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The overall purpose of this paper is to clarify the physical meaning and epistemo-
logical status of the term ‘measurement’ as used in quantum theory. After a review of
the essential logical structure of quantum physics, Part I presents interpretive discus-
sions contrasting the quantal concepts observable and ensemble with their classical
ancestors along the lines of Margenau’s latency theory. Against this background
various popular ideas concerning the nature of quantum measurement are critically
surveyed. The analysis reveals that, in addition to internal mathematical difficulties, all
the so-called quantum theories of measurement are grounded in unjustifiable, classical
presuppositions.

1. Measurement. Prior to the quantum era, the measurement concept was philo-
sophically innocuous; it displayed a certain obviousness of meaning which occa-
sioned little controversy. In fact, the postulates of classical theories made reference
to it only implicitly. However, for reasons to be discussed below in connection with
the related concept of observable, quantal propositions cannot suppress direct use
of the term.

It is natural, therefore, in probing the quantum framework for logical inconsis-
tencies, to seize upon this novel feature by demanding a consistent quantal descrip-
tion of the process of measurement; the replies given to this logical challenge are
called quantum theories of measurement. Because measurement is not a concept in
isolation, the study of such theories reveals diverse ideas concerning the nature of
other quantal constructs. Hence the quantum theory of measurement offers a portal
to philosophic understanding of the meaning and goals of quantum physics as a
whole.

2. Mathematical foundations of quantum physics. To provide a firm basis for any
analysis of measurement, it is essential to review the fundamental axioms of quan-
tum physics. The postulates cited below attempt to capture the essential character
of a quantum theory, not to enumerate every single mathematical assumption. This
* Received May, 1967.
+ This essay is based on part of a dissertation presented for the degree of Doctor of Philosophy

at Yale University. Part II will appear in the immediately succeeding issue (Volume XXXV, No.
4) of Philosophy of Science.
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is standard practice in physics; we force an admittedly arbitrary distinction between
unstated background postulates, which encompass much logic and mathematics,
and physical postulates, which serve to delineate the rudiments of a particular
branch of physics. Such a cleavage enables us to direct our philosophic inquiry more
acutely to crucial physical points instead of detracting from that purpose by citing
numerous minor axioms in the manner of the more tedious excursions into “quan-
tum mathematics.”

We now state and discuss three postulates which underlie all forms of modern
quantum theory from wave mechanics to field theory, postulates which reflect the
essence of the quantum approach to natural philosophy. From these we shall extract
the primitive physical terms employed, and our analysis of measurement will then
revolve about those basic constructs.

P1: (Correspondence Postulate) The? linear Hermitean operators, 4, B, .. .,
on Hilbert space which have complete orthonormal sets of eigenvectors
correspond to physical observables 7, &, . ... The function Z#(A4) corre-
ponds to observable # (/) if A corresponds to &7.?

The correspondence postulate is often stated in the converse form: to every ob-
servable there corresponds an operator. However, we have shown elsewhere [21]
that such a formulation leads to physically untenable consequences and must be
rejected. The term ‘Hilbert space’ appears due to established physical usage; no
stricture is intended on the application of newer mathematical constructs which
may eventually provide the mathematical background for quantum theory.

P2: (Mean Value Postulate) To every ensemble of identically prepared sys-
tems there corresponds a real linear functional of the Hermitean operators,
m(A), such that if 4 corresponds to an observable.<Z, the value of m(4) is
the arithmetic mean of the results of «7-measurements performed on the
member systems of the ensemble.

P3: (Dynamical Postulate) Every type of quantum system is dynamically
characterized by a linear unitary operator 7 (the evolution operator) in the
sense that the mean value functional m1,,(A4) at time #, for an ensemble of
such systems which at time ¢, had mean value functional »,,(A4) is given by

my(A) = my,[T'(ts, 1) AT (15, t1)].

P2 and P3 together indicate that the concept of physical state in quantum theory
is represented by the mean value functional, the only quantal construct which re-
lates to measurement results and obeys a causal law. Classically, this is perhaps the
most objectionable feature of quantum theory, for m(A4) refers empirically only to
an ensemble whereas a state representation traditionally belonged to individual

1 To accommodate superselection rules [27], principles which in one form prohibit certain
Hermitean operators from representing observables, the initial ke in P1 might have to be re-
placed by some (cf. sec. 14).

2 The observable & (&) is measured simply by measuring & and substituting the result a into
the function & ; the range value, #(a), is then the result of the #(&/)-measurement.
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systems in a nonstatistical sense. However, a cursory examination of these postu-
lates does not immediately show that the older understanding of the state concept
cannot somehow be extricated from them, although this is in fact the case [20]. We

shall return to this point later.
To make contact with familiar elements of the quantum formalism, we next state

a few key theorems which follow from P1-P3.

Th13: For every mean value functional m(4) there exists an Hermitean operator
p such that

m(A) = Tr(p4).

For mathematical convenience, it is fruitful to shift the emphasis from the func-
tional m(A) to the operator p related to it by Th1. Thus, the statistical properties of
an ensemble are embodied in p, which is called the density operator.

Th2: Trp = 1.

Th3: The probability W (ay; p) that an o/-measurement on a system from an
ensemble with density operator p will yield eigenvalue a,, Aeyq, =aroq,
is given by

Walar; p) = Tr(pPar,),

where P, is the projection operator onto the subspace 5, belonging to
eigenvalue a,: Py, = D4, Poq,.

Th4: The only possible results of «7-measurements are the eigenvalues of
corresponding operator 4.

Th5: The density operator p is positive semidefinite.

Of tremendous significance in the theory of measurement is the concept of en-
semble homogeneity, emphasized by von Neumann [25]. For the present, we merely
define it, deferring philosophic analysis to later sections.

Defn: An ensemble is said to be pure, or homogeneous, if every rearrangement
and partitioning of member systems results in subensembles physically
identical to the original. An ensemble which is not pure is said to be
mixed, or a mixture.

In terms of the mean value functional, if m(4) is pure, there do not exist m,(4),
mg(A) satisfying m(4) = wymy(4) + wamy(A4), where wy, w, are the fractions of the
ensemble contained in the two subensembles; clearly, wy + wg =1, wy > 0,
wsy > 0. In the language of density operators, we then have the following theorem:

Th6*: p is pure if and only if p = P,, where P, is the projection operator onto
the span of Hilbert vector . (¢ is usually called the “state” vector.)

3 For proof, cf. [25], 313-316.
4 For proof, cf. [25], 323.
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Th7: For pure ensembles with state vector #, i.e. p = Py,

) = G

where { ) denotes scalar product. By convention,  is generally norma-
lized so that <, > = 1, hence m(A) = <, AP).

The theorems above comprise the basic ingredients of quantum statics, so called
because all statements essentially refer to a single instant of time. Quantum causality
is embodied in the temporal development of m(A) according to P3. From Thl, we
have m(4) = Tr(pA); hence, temporal changes of the functional m may be repre-
sented by transformations either of the density operator (Schrodinger picture), or of
the operators representing observables (Heisenberg picture), or of both. In what
follows, quantum dynamics will be cast in the Schrodinger picture.

Th8: p(tz) = T(tz, tl)P(tl)T't(tz, t]_).
Th9: If P(t1) = Pll/(tlb then p(tz) = PUI(tz)’ WhEI'e ‘p(tz) = T(tg, tl)lp(tl).s

Th7 and Th9 provide the justification for the common name “state” vector for #,
since knowledge of ¢ and T enables calculation of all measurement statistics for any
instant.

3. Primitive terms of quantum theory. Scanning the foregoing postulates for those
physical constructs which play major roles in general quantum theory, we find
seven requiring careful study: system, preparation, ensemble, observable, measure-
ment, result (of measurement), and state. It should be noticed immediately that
none of these terms is intrinsically quantal; all of them have meaning, perhaps
trivially in some cases, within the methodology of classical physics. However, within
the quantal framework, some of them acquire extended significance and important
subtleties of meaning.

