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A dynamical analysis o f  standard procedures for subensemble selection is used 
to show that the state restriction violation proposal in Part I o f  the paper cannot 
be realized by employing familiar correlation schemes. However, it is shown 
that measurement o f  an observable not commuting with the superselection 
operator is possible, a violation o f  the observable restrictions. This is inter- 
preted as supporting the position that each o f  these restrictions is sufficient 
but not necessary for the supersetection rule. The results do constitute a proposal 
for superselection rule violation in theories requiring both restrictions, e.g., 
the axiomatic treatment by Bogotubov, Logunov, and Todorov. It is also 
concluded that superselection rules place restrictions on procedures for selective 
state preparations using correlations. More generally, it is conjectured that a 
mathematically conceivable decomposition o f  a given density operator does 
not necessarily represent a possibility for partitioning o f  the corresponding 
ensemble into subensembles by any physically realizable means. 

1. INTRODUCTION 

In Part I of  this paper m it was shown that it is mathematically conceivable 
to decompose a given permissible density operator into a linear combination 
of not necessarily permissible density operators, where "permissible" means 
that [p, Q] = 0, Q being a superselection operator. By the usual interpre- 
tation of  such a decomposition, an ensemble characterized by such a density 
operator can be considered as a mixture of  subensembles whose density 
operators are those in the decomposition, the coefficients being interpreted 
as relative weights in the ensemble. We now ask if these decompositions can 
be physically realized, resulting in the preparation of  illegal (nonpermissibte) 
quantum states, which would be an instance of  state restriction violation, m 
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The problem is therefore the investigation of the possibility of selection of 
these nonpermissible subensembles. More significantly, we ask also if this 
state restriction violation can be accompanied by a concurrent observable 
restriction violation; only if this obtains will the superselection rule have been 
broken, cl) To our knowledge these questions have not been studied. 

The selection scheme will involve a composite system S + M consisting 
of subsystems S (quantum system of interest) and M (measurement appa- 
ratus). Presumably the initial global density operator p is permissible; 
Wick, Wightman, and Wigner (WWW) (~ have shown that the reduced 
density operator Ps for S is permissible if p is. They did not discuss the 
problem of selection of nonpermissible subensembles from an ensemble of 
S systems characterized by Ps • Assume that p embodies correlations between 
S observable A and an M observable B. Let Q denote an additively conserved 
superselection operator, such as charge, 

Q = is (~ QM -~ Qs Q 1• (1) 

where ls and 1M are the identity operators on the Hilbert spaces H s and 
HM for S and M; Qs and QM are the corresponding charge operators. The 
permissibility of p implies that p commutes with Q, [p, Q] ~ 0. The extant 
formulations of superselection rules require that any observable defined 
on Hs @ HM commute with Q also; in fact, that is usually taken as an 
integral part of the definition of an observable. It will accordingly be assumed 
that ls @ B commutes with Q, thus [B, QM] = 0. At this stage, however, 
we will not require [A, Qs] ~- O, since it is logically possible that the corre- 
lation scheme, in selecting out illegal subensembles, in effect measures a 
nonobservabIe, an operator not commuting with charge, thus violating the 
superselection rule. 

2. S P E C T R A L  D E C O M P O S I T I O N S  O F  os 

Consider the general form for the spectral expansion of the reduced 
density operator for S, 

ps = Z w.e(w.)  (2) 
n 

Since Qs commutes with Ps, it commutes with any function of Ps, in parti- 
cular with any member P(w,) of the spectral family of ps • Thus all the P(w~) 
are permissible and nothing unusual could be expected in a selection process. 
However, when ps has degenerate eigenvalues, some of the P(w~) are multi- 
dimensional, thereby opening the door for a potentially more interesting 
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sutuation: as shown in our work on alternative decompositions, m the 
spectral decomposition can then be written in a number of forms, including 

p~ = ~ w~e~° (3) 

