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Quantum Assembly Semantics: 
The Fallacious Lingo of Occupation Numbers 
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The usual heuristic description of  quantum mechanical assemblies features 
so-called "'occupation numbers" interpreted quite literally. This essay critically 
compares that point of  view with a more rigorous understanding of  composite 
systems based upon a principal lesson of  Einstein's paradox and Bell's inequality, 
viz., that it is fallacious to regard a subsystem as possessing or "'occupying" any 
state whatever. 

1. M E R E  S E M A N T I C S  

A remarkable irony in the history of quantum mechanics has been the 
metamorphosis of the Einstein-Podolsky-Rosen paradox from its original 
detractive purpose, exposing the unreasonableness of quantum theory, into 
its currently popular supportive role, illustrating par excellence the amazing 
holistic interconnectedness of the quantal universe. The chief catalyst for 
this transformation was the theoretical work of J.S. Bell, to whom the 
present Foundations of Physics festschrift series, including this essay, is 
dedicated. 

Bell's quantitative comparison of the predictions of local hidden 
variables theories with those of quantum mechanics enabled the EPR 
problem to become experimental, with the celebrated consequence that 
quantum mechanics--despite all its strangeness, including even those EPR 
multiple correlations across spacelike intervals that once seemed fantastic--- 
has prevailed and is today generally accepted as the correct fundamental 
theory of nature. 
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Nevertheless, this acceptance, as expressed in textbooks and articles, 
often seems grudging or halfhearted, more practical then intuitive; indeed 
physical situations are still commonly described in rather neoclassical terms 
even when associated calculations are performed in the most modern quan- 
tal formalism. For example, one reads elaborate "physical" explanations 
wherein single electronic states in atoms or solids are said to be "occupied" 
or not, while attendant computations invoke mathematical structure 
incompatible with such language. 

To construct an apt historical analogy, we might imagine a celestial 
mechanician in the 18th Century who describes planetary motion "physi- 
cally" in Ptolemaic terms but faithfully uses Newtonian mathematics 
to generate his predictions. Such a scholar could justifiably be accused 
of taking more interest in technical results than in understanding the 
universe. 

In what follows we shall compare critically the usual heuristic descrip- 
tion of quantum assemblies of identical particles with the rigorous quan- 
tum mechanical treatment of such systems. We shall find that a literal 
reading of what is ordinarily regarded as the physically intuitive picture of 
quantum assemblies would in fact lead eventually to theoretical conflict, 
rather like what might be expected from our 18th-Century scholar if he did 
not at some point interrupt his Ptolemaic musings with Newtonian com- 
putations. 

Some readers will undoubtedly be inclined to dismiss the whole 
analysis as pedantic or perhaps merely semantic. After all, everybody does 
use quantum mechanics to make calculations even when accompanying 
descriptive terminology seems not purely quantal. Given the meticulous- 
ness of what follows, perhaps there is a bit of pedantry. And since we are 
dealing ultimately with the interpretation--the physical meaning--of quan- 
tal formalism, there is most assuredly a semantical component to our dis- 
cussion. It is not, however, "mere" semantics; for the quest to comprehend 
nature with a new intuition rooted deeply in quantum mechanics rather 
than some hoary neoclassical paradigm is surely not "mere" in any sense 
whatever. 

2. STATES OF ASSEMBLY AND SUBASSEMBLY 

Let ~4¢(n) and H(n) denote respectively the Hilbert space and energy 
operator for the nth particle in an assembly of N identical particles. 
Assuming for convenience that H(n) is entirely nondegenerate, we may 
write 

H(n) = Y, aP~(.)= ~ eP~(n) (1) 
8 
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where P~,{,)=-P~(n) is the projector onto the eigenvector qG(n) of H(n) 
belonging to eigenvalue e. According to the superselection rule for identical 
particles, the Hilbert space for the assembly will be a subspace of 
~ ( 1 ) ®  . . - ® o ~ ( N ) ,  either the totally antisymmetric . ~  if the identical 
particles are fermions or the totally symmetric ~,5( s if they are bosons. 
Moreover, in both cases only totally symmetric Hermitian operators that 
map .jfA (or of  s) into itself are to be regarded as physical observables. 

