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Superselection Rules in Quantum Theory: Part I. 
A New Proposal for State Restriction Violation 
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It  is argued that preparation o f  a quantum state characterized by" density 
operator p not commuting with a superselection operator Q does not by i tself  
constitute an instance o f  superselection rule violation. It would, however, 
be an instance o f  state restriction violation. I t  is held that superselection rule 
violation is only possible with simultaneous observable and state restriction 
violations. It  is shown that it is a priori conceivable to subdivide an ensemble 
whose p satisfies [p, Q ]  = 0 into subensembles whose density operators violate 
the state restrictions. The dynamics o f  the subdivision process is not considered. 

1. INTRODUCTION 

Superselection rules were first introduced to quantum theory in a brief paper 
published in 1952 by Wick, Wightman, and Wigner (WWW). m We may 
paraphrase their fundamental postulate as follows: 

Postulate P (Superselecfion Rule Postulate). The Hilbert space H is 
decomposable into a direct sum of orthogonal subspaces H~ such that the 
relative phases of the components in different subspaces H~ of any state 
vector are intrinsically irrelevant. 

If P is satisfied there exists a superseleetion operator Q whose eigenspaces 
are the subspaces Hq (the generic term "charge" is not necessarily the electric 
charge). We denote the spectral family of Q by P~, i.e., Pq is the projection 
for the Hq eigenspace associated with Q eigenvalue q. Since ttq is in general 
multidimensional, we write 

Po = ~ Podo (1) 
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where PqG is a one-dimensional projection operator; d~ is a degeneracy index 
for the Q eigenvalue q. 

To derive a mathematical condition equivalent to P, let ¢ and ¢'  be 
arbitrary state vectors defined as 

and 

q qdtq qdq 
(2) 

4/ = ~ eqx~¢~a~ ] qd~) (3) 
qdq 

where the ~ are real constants, l qdq) are the Q eigenvectors, and the 
components ~bqao are arbitrary. P asserts that all the c~q are "intrinsically irrele- 
vant." In common parlance this is taken to mean that ¢ and ~' are equivalent 
in the sense that the measurement statistics of  two homogeneous ensembles, 
one characterized by ¢ and the other by ¢',  are identical. Mathematically, 
this is expressed as 

Tr(P,,A) -- Tr(P,A) := 0 (4) 

where A is any observable. Therefore 

{exp[i(~q c~¢)] 1} * - - Gdfl,~'~;,Acd;,:,,,~o = 0 
qdqq'd~, 

where 

(5) 

(6) 

Equation (5) is the mathematical counterpart to P, valid for any state vector 
~b and any observable A. 

It is not difficult to write down two separate sufficient conditions for (5): 

Proposition S (State Restrictions). For any state vector ~b, 

:¢ * 
(7) 

Proposition 0 (Observable Restrictions). For any observable A, 

A~'~;,;qd~ = ~ 'A~:~d~ (8) 

The state restrictions S amount to a limitation on the general validity 
of  the superposition principle: any state vector must be a charge eigenvector 
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if  S is satisfied. The observable restrictions O imply that :not all Hermitian 
operators correspond to observables; note that 

[A, Q]¢4,;,~,~ = (q - q')  A¢4,;qa~ (9) 

so that A commutes with Q if O is satisfied. 
Both S and O are usually taken as necessarily true if P is true. Inspection 

of (5) shows that this position is stronger than required; apparently 
particular ¢ and A could conspire to satisfy (5) even though neither S nor 
O was satisfied. It is therefore somewhat surprising that the hallmark of super- 
selection rules is usually taken to be the validity of S and O. This view is 
attributable to an uncritical adoption of the projection postulate, according 
to which the measm-ement of an observable A is accompanied by reduction 
of the quantum state to an eigenstate of A belonging to the measured eigen- 
value. Such an axiom confounds the distinction between state preparation 
and measurement and, among other dubious consequences, does indeed 
imply an equivalence between S and O. However, since we do not accept 
the projection postulate, I~) the present investigation does not presuppose 
that S and O are equivalent. 

Just what then is the logical status of  S and O in relation to P?  We 
answer this question by studying the logical relationships between S and O. 
Let ~--O denote the negation of  O; we begin by assuming ~-~O. Thus (5) should 
hold for A ~ Pe and hence 

(lO) 

P ~ s  v o (12) 

where v denotes logical disjunction ("or").  Of course, we know that either 
S or O alone implies P. Therefore 

P ¢>S v O (13) 

However, we must take issue with the usual assertion, 

P ~>S  ^ 0 (14) 

When this is substituted in (5) we find 

y ,  [ c o s ( ~  - ~ , )  - 111 ¢~qCq,d;,  i' - 0 (1T) 
qdqq'a;, 

Since the phases are irrelevant, this result should be invariant with respect to 
changes in the % ,  for any ¢. Therefore, the components ¢~d~ satisfy S, 
and we have shown that if P is true, then ~-~O => S. Therefore 
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where ^ denotes logical conjunction ("and"). The above analysis indicates 
that S ^ O is too strong; there might, for instance, exist situations of the 
type P ^ ~-~O. 