where the P6~. are the one-dimensional projectors onto the eigenvectors 
ena~ spanning the nth eigenspace of Ps. The P6,~ are not not necessarily 
permissible, even though Ps is, and even though ¢ ~ .  is an eigenvector 
of  ps. • A correlation scheme whose goal is the selection of a subensemble 
characterized by an illegal density operator P 6 ~  must involve an S non- 
observable A such that ¢~a. and ¢~a, are A eigenvectors which belong 
to distinct A eigenvalues if d.~ 4: d~/. Obviously if [A, Qs] = 0 this is not 
possible; the spectral family of A, each member of which commutes with 
Qs, consists of only one-dimensional projections. 

As it turns out, the explicit form of the alternative decomposition of 
Ps into nonpermissible projections will not have to be used: the prime 
concern is with the global state, its permissibility, and the demand that it 
embody correlations between A and B measurement results. As was 
mentioned earlier, [p, Q] = 0 and [B, QM] = 0 will be assumed, with 
allowance for [A, Qs] :/: O. It will also be recognized that not all the spectrum 
of A need be correlated with that of B: an eigenvector belonging to a corre- 
lated A eigenvalue a~ will be denoted by c~, whereas an eigenvector belonging 
to a noncorrelated eigenvalue d~ will be denoted by ~z. The more familiar 
case occurs when p is a pure correlated state P~ with 

4I = Z c ,~ ,  @/~, (4) 

where ~n and/3 ,  are eigenvectors of A and B, respectively. ¢ is of course 
a vector in the Hilbert space Hs @ HM for the composite system S + M. 
Since B commutes with QM, each B eigenvector fin is an eigenvector of  
QM belonging to eigenvalue qm '~ and hence 

Q~ = Z c.(Qs..  @ fi,~ + ~. @ QM, I~n) 
qg 

= ~ cn(Qsa. @ 13. 4:- qM'a~ @ fi,~) (5) 

I f  the Q superselection rule restrictions on quantum states are endorsed for 
the global state ¢, then Q¢ = q4, and thus 

n 

: : ( a k  @ fi~, q ~ e.~n @ fin) : qekS~ (6) 
1 

\ /'Z / 
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This equation leads to expressions involving the Qs matrix elements in the 
"correlated part" of the A-representation, 

and 

cz(%,  Qsa~) = O, k v/= 1 (7) 

(o~, Qso@ = (q - qM~O ~ qs ~ (8) 

Let us closely investigate (7) under the assumption ¢ v~ 0. Either 
c ~ = 0  or c~=/=0. If  c~ - -0 ,  either ( ~ , Q s o @  = 0  or (~k,Qs~z) ~ 0  
for any k ~ l; consider the second case. Then, interchanging k and 1 in 
(7) gives 

ck(a~ , Q s ~ )  = O, t ¢ k (9) 

Under this assumption, the Hermiticity of Qs implies 

( ~ ,  Q s ~ )  = ( ~ ,  Qs~)  * = O, k ~ t (lO) 

Thus c~ = 0 for every k -/= l and hence ~b = 0, a contradiction. Therefore 
(reductio ad absurdum) ¢ v~ 0 and c, = 0 imply (c~1~, Qs~t) --- 0 for any 
k v~ l. Finally, consider the other possibility, c~ @ 0; again, either 
( ~ ,  Qs~)  = 0 or (~70, Q s ~ )  @ 0 for any k ~ L The second possibility 
contradicts (7): therefore (7) and cz =/= 0 imply (c~,  Q s ~ z ) =  0 for any 
k g: l. One infers :from (7) that the nonvanishing of ~b entails that the Qs 
matrix is diagonal in the correlated part of the A-representation. 