From these elementary principles are deduced the standard theories of 
Fermi and Bose assemblies familiar features of which include the Slater 
determinant form of a typical basis vector in ,/fa, 

1 

cp,,(1) q % , ( 2 ) - - - ~ G , ( N )  

~p~,,(1 ) ¢p~,,(2) 

¢,A1) ~o~,,,(X) 

(2) 

s jCs. and similar generic permutant forms for basis vectors t)~,~, ..... ,, in In 
both cases, the bookkeeping is normally simplified by introducing a set of 
nonnegative integers {n~}, where n~ is the number of times the row 
(q~(1)~G(2)---q)~(N)) occurs in a form like (2). Every 0A or 0 s  is 
described by a unique set {G}. Conversely, all vectors of the form ~ that 
are compatible with a given set {n~} differ at most by a sign; and each set 
{n~} describes a unique Os  

The connection between these rudimentary aspects of quantum 
statistics and the rather abstruse issues surrounding the EPR paradox lies 
in the mathematical observation that t) A, and many cases of ~b s, are 
generalizations of the multiply correlated states commonly employed in 
EPR discussions. It follows therefore that any fundamental lesson about 
quantum mechanics that has emerged from the EPR controversy ought to 
be incorporated into our understanding of quantum assemblies. In par- 
ticular, we note that the N = 2 case of (2) is exactly the mathematical form 
of the state most commonly employed in EPR investigations, both theoreti- 
cal and experimental, all of which demonstrate convincingly that when two 
particles are prepared in such a state, it makes no sense to pretend that one 
of the particles actually possesses energy e' (or is in state q%,) and that the 
other one has energy e" (or is in state ~G")- It would be tedious but not 
conceptually difficult to extend this conclusion mutatis rnutandis to higher 
values of N. 

Consequently, when seriously contemplating the physics of Fermi or 
Bose assemblies, it makes no sense to say that n~, particles have energy 
a', n~,, have energy d', etc. Yet this misinterpretation of the integers {n~ } 
is so common that they are commonly called "occupation numbers," a 
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nomenclature so entrenched that it is imagined to be quite "physical" by 
many students and professionals in practical chemistry, solid state physics, 
and elsewhere. 

Given that this usual intuitive description of an assembly is founda- 
tionally incorrect, the question naturally arises as to what, if anything, can 
properly be said about, say, a typical particle drawn at random from a 
Fermi assembly prepared in state (2). The remainder of this essay revolves 
about this question and related semantical matters, but since none of the 
points to be made would be qualitatively different for N >  2, we shall 
henceforth take N = 2. Thus simplified, our first problem becomes essen- 
tially this: determine the state of a typical fermion in the pair of identical 
fermions that has total state 

A 1 ~,~,~,, = ~ [q)~,(1) ® q),,,(2) - ~o..(1 ) ® q)~,(2)] (3) 

In the case of distinguishable particles, the solution would be imme- 
diately provided by the theory of reduced density operators, Observables 
associated exclusively with particle 1 would have the form A(1)® 1(2), and 
the requirement, for all A(1), that 

Trl(cr(1) A(1)) = A I~'~") (O~'~"l A(1)® 1(2) A (4) 

would yield as the state of particle 1 the reduced density operator 

o'(1) = Tr2 PoJ~:, = ½(P~,(1)+ P~,,(1)) (5) 

where Trn denotes the (partial) trace over Hilbert space J~°(n). Parallel 
results would follow for particle 2. 

However, here in the realm of identical particles it is technically 
incorrect to regard the form A ( 1 ) ® l ( 2 )  as an observable at all, since the 
superselection rule demands that all observables be totally symmetric. 
Accordingly, even if (5) is in some sense correct even for an assembly of 
identical particles, its derivation must be rather different. 