The logical status of S and O has considerable influence on how one 
might propose to violate a superselection rule. Obviously, if (14) is true 
then one need only prepare an illegal state, i.e., one violating S. All of the 
previously proposed schemes for violation of superselection rules fall into 
this category. There are no published attempts to violate superselection rules 
by violating S and O simultaneously, the only consistent way to do this. 
Part I of this work establishes the mathematical possibility of state restriction 
(S) violation by considering alternative decompositions of  density operators. 
Part H then goes on to consider the ensemble subdivision problem in a 
superselection rule context and the possibility of  superselection rule violation 
by simultaneous S and O violation employing a correlation scheme. 

2. EXTANT THEORIES OF SUPERSELECTION RULES 

This section reviews the two most common formulations of super- 
selection rules, noting the logical status of the state and observable restrictions 
in each. These are due to WWW and Bogolubov, Logunov, and Todorov 
(BLT)J 4~ 

The original 1952 superselection rule paper by WWW asserted the 
nonmeasurability of an observable whose operator correspondent does not 
commute with the superselection operator, m They therefore argued that not 
all Hermitian operators correspond to observables: their 1952 paper insists 
on Proposition O (cf. Section 1). We do not understand this position of  
WWW: we would agree that measurement of an observable not commuting 
with Q is in all likelihood equivalent to measurement of an observable 
commuting with charge, but that is not to say that O necessarily holds. We 
prefer to interpret the WWW formalism in our more liberal sense, as outlined 
in Section 1, which does not necessarily require O. 

In 1970 WWW published another paper on superselection rules. I~) 
This paper included a generalization of the state restriction Proposition S 
(cf. Section 1) to the general case of a mixed quantum state. We will outline 
their reasoning to the generalization S' of S. 

Proposition S' (State Restrictions). For any quantum state p, 

Pq'~;.;~aq = 6WPqa;:q~ (15) 

The validity of S ' o f  course entails that p commutes with Q. A density operator 
meeting this condition is said to be compatible with the superselection rule, 
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permissible, or, as we sometimes like to say, legal. The corresponding 
ensemble will also be designated as compatible, permissible, or legal. 

We begin by stating that the state vector 

¢ .... Z ~bq,z~ L qdq} (16) 
qa~ 

is legal if the components ~bq~ satisfy 

¢ ~  = ~0¢~0 (17) 

with q0 fixed. Such a ¢ satisfies S and has nonvanishing components in only 
one Q eigenspace Hq. If  an ensemble is characterized by a state vector ¢, 
the corresponding density operator is (¢ normalized) 

p = P~ (18) 

If ~b is legal, then WWW assume that this p is also. Then WWW arrive at 
the general form of a permissible density operator with the following premiss: 

Premiss W. The most general permissible ensemble is a mixture of 
subensembles each of which is characterized by a legal state vector. 

In other words, the most general permissible ensemble is a mixture of 
permissible homogeneous subensembles. 

Before continuing with the derivation of the permissible form we would 
like to mention that W is more an operational definition than a mathematical 
fact. This is easily shown by considering the spectral expansion of any 
density operator, 

P - X w~P(wk) (19) 
k 

Here the wk are p eigenvalues and the P(wl~) are the projections onto the 
w~ eigenspaces. Since these eigenspaces are multidimensional if p has a 
degenerate spectrum, the P(wk) are not necessarily one-dimensional projec- 
tions. If  Q commutes with p, it commutes with any function of p, hence 
with any P(w~). Each P(wk) can be decomposed as 

P(w13 = X L~,~ (20) 
dk 

where "~a~ is an eigenvector of p belonging to p eigenvalue wj,: the "~a~ can 
be illegal with P(wT~) still commuting with Q! Thus it is mathematically 
conceivable for a permissible ensemble to be a mixture of not necessarily 
permissible homogeneous subensembles. That is why we regard W as an 
operational definition. 
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Let us continue with the derivation of the genral permissibility criterion. 
According to W, p is permissible if 

where 

and 

P = Z w~P~ (21) 
q 

(22) 

wq = 1 (23) 
q 

A simple calculation gives the result 

p do:o,+ l (24) 
gq 

which is the block-diagonal Q-representation form given in (I 5), From 

[p, Q]¢e;,;qe, -- (q - q') p¢4,:qe~ (25) 

it is easy to see that commutativity ofp  with Q is both necessary and sufficient 
for the permissibility of p. 