Although our presentation of quantum theory mimics such rigorous mathe-
matical systems as pure geometry by referring to primitives, postulates, and
theorems, several distinctions must be recognized. When geometry is carefully
axiomatized, the primitives are truly undefined; point, line, congruence, etc., are
totally devoid of experiential meaning. Every relation among them is stated in the
axioms, and these connections embody all properties to be associated with the
terms. This information alone coupled with pure logic then leads to numerous
initially hidden interrelationships among the terms, viz. the theorems. When the
primitive concepts are provided with empirical counterparts via operational
definitions the total scheme becomes physical geometry, the science of space. Ideally,
perhaps every scientific discipline, including quantum theory, should be cast in
this mathematically utopian form; but in fact even the relatively few physicists
committed to logical rigor do not generally employ postulational schemes so pure
as the rather exceptional case of geometry. Unfortunately, the construction of such

5 If we formally define the Hamiltonian operator H by T = exp [(—i/h) [ H dt], then y(7)
satisfies the Schridinger equation, Hy(t) = ih 0y(t)]/ot.
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mathematical systems is predicated upon considerable hindsight and is therefore
inapplicable in the formative stages of a theory.

Returning now to quantum theory, we do not claim that the postulates of the last
section embrace every relation among the seven primitives which might be invoked
while deducing their consequences, nor can we assert that the selected list of basic
terms is complete. Furthermore, none of these primitive constructs will ever be
regarded as absolutely undefined; and in some cases their root physical definitions
to be reviewed below will later demand further qualification. In spite of these de-
partures from mathematical propriety, it is still possible to test quantum theory for
logical consistency by following a program which parallels similar considerations in
more rigorous logical systems.

Because the primitive constructs mentioned above are not a priori independent
and undefined, it is necessary to begin with explanations which convey their minimal
physical meanings. Such accounts will suffice until tensions in the logical matrix of
primitives and postulates induced by the problem of measurement create the need
for further explication.

The concept of system is understood throughout physics as the actual object of
study; epistemologically, it is posited as the bearer of observables and hypostatized
to become said object. A mathematician might be disposed to define a system as a
set of observable-symbols, but such purity misses the point. An example of a quan-
tum system is an electron in a given environment or, equivalently, a Dirac field in a
single electron state interacting with other given physical systems. Since the concept
of quantum observable is philosophically more sophisticated than its classical
progenitor, we postpone the details to the next section. It is sufficient for the moment
to state that whenever a system is subjected to the process called measurement of a
given observable, there emerges a number, the result of the measurement. Thus ob-
servables serve to provide quantitative information about systems; every observable
is endowed with measurement procedures which, if performed upon the system,
yield the numerical results. Accordingly, observables are also called physical quanti-
ties. For reasons to be discussed later, we have purposely described these classically
transparent concepts in what seems at first to be an overly cumbersome manner.

In accordance with the emphasis in physics on reproducibility of phenomena, a
single measurement carries little significance. Systematic study of a given type of
system therefore requires a well-defined, repeatable process of preparation. In
general, what is of interest in physics is a set of measurement results for several
observables, where the measurements are all performed upon identically prepared
systems. Since acts of preparation are themselves physical processes under the
governance of quantum theory, an interesting exercise related to the theory of
measurement is the quantal description of a preparation. We shall return to this idea
subsequently (section 14, Part II).

The collection of identically prepared systems upon which the various measure-
ments are performed is called the ensemble; more than one philosophic stand has
been taken by physicists regarding the exact status of the quantum ensemble. It
turns out that the different requirements placed upon the measurement act depend
strongly on different meanings attached to the ensemble concept and the related
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construct, physical state. A later section will contrast the various kinds of ensembles
used in physics in order to identify the rather unique character of the quantum
ensemble.

In all physical theories, the state of a system refers to its momentary physical con-
dition; it is the seat of causality in physics in the sense that some law of motion con-
trols its temporal evolution. By ““physical condition” is meant that states are related
somehow to observables, and to measurement results. In the form given above the
quantal postulates seem to correlate the state concept to a system only through an
intervening ensemble of such systems identically prepared. Only the statistics of
measurement results obey a causal law. Thus, in effect quantum theory seems to
shift the reference of the state concept from the individual physical system to the
ensemble.

It might be objected that this modification is illusory, that the postulates were

-stated with a distorted emphasis on ensembles which hides the true meaning of state.
Thus, classical statistical mechanics might be axiomatized in a similar format; but
the classical individual state would be lurking in the shadows and could be exposed
with the proper logical illumination. Elsewhere [20] we have carefully examined this
question and demonstrated that, while such is indeed the case for classical statistics,
no such analogous reduction to individual states is possible within the quantum
framework.

A quantum state refers irreducibly to an ensemble; an ensemble is defined by its
mode of preparation and characterized by the statistics of measurements performed
upon its member systems, and these statistics determine the state. Thus it is often
convenient to speak of a preparation of state, a concept emphasized by Margenau
[18] to delineate a class of physical processes often erroneously called measurements.
This completes our preliminary survey of the key terms of general quantum theory;
but before attempting to describe quantally the process of measurement, we shall
undertake deeper analysis of the constructs observable and ensemble.

4. The nature of quantum: observables. To those physicists who take mathematics to
be in the same category as metal-working lathes and vacuum pumps, the subtleties
taught by modern mathematicians often seem inane. Among these is the difference
between a function fand its range value at domain point x, f(x). Even in classical
mechanics, however, there are two instances in which this distinction is physically
meaningful, for it represents a philosophically important dichotomy among physical
constructs. Consider first the case of the Hamiltonian H, a function of phase (g, p).
Here the value of logically distinguishing H and H (g, p) is eventually recognized by
anyone thoughtfully studying analytical mechanics. In fact, the term functional form
is often used to stress that the function itself, not its value, is under consideration.
H itself is the mathematical representative of the system of interest; i.e. ““the func-
tional form of H(q, p)” contains the dynamical characteristics of the system and
represents it in the law of motion. The numerical value of H(g, p), on the other hand,
is usually just the result which would be obtained if an energy measurement were
performed on the system. (For the sake of familiarization, we continue to use this
tedious phraseology introduced earlier for minimal descriptions of measurement.)
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Failure to take note of the difference between H and H(g, p) can actually lead to
faulty reasoning of physical significance. For example, consider a mechanical
problem with initial conditions H(g, p) = E and g = ¢, (E and g, are constants).
Hamilton’s equations, used properly, will determine the motion. But consider the
following reasoning: since H(g, p) is not explicitly time-dependent, H(g, p) = E not
just initially but throughout the motion, according to a basic theorem. Hamilton’s
equations therefore become especially simple if the constant E is substituted for H.
The immediate results are

. 8H~__’_3_E____0 ._QH_aE_.O.

p""—"a_q_"‘ 8q'— > g =7—=—-5-=U;
hence q(t) = ¢, p(t) = 0. The particle just sits still! That this solution is wrong is
easily seen by considering H = (p?/2m) + (k[2)q?, the simple harmonic oscillator,
which under initial conditions of the type given is not in general immobile. The
error lay of course in neglecting the distinction between a function and its value.

There is a second instance in classical mechanics where this mathematical point
could be stressed; it was not, however, until the advent of quantum mechanics that
its message became apparent. Because of its dynamical significance, the function H
is rather special; but in classical mechanics, every function of phase has physical
meaning. A function corresponds to an observable; and the value of a function for
a state (g, p) is, again in our “mjnimal” phraseology, the result which would be ob-
tained if a measurement of the observable were performed upon a system in said
state. Since the state uniguely determines the measurement result for every observ-
able through the corresponding function, the natural classical manner of describing
the situation was not a minimal account but rather the simpler assertion that in a
state (g, p) the system had an observable A of value A(g, p). For example, “the
oscillator has an energy of 30 ergs”; and, of course, if an energy measurement is
performed, the result would be 30 ergs—but to state this explicitly seems pointless.
Thus with the notable exception of H, classical mechanics did not require rending
the function from its value, nor the observable from its measurement result; and the
concept of measurement entered only implicitly into physical discourse.

A glance at the postulates and theorems in section 2 suggests that no such de-
parture from the minimal terminology is admissible in quantum theory. There the
constructs observable and measurement result are related only via probabilistic
connections, and measurement thereby emerges as a construct which must appear
explicitly in quantal propositions.

This separation of the concepts observable and measurement result is of con-
siderable importance to the philosophic understanding of quantum physics. The
peculiar nature of quantal observables has been depicted in several ways, three of
which we shall briefly review ¢: Bohr’s complementarity principle [4], Margenau’s
latency theory [17], and Heisenberg’s “potentia’ doctrine [12].