If  all of the spectrum of A is correlated, then the above result implies 
[A, Qsl = 0 and that each A eigenvector is an eigenvector of Qs.  In that 
instance the correlation scheme selection procedure would yield subensembles 
characterized by the permissible projections P%. However, suppose not all 
of the spectrum of A is correlated, so that 

It Z 

Then, since Qs is diagonal in the correlated part of the A-representation, 

Qs I a~) = ( ~  ! Qs i ~k) ] ~ )  4- ~ ( ~  ~ Qs I ~:) i ¢@ (t2) 

Therefore the A eigenvectors belonging to correlated A eigenvalues are legal 
only if Qs has no nonvanishing matrix elements connecting the correlated 
and uncorrelated portions of the spectrum of A, i.e., (c~l Qs [ c~7~) = 0. 

It turns out that the legality of the correlated A eigenvectors [ ~ )  can 
be determined from the second equation for the Qs matrix elements, (8). 
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Consider expanding I 0~7~} in terms of the Qs eigenvectors I qsdq,}, Qs [ qfl%} = 

q~ I q f l@,  

f ~ )  -~ ~ a~q~% ! q.~dq~) (13) 
qs~qs 

Equation (8) becomes 

q~ t akq,% [~ := qs ~ (14) 
qsdq s 

Assuming normalization for the A eigenvectors, 

1 a~q,a~ i 2 = 1 (15) 
qs~qa 

Combining (14) and (15) then gives 

[ a ~ , %  ? (q, - qs ~) = 0 
qs~ffJe,dqs 

(16) 

a~ ,% = 3q,,s~a1~,, % (17) 

Comparing this with Eq. (13), it is seen that the A eigenvectors belonging 
to the correlated A eigenvalues are legal, i.e., they are Qs eigenvectors. 
Therefore, even if not all the A spectrum is correlated with B measurement 
results, the subensemble selection procedure can still only yield permissiNe 
subensembles. It is seen now that Qs has no nonvanishing A-representation 
matrix elements connecting the correlated and uncorrelated portions of the 
spectrum of A. That does not say, however, that A could not have nonzero 
off-diagonal matrix elements (A-representation) connecting uncorrelated 
A eigenvalues: thus [A, Qs] = 0 does not necessarily follow. Therefore 
[A, Qs] = 0 if all the spectrum of A is correlated. When the entire spectrum 
of A is not correlated, it is therefore possible that a nonobservable A is being 
measured, since A does not necessarily commute with Qs .  But this is clearly 
in a sense which the analysis shows does not cause difficulty with the state 
restrictions, i.e., measurement of a partially correlated A not commuting 
with Qs by the correlation scheme does not lead to the selection of non- 
permissible subensembles. The correlated portion of the spectrum of any S 
observable always has legal eigenvectors; it follows that any illegal eigen- 
vectors of  such a nonobservable can never be correlated with the legal 
eigenvectors of a bona fide M observable B commuting with QM • 

This result should be independent of the particular labeling scheme for the 
Qs eigenvalues: thus it should, for each k, hold for the scheme in which 
qs k is the smallest Qs eigenvalue, making q~ -- qs k >~ O. Therefore, 
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Consider now the general case of a mixed permissible global quantum 
state P embodying correlations between the spectra of the operators A and 
B used earlier. For  such a density operator, the joint probability distribution 
W(ak, b~ ; p) for simultaneous A and B measurements should be proportional 
to 8k~, 

W(a~, b~ ; p) = Tr(pP~®B,) oc 8~,~ (18) 

Since p is permissible, it commutes with the total charge Q; thus p and Q 
share a complete orthonormal set {¢,~} of eigenvectors. Each ~b,~ is legal 
since it is a Q eigenvector. They can be expanded in terms of the basis 
~i @ flJ for Hs @ HM as 

Cm = ~ c.mc~i @ fiJ (19) 
ij 

Moreover, the ~bm can be used in a spectral expansion of 

P = Z w,,~P~m ( 2 0 )  
m 

where each p eigenvalue w~ satisfies w~ ~> 0 since p is positive. Using these 
expressions, we obtain 