The genralized state restriction S' is a sufficient condition for the 
Superselection Rule Postulate P given in Section 1. To see this one considers 
the problem of measuring the relative phases of ~b, ¢' as given in (2) and (3) 
under the stipulation that any quantum state p obey S'. Measurability of 
the relative phases entails 

Tr[p(P~, --P~,,)] v ~ 0 (26) 

for any quantum state p. A straightforward calculation shows that this 
requires 

{exp[i(% % , ) ] -  l} * - -  ~bqaq~bca',pq,4,;~,a ~ ~ 0 (27) 
qdqq'd~, 

which cannot be met if (15) is satisfied. Therefore the WWW generalized 
permissibility criterion as expressed by Proposition S' is sufficient for the 
Superselection Rule Postulate P. 

In summary, the state and observable restrictions in the WWW formula- 
tion are conveniently expressed by commutativity of the corresponding 
operators with a superselection operator. Obviously it is consistent with 
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WWW to demand only that those are sufficient conditions for the super- 
selection rule to be in effect, i.e., 

P :~ S v O (28) 

BLT presented a concise a~omatic  treatment of  the foundations of 
superselection rules in their 1969 book on axiomatic quantum field theory, 
which first appeared in English translation in 1975. ~) We will only outline 
this formulation, with the aim of  understanding the logical status of  the 
restrictions on the observables and quantum states within its context. 

The central theoretical notion of  the BLT formulation is the concept 
of  coherence, a topological property attributed to some subsets of H. A 
coherent subset of  H is any subset of  H which cannot be partitioned into 
mutually orthogonal nonempty subsets. More specifically, M~ C H  is 
coherent if it is impossible to find orthogonal nonempty subsets R~ _C H 
and So: _C H such that M~ -- R~ u S~. This concept is used in two lemmas, 
stated here without proof. 

Lemma (BLT). A necessary and sufficient condition for a subset M _C H 
to be coherent is that any bounded operator on its closed linear span L(M) 
that commutes with all projections H~ on M is a constant multiple of the 
identity on L(M). 

Lemma (BLT). Let M be a nonempty set of nonzero vectors in the 
Hilbert space H. Then L(M) can be decomposed into a direct sum of 
orthogonal subspaces, L(M) = @~L~, in such a way that each set M~ = 
M n L~ is coherent and M = 0~M~ • 

The first lemma gives a mathematical characterization of coherence. 
The projections /-/~ are proportional to the operator [~b)@[ ,  where 
I ~b) E M. The second lemma shows that the closed linear span of any subset 
of H can be partitioned into coherent subspaces. 

The BLT formalism was apparently designed with the idea in mind that 
not all elements of the Hilbert space H could represent pure quantum states; 
those that can are calledp.hysicat vectors and correspond to those vectors in 
H that are legal, i.e., the possible state vectors. A fundamental postulate 
of their formulation is that the set M above is the set of  physical vectors, 
i.e., it exhausts all possible state vectors, and the closure of  M is H. 

By definition, a BLT observable is any operator A satisfying the following 
conditions: (a) A is self-adjoint; (b) the domain DA of A is dense in H; 
(c) DA c~ M is dense in M; (d) each M~ reduces A. 

It follows then that the coherent subspaces M~ are the eigenspaces of 
any BLT superselection operator Q. Moreover, any BLT observable must 

8~5]91718-5 
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commute with Q. The general matrix form of any observable is epitomized 
as a block-diagonal matrix in a representation whose basis vectors are the 
eigenvectors belonging to the distinct eigenvalues of Q. The eigenvectors 
of Q are physical vectors and conversely. The scheme for the preparation 
of any homogeneous ensemble is always characterized by a legal vector: 
state restrictions on pure states are unavoidable in the BLT formalism. 
If it is granted that the most general ensemble is a statistical mixture of 
homogeneous subensembles, the same state restrictions apply to the general 
BLT quantum state. 

Therefore the WWW and BLT formulations of superselection rules 
differ in the logical status of the state and observable restrictions. The WWW 
version starts from a postulate concerning measurability of relative phases, 
with the result that both restrictions are individually sufficient but not 
necessary for the superselection rule. On the other hand, BLT start by 
assuming that the set of physical vectors M is a proper subset of the entire 
Hilbert space H, with the result that all observables and all states necessarily 
obey the restrictions. 