Complementarity is accorded at least token recognition in virtually every intro-
ductory quantum text. Its basic premise is apparently that the nature and results of

8 Qutside the present context, the divergence of these three viewpoints far exceeds their
similarity, as later sections will illustrate.
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microphysical research demonstrate that what we called a minimal account is also
a maximal account. The utter impossibility of direct perception of atomic objects
suggests the separation of observable and measurement result; the failure of all
attempts to preassign unique measurement results to all observables by careful
preparation of state renders the separation final. Thus, given an atomic object
(including a mode of preparation), there is the choice of measuring any observable
and a theory which provides probabilities for the possible results; but to say that
the system has position ¢,, momentum p,, energy E,, etc. is physically meaningless.
Accordingly, Bohr coined the term complementary to describe this characteristically
quantum relationship among the observables.

Margenau’s latency theory classifies observables by the terms possessed and latent.
In the classical proposition that a particle has a certain energy, the energy is clearly
understood as a property possessed by the system. Similarly, any classical function
of state—mechanical, electrodynamic, or thermodynamic—denotes an observable
attached possessively to a system. Nevertheless, in classical physics there are also
observables associated with systems not possessively but responsively; i.e. if sub-
jected to a certain environment, a system displays a property not constantly ex-
hibited. For example, the acoustic “observable” pitch is inapplicable to a vibrating
reed in an evacuated box; but if the enclosure is opened to the atmosphere, a ““value”
of the pitch emerges. Such is the nature of a latent observable. Because it is impossible
to assign values to all the observables of a quantum system in a possessive way and
because quantum theory unavoidably deals only with statistics of measurement
results, most of its observables are latent. It is strictly improper to speak of a quan-
tum system’s having energy E,; the strongest admissible statement is the conditional
one that, if an energy measurement were performed, the result would, with some
calculable probability, be E,. Quantum observables are thus latent in the sense that
their values appear only in response to measurement. Quantal latency for a given
observable is represented mathematically by the existence of physically realizable
state vectors which are not eigenvectors of the corresponding operator, i.e. states
for which measurement results for the observable in question are irreducibly un-
predictable. Hence, almost all quantal operators correspond to latent observables.”

Another description of the nature of quantum observables appears in Heisen-
berg’s discussions of the Copenhagen interpretation. The state of a quantum system
before measurement is envisaged as a set of tendencies likened to Aristotelian
potentia. Upon measurement one possibility is fulfilled, as an actual, perceptible
event occurs, culminating in the extraction of a number. Measurement of an observ-
able is thus depicted as a “transition from the possible to the actual,” which is but
another way to state the latent character of the construct observable in quantum
theory.

5. The nature and purpose of ensembles. In any physical theory which assigns
probabilities to possible measurement results, use of the construct ensemble is un-
7 Perhaps those which generate superselection rules are an exception: in one form, super-

selection rules exclude pure states which are not eigenstates of certain observables (cf. sec. 14,
Part II); therefore it would always be possible to regard such observables as possessed.
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avoidable, simply because probability in physics means relative frequency. This is
not to say, in sterile operationist fashion, that through this empirical definition
probability acquires its total significance. The situation in probability theory is no
different in this respect from the rest of physics; i.e. constructs are endowed not
only with empirical definitions but also with theoretical ones. In the case of proba-
bility, the theoretical side has long been in controversy; rival mathematical schools
lay the foundations in different ways. As with other mathematical choices, physicists
adopt the most naively intuitable version capable of meeting their needs. However,
in any case probability, as drawn from mathematics, is logically a primitive term
defined implicitly by the axioms in which it is embedded. It obtains physical mean-
ing only when the epistemic rule of correspondence? is invoked which correlates it
to the relative frequency of measurement results.

Although the foregoing remarks correctly portray the epistemological status of
physical probability, the historical development of course did not proceed so logi-
cally. As Carnap [6] has noted, the search for a good theoretical definition of
probability is a problem of explication, i.e. replacement of an old, vague concept by
a new, exact one. Thus the logically prior mathematical theory was itself inspired by
common-sense notions of probability as a measure of tendencies or propensities for
events to occur. Undoubtedly such ideas likewise underlie—and perhaps under-
mine—the physicist’s conception of probability.

Consider, for example, the following proposition: if a measurement of observ-
able &/ is performed upon a system (prepared in a specified manner), the proba-
bility of obtaining the result a; is W;. Superficially, layman and physicist alike con-
strue W, as somehow reflecting a tendency for the emergence of a; from that system
at the instant of measurement; but careful consideration reveals the rather mystical
tenor of that view. Actually W is a clearly defined quantity, viz. the relative fre-
quency of the result ¢, arising from.e/-measurements upon an ensemble of identical
systems & all prepared in the manner II. Whatever physical information about the
pair (&, I1) probabilities like W, may carry, the connection between system and
probability is always through the intermediary construct, ensemble; otherwise,
probability is a concept too hazy to qualify for a place in physics.

So far we have discussed only the precise meaning of physical probability; that
analysis now justifies a shift in emphasis from probability itself to the intimately
related notion of ensemble, since a probability without an ensemble is unphysical.
Of special importance, the various ways in which probabilities enter theoretical
physics are mirrored in the nature and purpose of the associated ensembles. The
relevance of a study of classical and quantal ensembles to the quantum theory of
measurement will become clear in later sections.

A physical ensemble is basically a set of identically prepared independent systems.
In principle, measurements can be performed on the constituents at any instant
after preparation; and the set is sufficiently large to warrant statistical analysis of
the measurement results, including meaningful identification of probability as rela-
tive frequency. However, the phrase, “a set of identically prepared systems,”

8 For elaboration, cf. [17].
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represents an abstraction physically realizable in several ways. The term “‘set” de-
notes a mental collection of objects which need not even coexist; a set may be an
aggregation of elements all present at once, a temporal sequence of single elements,
or any admixture of these two extremes. Similarly, “identically prepared systems”
might refer to just one system prepared and sequentially reprepared. Whichever
combination is selected, the member systems are strictly independent ; for example,
the assemblage of molecules constituting a real gas is not an ensemble of molecules.

The physical significance of an ensemble depends not just on its structure but also
on its purpose, i.e. on the connection between the ensemble and the actual physical
situation to which it refers. In the classical realm, perhaps the simplest ensemble
imaginable is a collection of coexisting, noninteracting mechanical systems. If their
common preparation process consists of placing a system in a given dynamical state,
the resultant ensemble will then be homogeneous, or pure, for obviously every sub-
ensemble is identical to the whole ensemble so far as measurement statistics are
concerned. However, if the mode of preparation is less discriminating, there will be
a distribution of states over the ensemble, sets of measurement statistics will vary
among subensembles, and hence the whole ensemble will be mixed. Although this
simple ensemble thus illuminates the basic physical meaning of ensemble homo-
geneity, defined mathematically in section 2, it leaves the impression that the homo-
geneity concept is all too trivial to be of any value. However, this seeming triviality
is but a manifestation of the classical context in which the example was given; in
particular, it was implicit in the language used that the observables, hence the
classical states, were possessed, a property which enables a convenient pictorial
conception of the systems.

In Gibbsian statistical mechanics, an ensemble of the type just described is em-
ployed; but it is not used directly, i.e. the physical system of interest is not itself a
collection of coexisting, noninteracting, identically prepared systems. In fact, it is
just one such system, related to the imaginary ensemble of replicas by a postulated
correspondence between observed values and ensemble averages. Why, then, is an
ensemble used at all? From a strict mechanistic viewpoint, the reason might be
simply that thermodynamic systems, whose behaviour Gibbs sought to comprehend
mechanically, are incredibly complex. Actual knowledge of a precise mechanical
state for the septillion molecules in a mole of gas is a practical chimera. Gibbs’
virtual ensemble could be regarded, therefore, as a mathematical representation of
such ignorance. In fact, the scheme was later generalized to become modern in-
formation theory. It should be stressed, however, that we have asserted only that
the Gibbsian ensemble permits consistent interpretation in terms of ignorance, not
that it must be so understood. Indeed, so long as the physical significance of ergodic
theory remains in dispute, there is a possibility that even a complete mechanical
state specification of a complex system would not account for its thermodynamic
behavior, in which case the Gibbsian ensemble would be a physical construct far
more abstract and fundamental than its “ignorance interpretation” suggests.
Gibb’s ensemble allows the ignorance interpretation chiefly because it is framed
within a classical metaphysic which provides something to be ignorant of, viz. the
values of possessed observables.
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Consider now the transition to the latent observables of quantum theory and its
impact upon everything said about classical ensembles. That simple ensemble con-
sisting of a simultaneous assembly of noninteracting systems identically prepared
now requires a “minimal” description. Strict emphasis on measurement results and
the correlation of their statistics to modes of preparation replaces the graphic
account in terms of individual classical states. The first preparation instruction given
above, “place each system in a given dynamical state,” is now quite meaningless. In
view of the latency of quantal observables, the most that can be said is to “use a
method of preparation such that the associated statistics of measurement results
indicate a homogeneous ensemble.” Similarly, some preparation schemes will pro-
duce ensembles whose measurement statistics are summarized by an inhomogeneous
mean value functional. The essential point is that this latency-enforced revision of
ideas destroys the basis for interpreting ensembles as expressive of ignorance in the
Gibbsian sense, for in quantum physics there are no longer even in principle any innate
quantities of which to be ‘“‘ignorant.” In quantum theory the actual object of study is
effectively the ensemble itself; however, that ensemble may be any of the types
described earlier in this section. In particular, it might even be a single quantum
system in a temporal alternating sequence of identical preparations and diverse
measurement operations [18].

