
putation of

(4N ]
Q0= <Z) Qs = ,1_1.1(1)7_2 {gs+2(27)

= 2g5+2(7) + q54+2(0)},  (29)
where

gs+2(1) = q(1)**2/(s+2)! (30)

and the q(¢) values are samples taken from the recorded
ensemble. The ensemble average (Q; ») which is one of the
quorum means required for the determination of p is then
simply

0.2=( (%) 0z ) = lim % (g42(20))

= 2(gs+2(7)) + {gs+2(0))}. (31)
In general we have

(Qond = {((5)"Coen )

=lim () 3 (1) (<D¥gualtn=k)e]). (32)

—0 \7"/ =0 \k
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In Sec. IV we proved that from Q; , we can compute the
anticommutators By,, and in Sec. III that the commutators
Ay can be expressed in terms of the B,,,. Hence from
{{Qs.»)} we have the information required to derive, using
(12), the g-representation density matrix for p. We conclude
therefore that the statistical operator p characterizing a
reproducible preparation IT may in principle be determined
empirically by analyzing position data associated with
various instants subsequent to the act of preparation. The
relationship between this procedure and the somewhat
analogous method of determining classical densities in
phase by measuring ensemble averages of moments {g™pn}
will be explored in another paper.
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