3. PREVIOUS PROPOSALS FOR SUPERSELECTION RULE 
VIOLATION 

Previous proposals for superselection rule violation (~-8~ consist of 
arguments for the preparation of illegal quantum states. Apparently the 
authors of these proposals consider the state restrictions a necessary con- 
dition for the superselection rule. As we mentioned earlier, this logical status 
seems too strong to us, and thus we would not take these proposals as serious 
challenges unless accompanied by a simultaneous prescription for violation 
of the observable restrictions. However, even if the state restrictions are 
logically necessary, these proposals do not legitimately challenge the super- 
selection rule, since they beg the question. This has been elegantly demon- 
strated by WWW. TM All previous schemes for state restriction violation 
appear to require illegal quantum states initially. 

This flaw in the previous proposals wilt be illustrated with Mirman's 
arguments/6,7~ supposedly supportive of the proposal by Aharonov and 
Susskind ~5~ for producing coherent superpositions of charge eigenstates. 
Mirman's argument can be set in the context of a Stern-Gerlach experiment 
involving two magnets and a beam of spin-l/2 particles. The coherence 
properties of the particle states are under investigation. 

Denote the particle Hilbert space basis (eigenstates of an observable 
such as ~r,) by ] u)~ and I d)~; similarly, each magnet Hilbert space has only 
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two possibilities, e.g., l u)~ and ] d)~ for the first magnet. Initially the global 
state is taken as (we suppress the state of the second magnet in what follows) 

¢(0) = i u G G  l u), + t~ d)l) (29) 

Upon interaction with the first magnet, the global state evolves to the form 
g 

¢(t) -- l'*(m,~ i u>,, i u)1 @ m~ l d)~ I d)~) 

-k ta(n~ [ u)~ l d)l  q- na I d)~ i u)l) 

= u)~(l~m~ l u)~ + lan'* ]d)l)  

q- d)dld*a ] u)l q-/ , ,me I d)l)  

Suppose now that 

and 

(30) 

t~rn~ = Dlend (31) 

Then (30) is factorizable, 

lan~. = Dt'*me (32) 

¢(t) = E(D u)~ @ ] d)f)(lana [ u)l @ l~,ma i d)l)  

where E is a normalization factor given by 

E = (I D i 2 + 1)-1/~(! Iana I z + !l'*ma [~)-1/~ 

The reduced density operator p~(t) for the particle is given by 

(33) 

p~(t) = Try(P,(,)) 

--: E 2 Trl(P(Dr~O~+Ia>p @ P(~e,~e!~>~-~ia>~)) 

== ([ D ]~ ~- 1) -1P<Dr~>~+Fa>p) 

(34) 

This pure state is a coherent superposition of ] u)~ and I d)~ .  The assumption 
of factorizability of the final global state, expressed in (31) and (32), is an 
essential ingredient in Mirman's argument. Note now that if either l~ = 0 
or l,~ = 0 in (29), then (31)-(33) show that ¢(t) = 0. Thus the initial magnet 
state must be a coherent superposition (l~ @- 0 and la ~- 0 both true) in 
order for Mirman's scheme to yield any nonzero final global state, in 
particular one leading to a coherent superposition like (35) for the particle 
state. Thus, if the initial particle state obeys the state restrictions, sub- 
sequent violation of state restrictions for the particle states necessarily 

(35) 
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entails a similar violation for the initial magnet state; Mirman seems to 
have been aware of this requirement. If  the state restrictions are logically 
necessary for the superselection rule, Mirman's proposal begs the question. 
If they are not logically necessary, it does not challenge the superselection 
rule, since there was no concurrent violation of the observable restrictions; 
even if there had been, his proposal would still beg the question. 

The existing proposals for superselection rule violation are schemes for 
the production of illegal quantum states. None of these schemes pays any 
attention to the fact that if the list of observables is restricted to those 
commuting with Q then it would be impossible to detect the illegal state, 
i.e., the observable restrictions alone are in fact sufficient for the super- 
selection rule. Thus none of these proposals seriously challenges the super- 
selection rules. Of course this criticism is couched in a context wherein state 
restrictions and observable restrictions are each sufficient but not necessary 
for the superselection rule. However, even if the viewpoint regarding these 
as necessary conditions is endorsed, there is no challenge, since the question 
is begged. The conclusion appears to be that regardless of the logical status 
of the state and observable restrictions, no consistent proposal for super- 
selection rule violation has been made to date. 

4. ALTERNATIVE D E C O M P O S I T I O N S  OF PERMISSIBLE 
DENSITY OPERATORS 

Consider a mixed ensemble of quantum systems; the density operator 
p might be given in the form 

p = ~ wl~p~ (36) 
k 

where the real numbers wl~ >~ 0 can be interpreted as relative weights on the 
ensemble; this interpretation goes all the way back to von Neumann. (9) 
Clearly, if each pk commutes with Q, then so does p: thus a permissible 
ensemble can be formed by mixing permissible subensembles. What if some 
of the p~ in (36) do not commute with Q; is this possible with p commuting 
with Q ? This mathematical problem will now be investigated. 