As mentioned earlier, we have demonstrated elsewhere that, by contrast to the
classical case, in quantum theory the concept of homogeneity cannot be used in a
consistent way to assign physical states to single elements of an ensemble. Although
ordinary physical jargon speaks of “a system in the state ,” that phrase can only
mean either (1) an element of a pure ensemble with density operator p = P,, or
(2) an element of a pure subensemble (o) of a general mixed ensemble whose
density operator may be expanded as p = wip® + wop®, Wy + wy =1, w; > 0,
we > 0, p¥ = P,. The fact that in case (2) the same element may equally well be
called ““a system in (another) state ¢” (since the expansion of p into pure suben-
sembles is not unique) proves the absurdity of literally associating a state vector with
a single member of an ensemble. (For elaboration, see reference [20].)

Nevertheless, because any mixed ensemble can in principle be subdivided into sets
of pure subensembles, there is a logically weak sense in which the quantum mixture
is often linked to ignorance: by analogy to the Gibbsian case, the mixed ensemble
is sometimes interpreted to mean that there is ignorance as to which pure state the
system is “‘really in.”” Indeed in the discipline called quantum statistical mechanics,
this fiction is artificially upheld by conjuring up “two averages” from the quantal
mean value expression m(A) = Tr(pA4). Suppose p = >, w,P,, is one among the
many ways the ensemble at hand can be grouped into pure subensembles, w, being
the fraction of the original ensemble in the P, -subensemble, if this particular selec-
tion is made. Then, m(4) = Tr(pA4) = > wilthy, Ay is the average result of o7~
measurements on the ensemble with density operator p. Now, despite the fact that
this expansion is not unique, it is standard practice in statistical mechanics to
declare, as for example ter Haar [24] does, that m(4) ““is twice an average. First we
take the quantum mechanical average . . . in a system described by the wave func-
tion ¢, and, secondly, we take the average over the ensemble.”” The introduction to
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the same chapter typically cautions that in quantum ensemble theory, “one must be
extremely careful to make a clear distinction between the statistical aspects inherent
in quantum mechanics and the statistical aspects introduced by the ensembles.”
Such statements sound as though (1) ¥,-statistics are not related to ensembles, and
(2) that mixed density operators always refer to ensembles made up of systems
“really in” pure states .

Actually, (1) and (2) are both false; however, if we make the spurious identifica-~
tion of ¥, as the quantal analogue to a classical state (as noted above, there is none)
and interpret “ensemble” in (2) as meaning ‘““virtual assembly of coexisting, identi-
cally prepared systems,” there results a pseudo-analogue to Gibbs’ method which
is of motivational value in quantum statistical mechanics. To make the analogy
complete, there must be a postulated connection between Tr(pA4) and observed values
of thermodynamic quantities. Such a postulate together with knowledge of specific
p’s is essentially the logical core of quantum statistical mechanics; meaningless
“classical” analysis of quantum ensembles is not necessary, although it may serve
to suggest the formulation of useful p’s. However, its intuitive value in this context
should not be mistaken for rational physics.

This digression on quantum statistical mechanics was not made to condemn its
heuristic methods but to repudiate the erroneous idea that the general density
operator represents ignorance in perfect analogy to the Gibbsian model; the density
operator is not at all the sole property of quantum statistical mechanics but is
actually a basic quantal construct. In fact, a mixed p cannot refer to an ensemble of
systems each “‘really in” a pure state since, as we have repeatedly emphasized, that
phraseology is logically ambiguous. A mathematically parallel situation in classical
optics arises for polarization of light. If a light beam is, for example, unpolarized,
we cannot meaningfully conclude that there are “really”’ two incoherent ‘‘sub-
beams” of equal weight each linearly polarized but along perpendicular directions,
for the analysis is not unique. With equal justification, many other such dissections
of the unpolarized beam may be performed, among these the assertion that the
“sub-beams” are “‘actually” circularly polarized in opposite senses. Empirically,
every unpolarized beam can be split either way with the proper equipment; thus
propositions about the “hidden structure” of the unpolarized beam are physically
meaningless. Just as there are light beams which are intrinsically unpolarized or
partially polarized, there are quantum ensembles which are intrinsically mixed;
neither has anything to do with ignorance.

To complete this discussion of ensembles, we draw attention to a striking differ-
ence between the classical and quantal cases. A classical ensemble is described by
the set of probabilities that member systems are in the various pure subensembles.
Because the latter correspond to classical states, they are not only statistically homo-
geneous (as defined in section 2) but also dispersionless, which means that for any
observable, measurement results from a pure subensemble are all identical. The
collection of pure subensembles into which any given ensemble may be resolved is
unique. Because it is physically possible to select the unique, pure, dispersionless
subensembles from the original ensemble, the above mentioned probabilities may be
called reducible, a term used in this connection by Margenau [19].
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For a quantum ensemble, the reduction to pure subensembles is no longer unique;
nevertheless, similar selection processes are still possible. Once a resolution to
homogeneous subensembles has been specified, the total ensemble is then charac-
terized in part by reducible probabilities just as in the classical case. However, by a
theorem of von Neumann, no quantum ensemble, not even a homogeneous one, is
dispersionless.® Therefore, reduction to pure subensembles does not explain away all
probabilities; there always remain probabilities, called irreducible by Margenau
[19], which reflect the intrinsic dispersion of homogeneous quantum ensembles.
Incidentally, this property is the backbone of Heisenberg’s Principle of Indeter-
minacy. To summarize: a classical ensemble may be reduced to a unique set of
homogeneous, dispersionless subensembles; a quantum ensemble may be reduced
to any one of numerous sets of homogeneous subensembles each of which in-
variably exhibits dispersion in the statistics of measurement results for most
observables. '

6. Measurement in the Copenhagen interpretation. Throughout the literature on
quantum measurement, one key point is accorded universal acceptance as the
fundamental desideratum of a quantum theory of measurement, viz. the proposition
that.e/-measurements upon an ensemble whose initial density operator is p™ = P, ,
P = >y {o, Yooy, Where {e;} are the eigenvectors of o7’s operator 4, will produce
a post-measurement ensemble whose density operator is

ﬁ(n) = kZ !<05k, ¢n>lzpak°

From this it follows that «/-measurements upon an initially mixed ensemble
characterized by p = >, w,p™ induce this transformation in the density operator:

p = Z Wnp(n) —_ ﬁ = Z Wnﬁ(n) = Z Wy 2 <(Xk, Pwnak>Pak.
n n n k
This may be expressed as
P - ﬁ = Z <o‘}c’ Pak>Pak7
k

the form used by von Neumann; or if P, is written |o,> {e;,| (Dirac notation), this
“of-measurement transformation” assumes another simple form,

p—>p = PopPe,.
k

Henceforth we shall frequently refer to p— p simply as the (von Neumann)
measurement transformation.

Thus the philosophical challenge of the measurement concept in quantum theory
is generally translated into mathematical physics as follows: prove that the measure-
ment interaction of a system with an 7-meter transforms the system density
operator in the manner just defined. Sometimes this problem is expressed in the
colorful language of waves: prove that measurement ‘“destroys coherence” or

9 For proof, cf. [25], 332.
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“introduces random phase relations.” The origin of these phrases is to be found in
the historic analogy between quantum mechanics and classical optics, which is
especially clear in the familiar Schrodinger wave mechanics.

