QUANTUM THEORETICAL CONCEPTS OF MEASUREMENT:
PART II*

JAMES L. PARK

Washington State University

This portion of the essay concludes a two-part paper, Part I of which appeared in an
earlier issue of this Journal. Part II begins with a careful study of the quantum descrip-
tion of real experiments in order to motivate a proposal that two distinct quantum
theoretical measurement constructs should be recognized, both of which must be dis-
tinguished from the concept of preparation. The different epistemological roles of these
concepts are compared and explained. It is then concluded that the only possible type
of “‘quantum measurement theory” is one of little metaphysical interest and that quan-
tum measurement seems problematical only when viewed from an overly narrow
classical perspective.

10. Infinite regression. Thoughtful analysis of the standard theory of quantum
measurement, or any of its variations, leads most theorists to recognize an interest-
ing basic property of the usual approach. This property, sometimes called infinite
regression, is received with varying degrees of enthusiasm depending on the meta-
physical outlook of the critic. The essence of infinite regression is contained in
this question: what performs the measurement upon .# ? Ordinary measurement
theory can only reply that a second apparatus .#’ must interact with .# in the
same manner .# interacts with %, i.e. with the effect that a measurement performed
upon #' permits certain prediction of what a concurrent measurement on .#
would have yielded. Obviously, this suggests inquiry as to what makes measure-
ments on .#’, and so on ad infinitum.

In his original formulation of standard quantum measurement theory, von
Neumann did not regard infinite regression as an undesirable attribute, but rather
as a necessary characteristic expressing in mathematical terms the notion of psycho-
physical parallelism. This idea derives from the elementary principle that all empiri-
cal observations must ultimately be regarded as perceived by the mind; the percep-
tion itself is an utterly primitive awareness of the given, a process intrinsically
irreducible to scientific law. Thus, in every application of the scientific method, at
some stage there must be statements to the effect that an observer simply observed
some datum, and this will be true no matter how far into his brain the scientific
analysis penetrates. Consider, for example, a measurement apparatus which regis-
ters its result as a pointer reading. It is most practical to terminate the analysis of
this measurement act by saying that the observer observes the position of the needle.
However, it is possible to go much further; for example, suppose the observation
is made visually. An electrodynamic treatment of the relevant interactions among
pointer, light, and eye can be invoked to explain the formation of a retinal image

* Received May, 1967. Part I of this article appears in the immediately preceding issue of
Philosophy of Science, Vol. 35, No. 3 (September, 1968).
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of the needle and scale; but if this work is carried out in hopes of explaining away
the observer, the effort is wasted. Instead of saying the observer observed the
needle, we can now say that he observed the retinal image of it, but the necessity
of the observing consciousness itself is as strong as before. It should be clear that
no study of the optic nerve or even of electrical properties of the brain could pos-
sibly terminate otherwise than in a statement that the observer becomes aware
of the needle position, or perhaps that this awareness occurs simultaneously with
some electrical effect in his brain, which would mean that a neurophysiologist study-
ing the observer’s brain would observe, say, a certain electroencephalogram pattern
concurrently with the observer’s announcement of the needle observation.

The primacy of the conscious mind in all scientific endeavor has the character
of a general philosophic truth, and it is unfortunate that this lofty point was ever
dragged down even as close to practical physics as quantum measurement theory.
There the false impression has arisen that physics, or at least quantum physics,
possesses an undesirable subjective element which must be reckoned with somehow.

In attempting to mathematize the subjectivistic excesses of some Copenhagen
pronouncements, von Neumann therefore proposed two distinct processes, motion
(P3) and measurement (P’), the latter representing the final transition to a con-
sciousness. His motivation for drawing up the standard theory of measurement
was to establish the consistency of P3 and P’ in the sense that the “‘cut™ between
observer and observed which P’ bridges should be arbitrary. Thus, in the standard
theory, the same results obtain for . if .# measures & or if .#’ measures & + .,
etc.