In discussing the alternative mathematical decompositions of a given 
density operator p in the context of superselection rules it is helpful to note 
that there are altogether eight cases of interest depending on whether or not 
p is permissible, if the contemplated decomposition is a spectral expansion, 
or whether the projections making up the decomposition are permissible 
or not. The discussion will be broken into two areas: spectral and nonspectral 
decompositions. 
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AII density operators are Hermitian; moreover, all density operators 
have a discrete spectrum. The latter assertion follows since any density 
operator is totally continuous (trace class), a°) The spectral theorem for 
compact Hermitian operators (n) applied to any density operator p with 
nondegenerate spectrum then asserts the unique existence of a family of 
operators P~ such that 

p ~- ~ a~.P~: (37) 
l c  

The P~, are orthogonM projection operators onto the eigenspaces of p; each 
a~,: is a distinct p eigenvalue. Any decomposition of the form (37) will be 
called ~pectraL The spectral theorem then asserts that (37) is the only 
decomposition of p into orthogonal projections with p eigenvalue coemcients. 

in the sequel we shalt let the cha~e  operator Q be the only superselectior~ 
operator under consideration. The spectrum of the charge operator is 
evidently infinitely degenerate; thus, in a representation in which Q is 
diagonal, the matrix representatives of particular operators will be infinite- 
dimensional. When these matrices are explicitly written out, a convention 
of displaying only the largest submatrix with nonzero entry rows and columns 
will be employed. With this convention, the matrices will appear to be 
finite-dimensional, whereas in actual fact they are not. 

The first type of spectral decomposition to be considered is that of a 
nonpermissible density operator. This can be a linear combination of either 
permissible or nonpermissible projections. Since a linear combination of 
block-diagonal matrices is again block-diagonal, not every projection can be 
permissible if p is nonpermissible. For example, consider the following 
density operator: 

where 

¢1 -= (1/V2)( r q1~ ) + t q,1)) 
02 = (I/~/]2)( [ ql 2 )  -t- ! q22)) 

43 == r q~l )  

(39) 

Here, q i ,  q2, and q3 are distinct eigenvalues of Q. Using the orthonormality 
, t t of the I qdq), i.e., (qd~ ~ q d;,) = 8q~,8%a;, it is easy to check that this is 

a spectral expansion of p. The p given here is degenerate: ¢1 and ¢2 both 
belong to p eigenvalue I/4; ¢~ belongs to p eigenvalue I/2. This degeneracy 
is of no consequence for what we wish to establish. Note that p is indeed 
a possible valid density operator since it has a positive spectrum (hence p is 
positive), it is Hermitian, and it has unit trace. Two of the projections in (38) 
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are nonpermissible, however, since each of the vectors ~ t ,  q~ in (39) violates 
the state restrictions. Thus we have an example of a spectral expansion of a 
nonpermissible P involving a combination of permissible and nonpermissible 
projections. 

Since the labeling of matrices in problems of this sort can lead to some 
confusion, we shall digress for a moment to display the operator in (38) in 
matrix form in Q representation, employing our convention. The column 
labels have been indicated in a horizontal row above the matrix; similarly, 
the labels of those rows containing at least one nonzero element have been 
written out down the left margin of the matrix. Ellipsis marks have been 
inserted to indicate the position of the columns (rows) with all entries equal 
to zero: 

qll qx2 "'" q21 q~2 "'" qal 

1 0 0 qll ½ 0 g 

q}2 0 J~s 0 sl~ 0 

0 0 q21 ~ 0 

1 0 1 0 q22 0 ~ 

q~l 0 0 0 0 ½ 
J 

----- p (40 

The second type of spectral decomposition is that of a permissible 
density operator. As in the nonpermissible case, the logical possibilities 
include linear combinations of either permissible or nonpermissible projec- 
tions. An example of a spectral decomposition of a permissible p involving 
no nonpermissible projections is easy to find. Consider the operator 

V 2 +  1 ~ /2- -  1 p~ ~_~p% (41) 
P = 4 ~/2 P¢l + 4 V 2  

where 
¢~ = ½(2 + V2) :t/~ 1 q~l} + ½-(2 -- ~/~-)~/~ I q~2} 

q~2 : 1( 2 -- V'~) 1/2 ]q l l )  -- -~-(2 + X/2)1/2 I q12) (42) 

~a : [q21) 

It is easy to verify that the p given by (41) is a positive Hermitian operator 
of unit trace and that (41) and (42) indeed constitute a spectral expansion. 
Each projection in (41) is permissible since from (42), ~b t ~ Hql, q~2 ~ Hq 1 , 
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= H  and ¢3 ~ ~ ,  where Hq denotes the q eigenspace of Q. Note that this p is 
nondegenerate; thus (41) is the only spectral expansion for this p. 