Unfortunately, such picturesque analogies to classical optics can never deepen
our understanding of quantum measurement; indeed, they may even becloud the
real issues. Although it is undeniable that quantum theoretical calculations often
bear striking resemblance to those of classical optics and acoustics (for obvious
historical reasons) and that working physicists therefore draw heavily on such
mathematical parallels in the course of everyday problem solving, nevertheless, as
physical theories, wave optics and ““wave” mechanics are strikingly distinct. As a
consequence of this physical gulf, these mathematical analogies may offer more
confusion that illumination when applied to a problem so fundamental as the
quantum theory of measurement.

The reason that proof of the measurement transformation is so commonly
accepted as the goal of quantum measurement theory is undoubtedly the compati-
bility of that goal with the so-called Copenhagen interpretation of quantum theory
to which we now turn for an explanation.

Because of the explicitness of the proposition which we are asking the Copenhagen
school to justify, general epistemological considerations like those of Bohr and von
Weiszéicker are not too helpful. On the other hand, Heisenberg tends to be more
specific in his philosophic discussions and has in fact given detailed expositions of
the nature of measurement; accordingly, we shall take him as spokesman for the so-
called*® Copenhagen version of quantum measurement theory.

A common method of elucidating a complex subject is by analogy to something
familiar, provided the analogy is not too superficial or purely poetic. Thus we have
seen in previous sections that features of quantum theory can be explained by
drawing parallels to both classical optics and statistical mechanics. In the case of
optics, the possibility of confusion loomed large; but the framework of statistical
mechanics provided an excellent analogue to that of quantum theory—up to a
point. Heisenberg has expounded the Copenhagen version of measurement theory
by appealing to the latter analogy. Because of its evident impact upon quantum
philosophers and theorists, we now closely scrutinize his analysis.

With Heisenberg [11] consider, first from the standpoint of classical Gibbsian
statistics, a hot metal occasionally emitting a thermal electron. Near this emitter is a
photographic plate which registers all electrons emitted above some established
threshold velocity. The temperature 7" of the metal is measured, and its thermo-
dynamic state is represented mechanically by the canonical ensemble, i.e.
p(q, p) < exp(— H(q, p)/kT), where H is the Hamiltonian of the metal. Now, as
time passes, p(g, p) develops in accordance with Liouville’s equation; in particular,
if the composite system of metal plus plate is considered, it is in principle possible

10 Tt might well be argued that there are many ‘“Copenhagen interpretations” and that the
present section deals with the Heisenberg <“Copenhagen interpretation” as opposed, for example,
to the Bohr “Copenhagen interpretation”; however, we shall not enter into that debate. In the
present context, the term “Copenhagen interpretation” will be used in the same way Heisenberg
uses it.
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to compute the probability that a given number of electrons have been detected by
a certain time. Now, as noted in the preceding section on ensembles, it is possible
to regard this use of the canonical ensemble as an expression of mechanical ignor-
ance. Heisenberg clearly takes this position when he says that if an “observer is
present, he will suddenly register the fact that the plate is blackened. The transition
from the possible to the actual is thereby completed as far as he is concerned; he
correspondingly alters the mathematical representation discontinuously, and the
new ensemble contains only the blackened photographic plate. ... We see from
this that the characterization of a system by an ensemble not only specifies the
properties of this system, but also contains information** about the extent of the
observer’s knowledge of the system.”

To complete this classical analogue to the Copenhagen version of quantum
measurement, it is necessary to provide a counterpart to complementarity. Follow-
ing an idea of Bohr [5], this may be done by recalling from statistical thermo-
dynamics that a closed system is properly represented by a microcanonical ensemble
p(q, p) o< 8(H (g, p) — E,;), whereas an open system (in thermal equilibrium with a
heat reservoir) requires a canonical ensemble, p(g, p) oc exp (— H(q, p)/kT). In the
former case, the energy is fixed but the temperature is not determined; to measure
the temperature, the system must be “opened” and put in thermal equilibrium with
a thermometer. But when that is done, the energy fluctuates in accordance with the
canonical distribution. Thus a macroscopic description involving the concept
temperature is more or less ‘““‘complementary” to a precise micromechanical descrip-
tion in which temperature is undetermined.

Obviously applying this “classical complementarity’ to the hot metal and photo-
graphic plate, Heisenberg reasons that complete knowledge of the microstate of a
closed metal-plus-plate system would permit exact rather than just probabilistic
predictions concerning the blackening sequence, but “the statement of the tempera-
ture would then have been completely meaningless.” On the other hand, if that
composite system is open to its environment (called by Heisenberg “the external
world”), then temperature supposedly becomes meaningful but precise knowledge
of the microstate no longer eliminates probabilities, exact prediction being pre-
cluded because “we do not know every detail of the external world.”

The Copenhagen interpretation is essentially an attempt to provide exact quantal
analogues for the concepts of statistical thermodynamics, provided the latter are
understood in ways just explained.'? A logical first step would be to determine (1)
what in statistical mechanics corresponds to the density operator, and (2) to what
extent the analogy is correct. As we have already pointed out, as a mathematical
object characterizing statistics of measurement results for an ensemble, the density
operator plays the same role as Gibbs’ density-of-phase; moreover, a quantum
ensemble having a state vector (i.e. p = P,) is analogous—so far as homogeneity is
concerned—to a classical ensemble of systems all in the same mechanical state. But
we have also observed that state vectors differ from classical microstates in ways (to

11 None of the italics in the quotations of this section is in Heisenberg’s original papers.

12 It should be noted that several of the above statements from classical statistics as interpreted

by Heisenberg are familiar but not universally agreed upon by theoretical physicists.
2—1.P.S.
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be recalled as needed) which render this last analogy imperfect. Copenhagen
theorists tend to ignore these infelicities; thus Heisenberg carries the ignorance
interpretation of classical mixed ensembles over to quantum theory when he ex-
plains ! that “the probability function combines objective and subjective elements™
with this exception: “In ideal cases, the subjective element in the probability func-
tion may be practically negligible as compared with the objective one. The physicists
then speak of a ‘pure case’.” We have already called attention in section 5 to the
inconsistency of this viewpoint. To regard a quantal mixture as expressing subjec-
tive ignorance of actual objective pure states is, in view of the essential latency of
quantum observables, physically meaningless. Any attempt to assign pure states to
individual elements of a mixed ensemble encounters hopeless ambiguity [20],
primarily because of a deep logical fissure in the analogy to classical statistics, viz.
the circumstance that in quantum theory homogeneity does not eliminate disper-
sion. The Copenhagen interpretation therefore pushes the analogy between density
operator and density-of-phase beyond its proper bounds.

A second quantal analogue to statistical mechanics is based on the effects of inter-
action. We have systematically contrasted the dynamics of classical and quantal
interactions elsewhere [20]; superficially the analogy seems a good one, for in both
theories an initially pure ensemble evolves into a mixture upon interaction with a
mixed ensemble. In accordance with the ignorance interpretation of ensembles,
Heisenberg therefore asserts that a system open to the “external world” must be
described by a mixed ensemble, “since we do not know the details of the ‘external
world system’.” [11] This reasoning is correct in classical physics but fallacious in
quantum theory. Indeed, in the latter case, even if the “‘details were known” so that
no “‘subjective” element entered the description of the “external world,” i.e. even
if the “external world” were in an objective, pure state, still the initially pure open
system would evolve into a mixture! Once again, quantum theory proves incom-
patible with the ignorance interpretation of ensembles.

In any case, only a closed** system can be dynamically characterized by a state
vector; thus just as temperature was declared “meaningless™ for a closed classical
system, so apparently are all physical quantities for a closed quantum system. As
Heisenberg puts it [11], although state vectors are objective, they are “abstract and
incomprehensible,” and “do not refer to real space or to a real property.” To make
an actual measurement, system-plus-apparatus must be open, for “‘connection with
the external world is one of the necessary conditions for the measuring apparatus to
perform its function.” It follows of course that system-plus-apparatus can only be
an element of a mixed ensemble; and for Heisenberg this automatically entails
“statements about the observer’s knowledge. If the observer later registers a certain
behavior of the measuring apparatus as actual, he thereby alters the mathematical
representation discontinuously, because a certain one among the various possibilities
has proved to be the real one.”