To approach this problem without compromising the notion of 
indistinguishability, consider the nondegenerate Hermitian operator A(n) 
defined on ~ ( n ) :  

A(n) = ~, aP~o(n~ =- ~ aPo(n) (6) 
a ,:l 

A legitimate (i.e., symmetric) observable for the pair of identical particles 
is the proposition defined by the following procedure: measure A for both 
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particles and ask if one yielded a', the other a". The operator representing 
this observable is 

Q(a', a")=P~,(1)®Pd,(2)+ P~,,(1)®P~,(2) (7) 

From Q(a', a') we can obtain another legitimate assembly observable that 
seems to refer to a single particle (though not a particular single particle) 
by introducing this proposition: measure A for both particles and ask if 
(either) one yielded a. The operator corresponding to this question is 

Q(a) = P~(1) ® 1(2) + 1(1 ) ® P~(2) (8) 

Suppose now that a data set for single fermions is generated by repeti- 
tion of this procedure: 

(i) Prepare a 2-fermion assembly in state (3). 

(ii) Select at random one of the fermions. 

(iii) Measure A on the fermion selected, and record the result a. 

If this is done for many different single-fermion observables A, 
whatever single-fermion density operator a correctly summarizes the resul- 
tant mean values of those observables would be the most reasonable 
candidate for "state" of a typical particle in the original assembly of identi- 
cal particles. 

Let Wa be the conditional probability that the particle chosen in 
step (ii) will yield result a upon measurement of A, given that it were 
known that one (but not of course which one) would definitely yield a. The 
probability that measurements of A upon the constituents of a Fermi 
assembly in state O a ,  would yield for one particle the value a is just 

A A I¢~,~,,). For single fermion in state ~(n), the probability that (¢~,~,,i Q(a) a 
measurement of A(n) will yield a is of course Tr.(a(n) P~(n)). Combining 
all of these observations, we obtain as a necessary condition on the 
unknown state a(n) 

Tr.[o-(n) P~(n)] = w~ Tr[ P o~:,Q(a) ] 

After substituting (8), the r.h.s, of (9) becomes 

(9) 

w.{Tr[P,s.P~(1 ) ® 1(2)] + Tr[P,{,  1(1 ) ® Pa(2)] } 

= w.{Trl [(Tr2 P,~,,) P~(1 )] + TH[(Tr l  P4,~.) P . (2) ]  } 

= w~{2 Tr.[l(P~,(n) + P,,,(n)) Po(n)] } (10) 
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where the last step follows from the identity of the two particles. Given the 
arbitrariness of A, combining (9) and (10) implies that 

a(n) = w~(P~,(n) + P~,,(n)) (11) 

our candidate for the single-particle density operator representing the state 
of a particle randomly selected from the assembly in state A ~,~,,. Note that 
because of the identity of the two particles the form of ~-(n) is, as would be 
expected, independent of n. Finally, since a density operator must have 
trace unity, we find upon taking the trace of both sides of (11) that 

a(n) = ½(P~,(n) + P~,,(n)) (12) 

which is in fact the same result noted earlier for the case of distinguishable 
particles. 

We conclude that when a 2-identical-fermion assembly is in state A 
it is nonsense to believe, as "occupation number'' lingo would suggest, that 
one fermion has energy e' and the other energy e"; however, if one wants 
to attribute a state to the typical fermion, then that state should be the 
mixture (12). Parallel results hold for similar Bose assemblies and for 
situations where N >  2. 