W(ak, bt ; p) = ~ w,,~ Tr(PcmP~®~ ) = ~ w,~ I c,,k~ ~2 (21) 
q~ 7n, 

Since each factor in each term of this expression is >~0, it follows from the 
correlation requirement (18) that 

c , ~  oc 37~t (22) 

for every m, k, and I. Therefore each Cm exhibits the pure state correlated 
form (4). The analysis of the pure case may therefore be used as a lemma: thus 
once again the correlated A eigenvectors can only be legal, i.e., they must be 
eigenvectors of Qs.  All of the pure case conclusions then apply to the 
general case: so long as [B, QM] = 0, it is not possible to violate the state 
restrictions in a correlation scheme for selection of a nonpermissible S 
subensemble given any permissible global state p embodying A-B  corre- 
lations; and it is possible to prescribe a measurement scheme for measure- 
ment of an S nonobservable without violating the state restrictions. 

Thus, since the restrictions on observables are not as sacrosanct as 
heretofore thought, it is natural to continue the investigation of the spectral 
decompositions by asking if it is possible to violate the state restrictions under 
the assumption that there are no observable restrictions, i.e., relax the con- 
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dition [B, QM] ~- 0. This would be a genuine superselection rule violation; 
we know of no previous proposal to violate both restrictions simultaneously. 

This problem will be considered in the context of the correlation scheme; 
first consider the pure case with correlations, 

I ¢)  = ~ c. l ~n ® / 3 . )  (23) 

where [ ¢)  is a permissible global pure state. Expand I an) and Iris) in 
terms of the eigenvectors of Qs and QM, respectively 

Therefore 

ez,~) = ~ a,qa~ i qd~,), ! fi,~) = ~ b,,j,a~ l pd~,) (24) 
qdq lod~ 

= ~ c,anqa~bn~,a,, l qd~) @ I pd~,) (25) 
~qdqpd~ 

The permissibility of I ¢)  means that it is an eigenvector of total charge, 
Q1 ~b) = Z I ¢). Therefore 

)_[, c,~a,~qa,b,,~a,(q 4- p) I qdq) @ i pd,,) = Z ] ¢) 
q~qdqpdv 

(26) 

This can only be satisfied if (q -k p) = Z independent of n. The permissibility 
of  l ~b) therefore entails that I ¢)  have the form 

[ ¢) -~ ~ c,~a,,od~b,,~,a~Iqdo) @ I pd~) (27) 
q~qdqpdv 
(p+q)=Z 

This Q eigenvector can be in the correlated form given by (25) only if 

a~qa~bn~a~, -~ ~+q, zanaa~bn~a~ (28) 

for every n,.p, and q. Let a,q%, and bn~%, denote any two nonvanishing 
coefficients, for some n, i.e., q' + p ' - - Z .  Consider any q"@ q'; then 
q" q- p' =/= Z and thus 

a,~q~.bn~,%. = 0 (29) 

Since b,v 'a ,  @ 0, it follows that ana"ao = 0 for any q" v~ q'. Hence a~qa~ 
can be nonvanishing for at most one value of q, say q = q', 

a,qa~ = 8~a'anq'a~, (30) 
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for any n and q. A similar argument leads to the result, for any n and p, 

b.~a~ = 3~'b~'a~, (31) 

Therefore all the correlated eigenvectors I c~) and ]/3~) are legal, and hence 
an illegal S subensemble could never be selected. Nor is it possible to measure 
an M observable B whose correlated eigenvectors are illegal; note that this 
does not require [B, QM] = O. 