In mathematical terms, the Copenhagen description of an &/-measurement on a

13[12], 53.
14 By closed we mean a system not interacting with its environment; i.e. the Hamiltonian for
system plus environment has no interaction term.
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system & from a pure ensemble therefore runs as follows. & is initially closed and
in the state ¢ = >, <oy, ¥>oy,, Which represents objective tendencies toward the
possible «7-values {a,} with respective probabilities {|<{«, $>|%}. However, since &
is isolated, no &/-measurement can be performed; for measurement requires inter-
action with surroundings. Now, an open system must be described by a density
operator, i.e. by a whole ensemble of systems in various states. When % is ““opened”
for an.7-measurement, its proper representative is therefore such an ensemble; but
this introduces a subjective element, viz. ignorance as to which of the o7-values
actually obtains. The density operator after the measurement interaction (but before
the actual.«/-value is observed) is accordingly p = > |<oy, ¥>|? P,,, since a system
in eigenstate o is certain to have thes/-value ay, and [{ay, > |2 is just the probability
originally associated with that value. Finally, observation of the actual &/-value
eradicates the ignorance; and, if g, is the result, the state «; is assigned to the
system. The overall effect of an «/-measurement upon the state ¢ = >, <oy, Doy
was therefore contraction of ¢ to one term o, an act called by Copenhagen theorists
“reduction of the wave packet.”

There is the official answer to our question as to why derivation of the measure-
ment transformation is popularly adopted as the goal of quantum measurement
theory. That transformation, originally formulated by von Neumann, is indeed the
correct mathematization of the Copenhagen philosophy of measurement. If the
latter were espoused, the postulates of section 2 would have to be augmented by the
following common statement connecting the measurement concept to wave packet
reduction in a definitive, analytic sense:

P: (Strong Projection Postulate) 1If an «/-measurement yields the result a,, the
immediate post-measurement state of the system measured is o, Aoy, = ayer,..

This proposition, as stated, is absurd if only because it associates state vectors
with single systems in the illicit, classical manner discussed in section 5. Moreover,
P cannot be accepted as a postulate because, as Margenau [18], [19] has shown,
there exist realistic measurement procedures which in no sense satisfy P. Finally,
from a practical viewpoint, Occam’s Razor perhaps suffices to dismiss P from
axiomatic status; for despite its frequent appearance in the opening chapters of
quantum mechanics texts, P is never used in any calculation. Thus P is at once
absurd, false, and useless. '

There is, however, a statement resembling P which is at least not absurd, though
its necessity and utility are certainly in doubt:

P’: (Weak Projection Postulate) If o/-measurements are performed on an
ensemble, the post-measurement subensemble consisting of those systems
which yielded a; has density operator P,,.

P’, milder than P, only suggests that when the interaction ceases, a certain selection
of subensembles would always be possible. Together with the other axioms, it does
imply the measurement transformation Ps, ey ysa, —> S <o $>|% Po,, but the
fact remains that we have found no reason to adopt either that transformation or
P’ as a necessary property of measurement. Indeed since the foregoing dissection
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of the Copenhagen interpretation has revealed its foundation to be a set of over-
extended analogies to a highly subjective version of classical statistics, no supple-
mentation of the quantum axioms even by P’ seems at all justifiable.

7. Outline of standard measurement theory. To provide a skeletal basis for subse-
quent discussions of its many ramifications, the ‘“standard” quantum theory of
measurement will now be outlined in an abstract mathematical fashion temporarily
avoiding all philosophical problems of interpretation. Any actual measurement of
an observable o/ on a quantum system % assumed to be an element of a known
ensemble, is performed with an auxiliary system .#(s/) is called a measuring
apparatus for observable 7, or o/-meter. This means that & and .# physically
interact so that known correlations arise between the possible measurement results
of observable &7 and some observable % belonging to .#. Since 4 is an./-meter,
these correlations are sufficient to render a “direct” «/-measurement superfluous.
Thus o7 is measured by “reading the o7-meter,” i.e. by measuring € on ./Z.

Let o7, and 2, be the Hilbert spaces associated with ¥ and .#, respectively.
The tensor product space s = 3¢, ® S, is then appropriate for the study of the
&~ interaction. As usual, the operators corresponding to .27 and € will be denoted
by A ®1and 1 ® C. To avoid burdensome notation, we assume for the present
that 4 and C have discrete, nondegenerate spectra. A4, C satisfy Ao, = a0,
Cyi = cyi; {0} spans oy, {y;} spans 75, and {o;, & v} spans .

Nothing significant comes from considering mixtures as opposed to pure states;
we assume therefore that initially & and .# are “in” pure states ¢ and y. (Having
made the point that the ensemble must not be forgotten, we shall henceforth often
use this common expression.) It can be shown that the composite system & + #
will then be in state ¢ & x.

By Th9 the temporal evolution of the state vector is always expressible by a linear
evolution operator T y(t5) = T(2,, t1)(t;). In the product space 4, if & and .# do
not interact, T is decomposable to T; ® T,; conversely, an indecomposable T ex-
presses interaction.

Now, according to the general principles stated above, the measurement process
entails &~ interaction leading to the establishment of correlations. Mathemati-
cally, this will be expressed as a condition on T, the indecomposable evolution
operator for «/-measurement. That condition (correlation assumption) is almost
always given as

TA(O‘k ® X) = o ® Yi»

from which it follows that
Ty @ x) = Ta (O, <otr hpe @ X) = >, Lotes P00 @ ¥
k k

The desired correlation arises as follows: it can be shown from the axioms that the
final composite state vector > {ey, ¥ o ® y, means that, if an e/-measurement is
performed on & and a ¥-measurement on .#, the probability that the pair (ay, ¢;)
will result is just |<ey, #>|? 8;;. Hence, the ¥-measurement alone suffices.
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Finally, it is customary to consider the post-measurement #-ensemble indepen-
dently; this is done by focusing on the measurement statistics for #-observables
only, i.e. those corresponding to operators of the form B ® 1. A simple calculation
shows that the density operator g, of that ensemble is given by?!®

p1 = Tr3 Py, o, vyen@re = z [<ety $|2 Py
k

Thus the density operator for & has, in the course of the measurement act, changed
from Py, cap u5a, 10 D |<otgy ¥|2 Py, which is just the measurement transformation

deemed so essential by the Copenhagen school.

8. An untenable consequence of the standard theory. In its crude form based on
assignment of state vectors to single systems, the projection postulate (P) is easily
used to “prove” that simultaneous measurement of noncommuting observables is
impossible. All that is required is the observation that the post-measurement state,
by virtue of wave packet reduction, would have to be simultaneously an eigenvector
of two different operators. Unless the latter commute, such an eigenvector is a
rarity; in fact usually none exists at all. Now, we hold that any proposition which
declares impossible the simultaneous measurement of two observables necessarily
stems from a false hypothesis. This follows from the fact that it is possible to con-
struct within the quantal framework given by P1-P3 legitimate models*® of simul-
taneous measurement schemes for noncommuting observables. Thus from a physical
point of view, to say that the statement “« and & cannot be measured simul-
taneously” is an analytic truth simply condemns the axiom set from which it was
derived. We have then essentially a reductio ad absurdum argument against the
fanciful version of wave packet reduction, which has, however, already been re-
jected above on other grounds.

This raises the question as to whether the weaker (but strongest admissible) form
of the projection postulate (P’) is also subject to such a critique; the answer is that
P, as an isolated postulate, is not directly assailable along these lines because of its
careful association of eigenvectors with ensembles rather than individual systems.
Nevertheless, it turns out that P’, like P, does become untenable when confronted
with basic quantal theorems; for like naive wave packet reduction, it implies that
two observables o/ and & are simultaneously measurable only if [4, B] = 0.

To prove this, recall first that according to von Neumann’s measurement trans-
formation, an &7/-measurement on a pure ensemble converts the density operator
from P, to the mixture > |{cy, ¥>|? P,, . Similarly, a #-measurement would induce
the change P, — >, |[<B, ¥>|2 PB,. If this transformation is a universal property of
measurement, a simultaneous measure of.Z and 4 must therefore be described by

Pw.e-ﬁ = Z 1<06k, l!l>l2P,xk = Z ‘<Bl’ ¢>12Pﬁl'

k l

15 Tr, signifies a trace operation involving only matrix indices representing 5 .
16 Such counterexamples to the widely believed principle of incompatibility of noncommuting
observables are discussed in detail in [21].
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According to the probability rules of quantum theory,
Wa(bi; p) = Tr(pPg,),
which is independent of the particular representation of . Hence,
Walbis §) = Tr(pPs) = 3, Koy I? Te(PuPa) = 2, <ot D I* [ <6 el
but also
Wa(bi; ) = Tr(pPs) = |<Bi ¥D|%;

thus we have
|<Bo #312 = |2 <Bus > <o " = Z |t 912 |<B1s 1|2

Clearly, this does not hold for every ¢, {;}, and {8,}. To find conditions under which
it is correct, note that

|2 <Bus > Cotes ¥D[F = > (<Br> o <eir ) (D, <Brs otn> <oty )
k k n
= Z l<aks ¢'>l2 |<Bb 0‘k>|2
> o B B oy iy o) oty Y-

nkn#k

The measurement transformation is therefore applicable only to simultaneous
&/, 7 measurements such that

) Z oty B {Bis on by 0> Loty ¥ = 0,
n#

which means that the measurement transformation can describe simultaneous
measurements only for some pairs of observables, viz. those whose eigenvectors
satisfy equation (1) for all ¢.