However, we have seen earlier that this theory cannot reasonably be called the
quantum theory of measurement. Are we therefore faced with an unusual subjective
feature in quantum theory ? The answer is negative, for in light of the understanding
of quantum theory elaborated in foregoing sections, we deny not just the popular
solution to this “quantal mind-body problem” but the problem itself. The founda-
tions of quantum theory nowhere exhibit any more or less ““subjectivism’ than does
classical mechanics; both theories, as has already been noted in another context,
are easily accommodated by the same epistemological framework. And infinite
regression is as much a property of classical as of quantum theories.

Nevertheless, von Neumann’s recognition of that property and his mathematical
enshrinement of it in the projection postulate has sometimes induced the belief
that quantum theory carries a destructive subjectivistic quality which must be
eliminated in order to save objective science. Thus justification is often sought
for replacement of pure states involving apparatus by mixtures (section 9); pre-
sumably, this would halt the regression by inserting a classical level and therefore
closing out the unwanted subjectivism. This illusion has its roots in the mechanistic
philosophy widely held in the classical epoch of physics, when physical laws were
regarded as purely objective ““discoveries™ totally divested of any metaphysical
format constructed by the physicists themselves. Actually, this tenet was philoso-
phically unacceptable [18] even in the heyday of classical physics; it is therefore
strange that objectivity for quantum theory should be sought by relating it to
classical physics. Both theories are subjective and objective in exactly the same ways
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[9], and both display the same infinite regression property. The main point we wish
to emphasize here is that this characteristic is not problematical, does not deprive
science of objectivity, but rather indicates that objectivity is established within
“subjective” experience.!® However, the problem of measurement in quantum
physics in the context of the present investigation is not of such philosophic
depth as to require further discussion in this vein.

Accordingly, we now dismiss this basic notion of infinite regression from further
consideration, since it darkens more than it illumines the problem at hand, viz.
to clarify the meaning of the quantal terms measurement and preparation. Never-
theless, the logical structure of the infinite regression analysis does prove to be quite
valuable in this connection, provided the above-mentioned efforts to link it to the
mind-body problem are forgotten.

Consider again the skeletal framework of quantum measurement theory, accord-
ing to which an «/-measurement on .% consists of an interaction with an .»7-meter
(7)) which establishes some correlation between relevant states of & and .#.
The «/-measurement is then carried out by observing the “reading” of .#(%7).
Undoubtedly, this account does offer the correct quantal description of many
laboratory procedures; but we now suggest that it does not deserve the name usu-
ally given it—the quantum theory of measurement. This “theory” cannot be said
to explain the concept measurement; indeed, as we shall see below, this theory
cannot even be stated carefully without implicitly using the term measurement
itself several times. In this respect, a quantal description of a measurement process
differs markedly from its classical counterpart, which does not require the term
measurement at all until the final stage when an observer “looks at” the meter. We
shall see below that the resultant dichotomy of meaning for the term measurement
in its classical and quantum usages is traceable to the respective characters of clas-
sical and quantal observables (section 4).

To verify our claim that so-called quantum measurement theory is not even
statable without using the term measurement itself, consider its essential feature,
the establishment of correlations. In classical physics, where observables may be
assigned values possessively, correlations between ¥ and .# refer to these possessed
physical quantities independently of measurement. This scheme, however, is in-
conceivable within the quantal framework, owing to the essential latency of obser-
vables. No matter what specific form correlations may take, in quantum theory
they are inevitably nothing but connections among potential measurement results.
For example, the correlation assumption of sec. 7,

TA(‘/‘ ® Xo) = Z ot ‘/’>05k & Vs

strictly implies only this: a simultaneous &/-measurement,*® on & and €-measure-
ment, on # at the completion of the measurement, interaction will yield the pair
(ax, ¢;) with nonzero probability only if & = /. It is therefore said that the measure-
ment process renders the «/-measurement on % redundant, since a #-measure-
ment on .# is sufficient for prediction with certainty as to what the post-measure-

19 For a further discussion on objectivity in quantum mechanics, cf. [12].
20 Subscripts on the term measurement will be referred to later.
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ment, &/-measurement, would yield. (It is interesting to note further that nothing
can be said with certainty about what result would be obtained in an &7/-measure-
ment; on & just before the measurement, interaction, except that |<{ey, $)|? is the
common probability distribution for 2/-measurements; before and after measure-
ment, interactions of this type.)