The main result of the above analysis is that the permissible global 
pure state embodying correlations does not admit selection of illegal S 
subensembles. A result also emerged which permits the extension of this pure 
case result to the general global mixture (permissible, correlated): any Q 
eigenvector in the correlated form(23) involves only legal A andB eigenvectors 
E c~), ]/3~), independent of whether or not either A or B commutes with 
Qs and QM, respectively. The extension to the general case draws on the 
earlier result [cf. following (18)] that if p is permissible and embodies A-B 
correlations, then p and Q share a set of legal eigenvectors exhibiting the 
pure state correlated form (23). This result was also independent of whether 
or not A and B commuted with Qs and QM, respectively. Therefore the most 
general case involving correlations can never yield an illegal quantum state, 
provided the initial global state is legal: there is no conceivable correlation 
scheme for selecting an illegal S subensemble, even though the permissible 
reduced density operator ps for the ensemble of S subsystems can be spectrally 
decomposed into a mixture of not necessarily legal density operators. The 
superselection rule apparently places restrictions on the possible selection 
procedures; thus, not every mathematically conceivable decomposition of 
a given density operator represents a physically possible partitioning of the 
corresponding ensemble into subensembles. 

3. NONSPECTRAL DECOMPOSITIONS OF Os 

The above demonstrations are limited to the situation wherein the 
correlated A eigenvectors ~e are mutually orthogonal. The reduced density 
operator for S in these circumstances was in the form of a spectral expansion 

ps = Y w,~P~ (32) 
]e 

Thus the spectral family of ps consisted of some (note necessarily all) members 
of the spectral family of A. The earlier work on alternative spectral decom- 
positions m when Ps had a degenerate spectrum indicated a possibility that 
~k could be illegal; thus the selection of nonpermissible subensembles was 
mathematically indicated. That work also indicated that nonspectraI expan- 
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sions of a permissible ps could take the form in (32) even when Ps has a 
nondegenerate spectrum; in the nonspectral case, however, the ~ are no 
longer orthogonal and the above demonstrations would not suffice. Thus 
let us now consider the selection problem anew, relaxing the orthogonality 
requirement so as to include the broad area of the nonspectral expansions. 

It is now asked if the correlation scheme employed above can be used 
to select the nonpermissible subensembles indicated in the nonspectral 
decompositions. This time two S observables will be used, denoted A and C: 
A has eigenvectors ~1~ appearing in a nonspectral expansion of Ps in the form 
given in (32), but where the ~ are no longer eigenvectors of Ps and are not 
necessarily orthogonal; C has a complete orthonormal set of eigenvectors 
y~. Nothing need be said regarding legality of the c~ k or y~ for what follows. 
As before, a single M observable B with legal eigenvectors/3x will be used. 

Consider the pure case embodying correlations; assume the general form 
of such a state is 

¢ = Z Cn~n @ ft, (33) 
% 

Since the/3~ are orthogonal, the reduced density operator is given by 

Ps = TrM(P¢) = ~ ~C, [2 p~, (34) 
n 

which is a nonspectral expansion of ps if some of the ~n are not Ps eigen- 
vectors. I f  the an are mutually orthogonal, the above decomposition is 
spectral. It will now be shown that the presence of correlations demands 
mutual orthogonality of the ~n. 

The joint probability W(ak, b~ ; ~b) that simultaneous A and B measure- 
ments yield the results a~, b~ for an ensemble of composites S q- M prepared 
in the manner characterized by ¢ is given by 

W(ak, bz; ¢) = Tr(P~®~,P~,) 

= Z e,,cn* Tr(] c% @/?zS(~k @ fl~ ] ~m @ fl,,)@~ @ fi~ i) 
q 'nn  

~nq~ 

Pq 

i n  /)  

= I c~ I '  E ( ~  I ~ ) I  ~ (35)  

For correlations to exist between A and B measurement results this joint 
distribution should be proportional to 3kz • Inspection of the above expression 
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shows that the required correlations can only occur if the c~k are mutually 
orthogonal. [Another conclusion might be that (33) is not the general corre- 
lated pure state for the case of  nonorthogonal as and f t . .  We have not  
investigated the possibility of alternative pure state forms in this situation.] 