To find the relation between the sets of eigenvectors {«;} and {8;}, we consider
special ’s:

Let y = (1/V2)(ay + ax), N # K. Substitution into (1) gives

Z ety B> {Brs an>(/2)(Sew + Sicx)(Onn + Onx)

' = %(<a1\h ﬁl> </gl’ aK> + <0‘K, Bl> <Bls OCN>
Re(Cay, B <Bi, ax)) = 0.

Similarly, let = (1/V2)(ay + iax), N # K, to get
z ety B1) By en)(/2)(Bew — i8xx)(Onn + i81k)

n#k

I

= & s B B> = < B> By )
= —Im(<°‘Ns Bl> <ﬂla 0‘1{>) = 0.
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Hence, equation (1) may be replaced by the simpler restriction
@) {otny B> {B1s 2my = 0, forevery I, n,m,n # m.

Since {e;} and {B,} are eigenvector sets, neither contains the null vector. Thus, any
oy, has the property that {8, «,> # 0 for some value of /, say / = L. Equation (2)
then implies that {e,, 8,> = 0, n # M, i.e. B, is orthogonal to every element of {o;}
except one, «,,. But {o} is a complete set; therefore «,; and B, must be equal up to a
phase factor (i.e. belong to the same ray in Hilbert space). The same argument
applies to all values of L. Hence, each element of complete set {8;} is an element of
complete set {«;}; the eigenvector sets for observables.eZ and & are identical (except
for unimportant phases). It follows that the operators 4, B corresponding to
simultaneously measurable observables .27, # must commute!

We have therefore proved that the measurement transformation

Pw; [<oty |2 Py,

forbids the simultaneous measurement of noncommuting observables.

Yet it is just this transformation which is widely accepted as a universal charac-
teristic of measurement. Most presentations of the quantum theory of measurement,
including von Neumann’s [25] and London and Bauer’s [16] classic treatments (the
standard theory outlined in section 7), adopt it as a goal. A derivation of it typically
counts not only as a general explanation of measurement but also as a demonstra-
tion of the internal consistency of quantum theory. We now see that this point of
view must be rejected, for the transformation entails an absurd corollary, viz. that
simultaneous measurements of noncommuting observables are impossible. Hence
the transformation P, — > [{ay, $>|? P,, cannot be upheld as a defining attribute
of the quantum measurement process.

9. The apparatus as a ‘‘classical’’ system. When Schrédinger [23] offered his
“burleske” quantum description of a cat in a box, he illustrated a point which many
quantum theorists have taken seriously in connection with measurement theory.
Schrodinger’s cat is incarcerated in a chamber containing a few radioactive atoms
and some equipment. The only interaction between cat and atoms occurs when an
atom disintegrates, but that rare event will trigger some lethal machinery. A geiger
counter responds to the decay by setting into operation a hammer which shatters a
flask of cyanide. Thus the interaction correlates the possible states of the atoms with
the ““alive” and “dead” states of the cat.

Consider now a quantum theoretical description of the composite system con-
sisting initially of the cat and one unstable atom. The cat-observable of interest is
the proposition, “it is alive,” with two eigenvalues, 1 (yes) and 0 (no), to which
belong eigenstates « and 8, respectively. For the atom, let ¢ denote its initial unstable
state and 6 its possible stable state. At first, the composite system is in the state
H(0) = « ® ¢; as time progresses, ¥ develops into #(?) = c1(He @ ¢ + c2(1)8 ® 6,
which indicates the correlation between the two systems.
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Reluctance to accept this as an adequate description of what has happened in the
box stems from the unfortunate literal interpretation of the phrase “a system in
state 6.”” Thus it is said [15] that in actuality the state of a cat is never a blurred
superposition of “living” and ‘“‘dead” eigenstates, but is at all times one or the
other, though which one might be unknown. To express this ignorance (recall the
Copenhagen interpretation), supposedly a mixture is required. Even though we
contend that this demand arises from a misinterpretation of s, nevertheless it seems
at first that this mysterious desire for a mixture to describe the cat is automatically
fulfilled anyhow. Indeed, the mortality statistics for the cat alone are easily calcu-
lated and the density operator is, as a matter of fact, mixed:

pDy = |c1(1)|? Py + |co(D)|2 Ps.

Strangely enough, this does not satisfy the objectors; their demands are even
stronger. Supposedly, it is an a priori truth that a cat-atom system should be
described by the mixed, correlated density operator,

p(1) = [ei(D]? Pugo + |c2(D]? Poo,

which would refer of course to an imaginary ensemble representing our ignorance
as to which of the two possibilities actually obtained. Unfortunately, the temporal
evolution,

Prgo—> !cl(t)lz Prgo + fcz(t)]2Pé®9

is absolutely impossible within the dynamical scheme of quantum theory, unless the
composite system interacts with another system. However, it is pointless to multiply
the number of systems, for at each state the same objections would arise, together
with the same demand that an impossible total density operator is the “correct” one.
Nor would it help to assume, as in Heisenberg’s theory of measurement, that the
cat-atom system, to be observed at all, must be immersed in an environment
(Heisenberg’s “‘external world”) described by a mixture, say p = >, w,P,,. It is
true that the new total system—cat, atom, and surroundings—would then be in a
mixed state at time 7; but note closely its form (immediately derivable from the
linearity of quantum dynamics):

Ptx@(p ® z WkP‘Vk = z WkPa®w®yk
k k

- z WiP (e ® 0@ (B d7n) + ¢ @@ (B 6 ¥m )1
%

Every component of the resultant mixture has a “blurred” cat in it!
Schrodinger’s cat is of course a metaphor; what it represents is the notion of
classical system, about which there are naturally many preconceptions. Chief among
these is the cherished belief that a classical system cannot take part in statistical
considerations which include the so-called “interference” of probabilities which
occurs for quantum states. A classical system always possesses a definite value for
every classical observable, although there may be ignorance as to which value; but
if so, the associated probabilities do not ““interfere.” One might ask: why so much
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interest in prequantum ideas ? After all, there is no such thing as a classical system,
except in a special limiting case of quantum theory. Besides, as already suggested,
the cat paradox is based on the unwarranted association of i with a single cat-atom
system in an almost occult sense. Thus a superposition of two eigenstates for a
classical system is regarded as a kind of unreal, smeared representation which does
not recognize that at all times such systems possess either one eigenvalue or the
other. We have already granted in section 4 that in the quantum framework observ-
ables are not possessed; but it is a gross distortion to say that a superposition of
eigenstates represents anything “blurred”. Consider again the two density operators
for the cat-atom system:

(1) p =P, b=cra@¢p + cd @6
2 p= le1|? Pugo + [€2]? Psgo

The physical meaning of (1) is just this: in an ensemble of cat-atom systems ex-
amined at time ¢, the fraction |c,;(#)|? of the systems will display a live cat (and un-
changed atom); the fraction |c,(f)|2 will exhibit a dead one (and radioactive decay
products). Moreover, (2) means exactly the same thing so far as the observables in
question are concerned. As has already been discussed at length, it is improper to
regard pure states as referring to single systems and mixed states to imaginary en-
sembles expressing ignorance. Every density operator, pure or mixed, has the same
reference—an ensemble.

This is not to say that (1) and (2) are identical; in principle, there exist observables
whose measurement statistics are different in the two cases; hence the only scientific
way to show that (2) is preferable to (1) would be to study empirical measurement
results for such an observable. In the absence of such evidence, there is no reason to
prefer (2) to (1) provided quantum theory is understood, not in the Copenhagen
interpretation, but rather as outlined in sections 2-5. To insist that a composite
system which is partly “classical” cannot be in a superposition of eigenstates is
therefore quite dogmatic.