It is natural to wonder, under the assumption that p has a nondegenerate 
spectrum, if the spectral expansion of a permissible density operator is 
always in terms of permissible projections. This is easily shown to be the 
case: the demonstration begins with the observation that the permissibility 
of p entails that p and Q share a complete set of eigenvectors, {1 rqd~.~)}, 
so that 

p = ~, w,. ! rqd~)(rqdr~1 (43) 
rqdq~q 

and 

Q -" ~ q lrqd~a}(rqd,,~ I (44) 
rqdr~ 

Each of these is a spectral expansion. Equation (43) can be written in a more 
familiar form as follows: 

P = Z w~ ~, 1 rqd~q)(rqd~q I ~: ~ w~Pr (45) 

Now if p has a nondegenerate spectrum, then for each w,. there is only one 
eigenvector I rqd~} satisfying 

p [rq&q} = w~ !rqd,.~} (46) 

Thus the degree of degenracy of each wr is unity, so that in (46) we may 
set q = q, and d,.~ = 1. The projections P~ onto the p eigenspaces thus take 
the simple form, for all r, 

P r = I rq~ l ) ( rqr l l  (47) 

From this and the fact that each I rqd,.~) is a simultaneous eigenvector of Q 
it follows that each P~ commutes with Q. Therefore the spectral expansion 
of a permissible density operator possessing a nondegenerate spectrum is 
always in terms of permissible projections, as we wished to show. 

One of the key points in the above demonstration is the uniqueness of 
the spectral decomposition of a Hermitian operator in the absence of 
degeneracies. In this regard note that 

P~ ~ ~, [ rqd~q)(rqd~ ] (48) 
rid s 

commutes with Q. Thus it appears that each P,. can be permissible even in 
the presence of degeneracies; in the nondegenerate case the spectral expansion 
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is unique and thus P~ is rigorously permissible. However, with degeneracies 
and a consequent nonuniqueness of the spectral decomposition, we should 
not expect this to be true necessarily. Indeed it is not difficult to find counter- 
examples. 

For example, consider the following permissible density operator: 

p = ~ i q~l}{q~l ] + ½- I q~2}(q~2 1 -]- ¼ ] qel)(q21 I (49) 

This is obviously a spectral decomposition: the coefficients are eigenvalues 
of p and the projections are orthogonal. As defined, p is diagonal in the 
Q representation, so the eigenvalues are 1/4 and 1/2. Already the spectrum 
of p is manifestly degenerate. Now an alternative decomposition of p is 

where 

(50) 

~1 = (1/~/2) I qll}  + (1/~/2) I q21} 
~b2 = --  (1/v'?-) I q11) + (t/'J2) lqd} 

(51) 

This, too, is a spectral decomposition: the coefficients are all eigenvalues 
of p, all 6i are eigenvectors of p, and all the P,~ satisfy P,f% == S~P%. 
The p eigenvalue 1/4 is twofold degenerate. Equation (50) constitutes our 
counterexample; P~x and P~  do not commute with Q, whereas p is permissible. 
Thus, if a permissible density operator p has a degenerate spectrum, it is a 
priori conceivable to subdivide an ensemble characterized by p into non- 
permissible subensembles, based solely on a consideration of alternative 
spectral decompositions of p. 

The cases invoMng nonspectral decompositions will now be investigated. 
Even in the absence of degeneracies, it is obvious that the nonspectral 
expansion of a density operator is not unique. The case of nonspectral 
decompositions is therefore potentially more interesting in the context of 
superselection rules. We have already determined that the spectral decomposi- 
tion of a nondegenerate-spectrum permissible density operator can not 
possibly introduce any difficulties in a superselection rule context: the con- 
stituent orthogonal projections are always permissible. This will not be the 
case for the nonspectral decompositions of permissible density operators 
with nondegenerate spectra, as will now be shown. 

We shall not dwell long upon the rather uninteresting case of a non- 
spectral decomposition of a nonpermissible p. Obviously, it cannot be in 
terms of permissible projections alone, since any linear combination of them 
would be permissible, a contradiction. The only other possibility is that it is 
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in general in terms of nonpermissible projections. The situation is analogous 
to the case of the spectral decomposition of nonpermissible density operators. 