This argument is easily extended to the general case of a mixed permis- 
sible global state p embodying A - B  correlations. The analysis leading to 
(22) applies in this case: each member of the eigenvector set which p and Q 
have in common as a result of their commutativity exhibits the pure state 
correlated form (33). Thus the A eigenvectors belonging to the correlated 
part of the spectrum of A are mutually orthogonal by the argument leading 
to (35). 

Therefore the nonspectral decomposition cannot be exploited to violate 
the state restrictions or the superselection rule itself in a correlation scheme 
for subensemble selection. 

4. SUMMARY AND CONCLUSIONS 

The physical problem of  subdivision of an ensemble with permissible 
quantum state Ps into nonpermissibte S subensembles was considered after 
showing m the mathematical consistency of  such a situation. To do this, 
ps was considered to be the reduced density operator for the ensemble of  S 
subsystems of an ensemble of composite systems S + M with a global 
quantum state p which was assumed to be permissible and to embody 
correlations between S and M observables A and B. 

WWW showed that ps is always permissible if initially only permissible 
states are given. Now added to this is the result that any actual S subensembte 
is always permissible, even though Ps can in general be decomposed into 
nonpermissible density operators, i.e., even though the S ensemble charac- 
terized by Ps can be mathematically conceived of as a mixture of nonper- 
missible S subensembles. Thus the proposal for state restriction violation 
advanced in Part I of this paper m is untenable if the most general method for 
subensemble selection involves use of correlations. 

It was determined that it is not possible to select an illegal S subensemble 
even if allowances for measurement of nonobservables are made; for, if 
the global state is permissible and embodies correlations, the eigenvectors 
belonging to correlated eigenvalues of S and M observables are always charge 
eigenstates. Thus, even though measurement of observables not commuting 
with charge are possible, they can never lead to violation of the state restric- 
tions if the initial global state is permissible. Since both the state restrictions 
and the observable restrictions are individually sufficient to ensure validity 
of the superselection rule postulate, m it follows that the correlation scheme 
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herein studied can never be used to violate the superselection rule, given an 
initial permissible global state. 

The logical status of  the state and observable restrictions clearly plays 
a central role in deciding whether or not a superselection rule has been 
violated. I t  was pointed out in Part  I of  this paper that the logical status of  
these restrictions differs among the two schools of  thought. In the Bogolubov, 
Logunov, and Todorov (BLT) (3~ formulation the conjunction of these 
restrictions is necessary and sufficient for the superselection rule; in the W W W  
formulation as interpreted herein, this is replaced by a disjunction. To violate 
a WWW superselection rule both restrictions must be violated; the task in 
the BLT context is clearly easier. In this part  of  the paper it was shown that 
a nonobservable can be measured using the correlation scheme, but n o t  

with concurrent selection of  an illegal subensemble. Thus only the BLT 
superselection rule was violated. Since the prescription for nonobservable 
measurement in the presence of  state restrictions is consistent with non- 
violation of the W W W  supersetection rule as interpreted here, it is concluded 
that the BLT axiomatics is too strong. 

Since it is wrong to contend that  both the observable and the state 
restrictions are necessary conditions for a superselection rule, one is free 
to consider all Hermitean operators as possible observables provided any 
quantum state is suitably restricted, i.e., [p, Q] = 0, and vice versa. The 
usual "p roo f "  that the state restrictions imply observable restrictions is 
invalid since it confuses the measurement and preparation acts by employing 
the projection postulate, as first pointed out by Park. ~4~ 

Since superselection rules do indeed place restrictions on procedures 
for selective state preparation using correlations, we are ted to conjecture 
more generally that in their presence a mathematically conceivable decom- 
position of  a given density operator does not necessarily represent a possi- 
bility for partitioning of the corresponding ensemble into subensembles by 
any physically realizable means. Strictm'es on subensemble selection pro- 
cedures have been considered elsewhere in a thermodynamic context by 
Hatsopoulos and Gyftopoulos. ~ 
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