3. ASSEMBLY PHYSICS: HEURISTIC VS. RIGOROUS 

Our derivation of (12) was quantally rigorous in the important sense 
that the constituent particles of the assembly were not regarded as 
possessing energy values, known or unknown; i.e., "occupation numbers" 
were not taken literally. Nevertheless, it must be admitted that had we 
followed the more common neoclassical, heuristic mode of reasoning about 
Fermi assemblies, that derivation certainly would have seemed simpler. 
Indeed all that would have been required is (i) to infer (incorrectly) from 
the occupation number description of C A  that one particle has energy e', 
the other e", (ii) to deduce from the structure of ~A,, or perhaps from an 
indistinguishability argument that a randomly selected particle is equally 
likely to be the one with 5' or d', and (iii) to express this state of ignorance 
information-theoretically through the artifact of a density operator whose 
form would obviously be that of (12). 

To pursue more deeply the comparison of heuristic and rigorous 
approaches to quantum assemblies, we need a more precise mathematical 
account of the heuristic device of taking occupation numbers literally. This 
is readily obtained. If one fermion actually has energy e' and the other 
actually has energy e", then the pair is actually either in the state 
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q~r(1)®~0r,(2) or in the state (p~,,(1)®~0~,(2); assuming each is equally 
probable, we conclude that our knowledge of the 2-identical-fermion 
assembly, in this heuristic model, is fully expressed by the assembly density 
operator 

p~ = ½[P~,(1) ® P~,,(2) + Pr,(1) @ P~,(2)] 

= ½(e~,~. + e~,,~,) (13t 

Now, it is obvious that p), is not the same as p; = P0]~,,, the density 
operator that every physicist would surely use in any rigorous calculation 
involving this assembly. Is p~ therefore just a straw man concocted here for 
the sake of pedantry? I think not; for p}, expresses mathematically what is 
commonly said of such assemblies in heuristic arguments that purport to 
offer "physical" insight. And p; thus expresses what many physicists believe, 
or want to believe, about the physical nature of things. Like our fictitious 
18th Century celestial mechanician (Sec. 1 ) who intuits Ptotemaically and 
computes as a Newtonian, modern scientists often contemplate and discuss 
quantum assemblies as though descriptions like p~ were correct and 
relegate true quantum states like P'r to the purely formal, computational 
attic of mathematical physics. 

Despite the fact that p~, and p'r are unequal, they do in certain impor- 
tant cases provide identical physical predictions, a circumstance that 
tends to support the literal usage of "occupation numbers" for intuitive 
reasoning. For example, consider a 2-identical-fermion assembly as a 
member of a canonical ensemble with inverse temperature ft. The rigorous 
canonical density operator has the form 

pA= ~ e ~(~'+~") 
Z A PoJ, (14) 

where the sum is restricted in accordance with the antisymmetry inherent 
in OJ,, (Pauli exclusion), and 

Z A= ~ e -~(r+r~ (15) 

Taking the "occupation number" artifact literally, we may construct an 
heuristic canonical density operator by using p~, Pauli exclusion, and 
Boltzmann factors as follows: 

= E z + 
(16) 
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Again I stress that (16) captures mathematically what many physicists say 
and think intuitively, not what they do computationally. 

Often in statistical thermodynamics, one only wants to find assembly 
mean energy U as a function of temperature and extensive parameters such 
as volume. In this instance both p~ and p~ happen to provide the same 
value for U, viz., 

e -/3(~' + z") 
U~ = Tr(p AH) = Tr(p AH) = Z ZA (e' + ~") 

8' <2 ~" 

£-B(~'+ ~") 

= Z 2Z A (e '+ e") (17) 

where H =  H(1 ) ® 1(2) + 1(1 ) ® H(2). Can therefore a practical thermo- 
dynamicist safely ignore the subtle lessons .of the EPR paradox, con- 
sistentty adhere to the heuristic model of assemblies, and regard questions 
as to whether occupation numbers are physically meaningful as "merely 
semantic" ? 