The more interesting situation involves the nonspectral decompositions 
of a permissible p. There are two possibilities that are characterized by the 
"permissibility status" of the projections making up the decomposition. 
The first case is a nonspectral decomposition of a permissible p into a linear 
combination of permissible projections; we shall not address ourselves to 
this case either, since it is of no particular interest in the context of super- 
selection rules. The other possibility, a nonspectral decomposition of a 
permissible p consisting of a linear combination of nonpermissible projections 
is of considerable interest in this context. It will be established that such a 
decomposition is possible. 

We begin with a mathematical characterization of the general decomposi- 
tion (i.e., spectral or nonspectral) of a permissible density operator p 

where 

p = ~ rq~P%~ (52) 
qlq 

! Cq~} = ~ a~zd~ I qd~} (53) 
d,q 

is a unit vector, i.e., it ~bq~o l] = 1. Here ¢% is the t~th vector in the Q eigenspace 
Hq use to form p via (52). It is not necessarily equal to I qdq}; if, however, 
for every l~ there exists a d~ such that Cq~,~ = I d \ q ~/, then (52) becomes a 
spectral decomposition. We have already investigated that situation. 

A straightforward calculation using (52) and (53) gives 

aq~aqaq%,4,Sqq" ! ~,q,. \~t %" i 
ql,~ q d~d e, 

The problem now is to find an alternative decomposition of (52), of the 
form 

where the ¢~, unlike the Cq~ 
restrictions, i.e., where 

o = Z v Po, (55) 
¢ 

of (53), do not in general obey the state 

¢i = ~ Co:~a~ [ qd~} (56) 
qdq 

This will be done employing a technique introduced by Schr6dinger. (12) 
Combining (55) and (56) in a manner analogous to that which led to (54), 
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there results an expression for p similar to (54), but involving the V~ and 
C~a~. Equating this with (54) gives 

Define 

E , ~ - * ViCiqa~Ciq" ~'~, ~qq" ~ l ~ a~t~d aq%,a', 
i lq 

(57) 

(rOan 

lq 

The g~qa~ are well defined provided (58) involves no divisions by zero. 
They are not totally arbitrary since (57) links them essentially with a con- 
dition on the Cigar; the condition the g~a~ must satisfy in order that (58) 
may be used to determine the unknown Ciqd~ is of fundamental importance. 
If all the V~ are real, it is given by the following expression: 

, • ) 
i 

X [~q~ql , aqlqdqaq'lq'dq'(rq~qrq'lq')l/2] ~qq" (59) 

The C~qa~ will be determined by (58) if a set of g~qa, satisfying (59) can be 
found and if the V~ can be determined. The Vi are found using the normaliza- 
tion of ¢~. This, together with (56), places a subsidiary condition on the 

Ciqdq 
Z C*a~Ciqa~ = 1 (60) 
qdq 

Substitution of (58) into this gives the desired result 

• * 1 / 2  Vi = ~ [ giqa~ E2 ~ aq~dflq,;a,(rqz/q, ;) (61) 
qdq lqlq 

The problem is therefore solved; it has been shown that the alternative 
decomposition (55) is determinable provided a set of quantities g~qd~ satisfying 
(59) can be found. It is convenient to think of this set as the set of  components 
of a set of vectors gqa~ • Equation (59) then asserts that these vectors are in 
general orthogonal only for different q. The dimensionality of the gqa~ is 
equal to the number of different ¢i in the sought expansion (55). 

Therefore there is a prescription for the discovery of alternative non- 
spectral decompositions of a permissible density operator in terms of 
nonpermissible projections. The general conditions that guarantee the 
existence of a set of gqa~ permitting the rendition of this decomposition will 
not be studied; for present purposes, the above algorithm and an example 
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of its successful use will suffice. Thus our attentions now turn to the investiga- 
tion of a specific permissible density operator. Consider 

where 

and r ~  = r ~  ~= 1/4, r%~ ----- 1/2. Thus the a~z~a~ of (53) are 

(62) 

¢~1 = i q.zl } (63) 

iJr/li 1 z:: 1 / V 2 ,  aqll2 = l / V 2 ,  aqll3 = 0 . . . .  

aal21 == 1, a q ~ .  - -  0 ,  a~,2a = 0 , . , .  

aq.11 = l, aq~l~ = 0, a ~  = 0,... 