Nevertheless, many theories of measurement differ from the standard one given in
section 7 by imposing the additional requirement upon .# that it be classical. As a
result, much effort is expended in formulating reasons for replacing the inevitable
post-measurement pure state of & + .# by a mixture. One method of justifying
replacement of the pure state by a mixture is to define some sense in which the two
are equivalent; the definition would also serve to identify the “classical” level within
a quantal context. But in what sense can two unequal density operators, p‘ and
0?, be physically “equivalent” ? Clearly they are distinguishable only by comparison
of the measurement statistics they entail. Thus p® and p® are certainly equivalent
if, for every A, Tr(p®4) = Tr(p®A); in fact this is only true in the extreme case
when p® = p@. If, on the other hand, only a restricted set of operators, A={4,},
is considered, p® and p® will be indistinguishable relative to A-measurements, pro-
vided Tr(p™®4,) = Tr(p®4,), for every A4, in the set A. This concept, which we shall
call A-equivalence and denote by p™® 2 p*?, is occasionally used to secure the
desired post-measurement mixture.
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In terms of the notation introduced in section 7, the problem of measurement, for
theorists worried about the “classical” aspect of .#, is now reduced to the follow-

ing: find a meaningful restriction to place on A such that p® 2 p?, where
PP = Ps, carwran®re PP = 2k <ok, $2|% Py, wy,. The observables corresponding
to operators in A are then called the “classical’ ones, i.e. those directly apprehended
by the laboratory physicist, who cannot therefore distinguish p* from p®. Examples
of quantum measurement theories in which A-equivalence plays this role are those
of Feyerabend [8], Wakita [26], and Jauch [13]; but these are motivated more or less
by an understanding of basic quantum theory in which Schrédinger’s cat allegory
is a paradox. We have already considered this position and dismissed it as an un-
fortunate byproduct of the Copenhagen interpretation.

In discourses on complementarity, Bohr repeatedly insisted that classical descrip-
tion plays a role in quantum theory which is unavoidable and of fundamental
significance. His often quoted declaration [3], ““... however far the phenomena
transcend the scope of classical physical explanation, the account of all evidence must
be expressed in classical terms,” has been echoed again and again. Heisenberg, for
example, notes that the language of the laboratory employs the concepts of classical
physics, and then asserts ([12], p. 44) that “we cannot and should not replace these
concepts by any others.” Such remarks go far beyond the milder and more reason-
able asymptotic requirement that no quantal prediction concerning classically
describable “macroscopic experience” should contradict valid classical prediction.
Strictly, of course, there is always theoretical contradiction in the sense that quantal
and classical constructs are quite different!”; the correspondence principle can re-
quire only empirical agreement. This, however, is not the point stressed in the fore-
going quotations.

Are we logically forced to accept the claim that classical physics is the corner-
stone of quantum theory ? Must the language of the laboratory be classical? To
answer the first question, contrast the correspondence postulate (P1) as presented
in section 2 with the following popular formulation which does make classical
mechanics appear to be the basis of quantum mechanics:

Pla: The observabies ¢ (position) and p (momentum) correspond to operators
0, P which satisfy [Q, P] = ifil. Any observable.«Z, whose state function
in classical mechanics is 2/(q, p) corresponds to a Hermitean operator of
the form 4 = (Q, P).

Note that the very concept of observable is here construed to be basically classi-
cal; quantal representatives of observables are generated from their classical
analogues. However, the effectiveness of this procedure (which, incidentally, is not
always logically consistent) is obviously limited by the fact that quantum theory
considers observables for which no classical analogue is imaginable. Nevertheless,
quantum field theory, for example, is often introduced “‘heuristically” or “induc-
tively” by generalizing Pla to an unconvincing method called “quantization.” The
concept of quantum field is then induced from a bizarre analysis of classical con-

17 This point has been discussed at length by Bohm [2], Feyerabend [8], and Hanson [10].
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tinuum mechanics in which field strengths become, upon “‘quantization,” non-
commuting field operators.

Actually, Pla and its generalizations are not required at all among the basic
principles of quantum theory. The notion that classical physics is the foundation
of quantum physics has an evident historical origin, but is of no logical value. Both
theories have the same epistemological status as verified connections among their
constructs, which are related in well defined ways to the given, the data of empirical
experience. However, for historical reasons and because quantal and classical
accounts must be empirically compatible within the classical sphere of interest,
many quantal rules of correspondence appear to be based on classical physics.
Bergmann [1] made much of this in his “logic of quanta.”” Nevertheless, this is
essentially a backward-looking position; the classical world view, properly under-
stood, is not self-evident, nor is it forced upon us by percepts. Like quantum theory,
its logical genesis was an act of scientific creativity, or construction. Thus it seems
preferable to formulate the correspondence postulate (P1) as in section 2, a state-
ment which recognizes no logical dependence of quantum theory upon classical
physics. The “quantization” process (Pla) is then diminished to its correct status
as a mnemonic device sometimes useful to classically trained physicists.

As for the second question, from the same philosophic perspective, it is clear that
classical physics need not and perhaps ultimately should not be the standard mode
of experiment description. The reasonable assertion that laboratory procedures be
reported in communicable, “common-sense’ language simply does not imply what
Bohr and Heisenberg suggest, viz. that whatever experimental operations are per-
formed must be described classically. Consider, for example, the complex of sensa-
tions which we categorize as the “motion of a Maxwell top” (an antique device
seemingly as “‘classical” as anything could ever be). The primitive datal percepts
involved are certainly neither classical nor quantal; moreover, these terms are not
necessarily applicable to the empirical constructs used to describe and quantify
observations and results of operations on the top. Only the far more abstract con-
structs and their interconnections which comprise the physical theory created to
explain these empirical observations can be reasonably called classical or quantal.
However, when a given theory is well entrenched, this “epistemological depth” of
its constructs is forgotten in practice, and experiments come to be described in
abstract terms provided by the theory itself. In the case of Maxwell’s top, an empirical
fact of interest is the variation in wobbling patterns which accompanies adjustments
of the screws on the sides of the top; but a complete report of this observation is
communicable without the sophisticated concepts of any physical theory, although
such a description would be cumbersome and verbose indeed. But since classical
mechanics provides the established theory of the top, the changing patterns of its
motion occasioned by screw adjustments may well be described in terms of “obser-
vations of the dependence of angular velocity upon the inertia tensor”—a truly
“classical” laboratory language. Hence familiarity with a successful theory (classical
mechanics) has created the illusion that its profound constructs are directly per-
ceptible or self-evident; i.e. the ““classical” laboratory language comes to be regarded
asnecessary, an unfortunate epistemological mistake. After all, quantum theory, too,
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can fully explain the observed wobblings of the top; and it could even provide a
“quantal” laboratory language, familiarity with which can, and perhaps some day
will, lead to its adoption as the “necessary’ vernacular of common sense descrip-
tion. We therefore reject the principle that the perceived world is somehow in-
herently “classical” and that the quantum theory of measurement must have a
“classical’’ aspect.

One of the trends (the ““A-equivalence theories’) in this kind of measurement
theory was mentioned earlier. The approach was rather formal, the method being
to “define away” allegedly undesirable interference terms. Another way to secure
the desired “classical’” aspect apparently originated with Jordan [14], who advo-
cated thermodynamic analysis of the measuring apparatus. However, again the
underlying purpose is apparently to derive the von Neumann measurement trans-
formation, which is, as we have seen before, the recurrent goal of most measure-
ment theories. A recent elaborate attempt along these lines due to Daneri, Prosperi,
and Loinger [7] has been endorsed by Rosenfeld [22], an outspoken apologist for
Copenhagen ideas (Bohr’s in particular). In their theory, the measurement trans-
formation is derived by expressing the “classical’ nature of apparatus in terms of
ergodicity conditions and defining macro-observables to be temporal averages of
quantal observables. It is then shown that the quantal dynamics of &% + ., if
supplemented by these conditions, effectively yields the measurement transforma-
tion and explains the registration of a permanent ‘“reading” in .#. According to
Rosenfeld, “The main purpose of the analysis of measurement is to exhibit the
physical process to which this formal ‘reduction’ [the measurement transformation]
corresponds,” and this Daneri-Prosperi-Loinger theory fulfills that requirement.

Probably such a demonstration does offer an approximate explanation of some
actual measurement schemes; but as we have already observed, its basic structure
is the derivation of an unnecessary, even rare, property (the measurement trans-
formation) from an erroneous metaphysical belief (that apparatus is inherently
“classical’).*8
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