To see that the answer to this question is negative, it suffices to com- 
pare the entropy values of the 2-identical-fermion assembly as calculated 
rigorously and heuristically. The rigorous version is well known: 

Z A S A = - k T r  pA In p~ = k f l U  A + k l n  (18) 

To perform the heuristic computation, we first rewrite (16) in a simpler 
spectral expansion: 

e-/~(~' + ~") 
P ~ =  Z 2 Z  A e r r ' +  

~' < 8': 

e-fl(e" + e") 

= 2 2Z  A Pr~" 
g' ~ g" 

Then 

?,' < ~': ~ Z  A 

(19) 

s A = - k Tr  p~ ln p~ 

= - k  ~ [ - f l ( e ' + e " ) - l n ( 2 Z A ) ] - -  

= k f lU  A + k ln(2Z A) 

= S : + k l n 2  

e-l~(e, + ~,,) 

2 Z  A 

(2o) 

Thus a statistical thermodynamicist who really believed in occupation 
numbers, who really believed that each fermion actually possessed an 
energy value, would assign too much entropy to the Fermi assembly. 
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Similar but quantitatively different results hold for an 
identical bosons. Again taking N = 2 for convenience, we 
symmetric basis vectors of the forms 

assembly of 
use totally 

1 ~ks, ,, = ~ _  [q~.(1) ® ~o~,,(2) + ~,,,(1) ® ¢~,(2)], 
,,/2 

8 ~ < 8" 

and 

s = q, A t )  ® q, /2)  (21) 

to construct the rigorous canonical density operator 

S__  P r -  ~ z S  Pos (22) 

where 

e -/~(~" + e') 
z S =  ~ e-B("+~")= ~ 2 F}-'~e-/~(2~) (23) 

The heuristic model of a 2-identical-boson assembly is derived by an argu- 
ment entirely analogous to the fermion case, except of course that no Pauli 
exclusion is invoked when enumerating possible values of the energies pos- 
sessed or "occupied" by the bosons. Consequently the heuristic canonical 
density operator would have the form 

P s = Z Z s (P~'~" + P,"~') (24) 

As in the fermion case, both rigorous and heuristic computations of 
assembly energy yield the same result 

US=Tr(pSH)=Tr(p~'H) = ~ Z s (~'+8") 

8 - -  ]~(~" + a")  8 -- f l (2e)  

= Z 2Z s ( d + d ' ) + ~ ( 2 8 ) ~  (25) 

However, once again the calculation of entropy drives a wedge between the 
two versions. The rigorous entropy has the standard form 

S _  S r - - k Tr  Pr in Pr = kflU s + k In Z s (26) 
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To prepare for calculating S s, we first manipulate ps as follows: 

pS= ~ e-~(~'~") ~e C-fl(2e) 
~, <~" 2Z s (P~,,:" + Pc'c) + ~ P~, 

e - 3 ( 2 ~ )  e - e ( ~ ' + c ' / p c ~ . + ~ p ~  
= ~ 2Z s 

(27) 

From the spectral form (27), we obtain 

S S h = - k T r  p~tn pS 

=kfl ~ 2Z s (e'+~")+kln(2Z s) ~ 2Z s 

+ kfl e-/3(2~ ~ - - ~  (2e) + k in  Z s ~ e-e(2*) zS  (28) 

Comparison of (25) and (28) leads to the form 

S.S=kflu+ (klnZS)(zS ~ e-~"+~"' + ~ e-~(2~') 

e-p(e' + ,~,') 
+ (k In 2) Z 2Z s (29) 

which is further simplified by using (23) and (26): 

e - 3 ( E , +  e,, ) 
S s__Sr+s (kln2)  Z 2Z s 

= s S +  (kln 2 ) 1 - 2 ~  j (30) 
g 

Thus, as in the fermion case, faithful adherence to the heuristic 
approach leads to an erroneously high value for entropy. Similar illustra- 
tions, involving larger assemblies, could of course be generated. The point, 
however, has been adequately made. Our understanding of the "hotistic" or 
"nonlocal" or "nonseparable" character of the quantal universe that has 
been disclosed by celebrated arguments about the EPR paradox, Bell's 
inequality, etc. should not be forgotten when we explore even the elemen- 
tary physics of quantum assemblies. 