(64) 

(66) 

Thus, g%t is orthogonal to the plane formed by g~l and gq~2. Moreover, 
g ~  and gq~2 are not orthogonal. Finally, all the vectors, save gq¢, are unit 
vectors. The following vectors meet all the stipulations of (66): 

I (;) ' ( i )  '(i) g ~  = V~(1 + V ~ )  1 , gol~ = ~ - ~  , g%~ --  ~ 

(67) 

the g% must satisfy: 

g,~l "g~l = 3/(1 + ~/2)~, 

g~l~ "g~l~ ~= 1, 

g ~  "g~l = 1, 

gql~ 'gq~2 == 1/(1 + V 2 )  

gqxl " gq~1 .... 0 

gq,'2 " g q ~  .... 0 

As defined, the vectors in (63) all obey the state restrictions: ~11 e H~I, 
~bqa 2 ~ Hq~, and ¢%1 ~ H%. The matrix of the operator in (62) is therefore 
block-diagonal in Q representation. It will be seen later that it also constitutes 
a legitimate density operator and that (62) is not a spectral expansion. A 
different nonspectral expansion of p in terms of nonpermissible projections 
is now desired. 

The first step in finding this is the determination of the gqd,- There will 
be three such vectors: gq~l, g~12, and g%1. An alternative decomposition 
of the form 

p ---- ~P,~ + V2P,~ + VaP,~ (65) 

is sought so that the gqe~ vectors are three-dimensional. It is convenient to let 
(59) be the definition of an inner product for these vectors; denote this by 
gqa~'gce;,. From (59) it is an easy matter to determine the conditions 
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Then the r~a,  aq~a~, and g~qa~ being known, the form (65) is determined 
using (56), (58), and (61). The result is 

v~=v2=~-, z 3 - :  

¢1 = - - ( l /x /6)  t qt I} --  (1/V'6) I q12) + "~/~iq21) 

¢2 = (1/-¢~) I vii> + (t/V?,) i q12) + ~/~ ] q~1> 

¢3 = [ q l l )  

(68) 

Note that ¢1 and ¢2 do not obey the state restrictions. The expansion 
is also nonspectral since (~bl, ¢3) = -- (¢2 ,  ¢3) @ 0. It is easily verified 
that the new decomposition is correct by calculating the projections P~ 
with (68) and substituting into (65). This result can be compared with an 
analogous calculation using (62) and (63). The results of both these calcula- 
tions for this example are 

p = ~ i q~l)(q~l ] -I- -~ I q~l)(q12 I q- ~ I q~2)(qll I 

÷ -} [ q~2)(q~2 i + .~- [ q21)(q21 ] (69) 

In matrix form (with the convention regarding infinite matrices), 

°o 
o 

(70) 

This operator is familiar from an earlier example, in the discussion of 
spectral expansions of permissible density operators [cf. (41) and (42)]. 
In other words, (41) is the spectral expansion of the permissible density 
operator just investigated. Thus, three different decompositions of the same 
permissible density operator have been found, one spectral and two non- 
spectral, one of the latter of which was in terms of nonpermissible projections. 

Therefore, the general decomposition (36) of a permissible density 
operator can involve nonpermissible constituents PT~. Moreover, it is 
mathematically conceivable, and consistent with the standard interpretation 
of such a decomposition, to regard a permissible ensemble as consisting of 
nonpermissible subensemNes. If  the decomposition is spectral, O must have 
degenerate spectrum for any pk to be nonpermissible; the nonspectral 
decompositions do not require this. ]t would appear that state restriction 
violation is a possibility if some consistent scheme for selection of the 
nonpermissible subensembles exists. 
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5. SUMMARY AND C O N C L U S I O N S  

Previous proposals for superselection rule violation consist of  schemes 
for the preparation of illegal (nonpermissible, nonphysical) quantum states. 
The tacit assumption is that the state restrictions are a necessary condition 
for the superselection rule. It  is argued here that both the state and the 
observable restrictions are each sufficient but not necessary conditions for 
the superselection rule, contrary to the usual interpretation. Thus the previous 
proposals are properly understood as state restriction violation proposals. 
It  has been known for some time that each of these proposals begs the 
question by necessarily requiring illegal states initially. 

A new proposal for state restriction violation has emerged. The stimulus 
for this was the problem of ensemble subdivision of an ensemble of  quantum 
systems with permissible quantum state. By considering alternative mathe- 
matical decompositions of permissible density operators, it was shown that 
it is a priori conceivable to subdivide a permissible ensemble into non- 
permissible subensembles, a heretofore unrecognized possibility. It is 
recognized that the present proposal is devoid of a specific prescription for 
bringing about  the required subdivision. The intent here is to show the 
mathematical consistency of so doing. I f  the subdivision is impossible, the 
argument for that will have to consider the effect of superselection rules on 
the dynamics of the subdivision process. 

Further argument on the logical status of the state and observable 
restrictions is postponed to Part  I I  of  this work, as is a specific dynamical 
argument regarding the ensemble subdivision problem. 
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