Thus we see that a rigorous quantum description of a measurement correlation
process is a verbally cuambersome account in which the concept measurement itself
enters repeatedly. This recurrent use of the term measurement is unavoidable in
any quantal description which adheres strictly to the latent character of quantum
observables. It will be urged in the concluding sections that this essential recurrence
is the key to understanding the epistemological status of the quantum term measure-
ment. To summarize: the goals of the present section have been (1) to point out
that the philosophic problem of infinite regression to consciousness is equally
relevant to both classical and quantum physics (and equally beyond the proper
domain and competence of both); and (2) to show that close logical scrutiny of any
measurement scheme in a manner suggested by the infinite regression argument
(viz. posing questions like “in what sense does .# measure . ?” and “what mea-
sures .# 7°) reveals that the quantum concept measurement, unlike the classical
one, must appear as a primitive term even in the so-called quantum theory of mea-
surement itself.

11. Quantum explanation of a real measurement. The favorite motivating experi-
ment for measurement theorists seems to be that of Stern and Gerlach, which is
alleged to be an example of the correlation 7T,(o; ® xo) = o ® yx, and is oc-
casionally elevated to the status of prototype for most, if not all, measurements.
This view clearly exaggerates its importance; nevertheless, the Stern-Gerlach
experiment is a good one to examine, if only because of its relative simplicity. We
therefore present a somewhat unconventional analysis of it.

Before getting immersed in the mathematics, let us briefly recapitulate the data
originally reported by Stern and Gerlach. A beam of silver atoms, emanating from
a slit in a furnace, was channeled between magnetic pole pieces toward a glass
plate, upon which silver deposits eventually accumulated. One pole piece was
knife-edged, the other flat; hence, the silver atoms traversed an inhomogeneous
magnetic field. Stern and Gerlach studied microphotographs of the deposits and
interpreted what they saw as follows [5]: “The pictures show that the silver atom
beam in an inhomogeneous magnetic field is split up into two beams in the direc-
tion of the inhomogeneity, one of which is attracted to the knife-edged pole and
the other of which is repelled.” This 1922 description is slightly tainted by classical
language. A “pure” quantum theorist would interpret the same photographs this
way: Position measurements on an ensemble of silver atoms, each prepared by
emission from a furnace and passage through an inhomogeneous magnetic field,
yield results whose statistical distribution exhibits two sharp peaks along the
direction of inhomogeneity of the field. (Often there are more such peaks, but if
ground state hydrogen atoms are used, as Phipps and Taylor [14] have done,
there are always just two.)
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To explain this phenomenon quantum mechanically, the initial state vector of
the hydrogen atom?! upon emergence from its source is assumed to be of the form
¥ & xo0. In the Schrédinger-Pauli representation, the spinor ¢ involves only elec-
tronic coordinates relative to the nucleus, while y, is a fairly localized wave packet
whose argument is the atomic “‘center of mass.” Thus the atom is formally regarded
as though it were a composite system whose constituents are initially in states
¢ and y,, a feature to be exploited later on (section 14). Let «;, «; be the eigen-
vectors belonging to the component of spin in the inhomogeneity direction of the
magnetic field. When the temporal evolution from initial state ¢ ® yo, where ¢
is the ground state, is calculated, the following result is obtained:

() b @ xo) = Z Lo, P o4 @ yil2) = V(D).

Of special interest is the center-of-mass motion, represented in the equation above
by yi(?), since it is the final position distribution of the atoms that the Stern-
Gerlach apparatus displays. This problem is solved by examining the final center-
of-mass position probability density. If 84y, denotes a common eigenvector of
center-of-mass coordinates ', %, Z, the required probability density is

W(X’ Y, Z; ‘F(t)) = <‘F(t), 1® P&xyz ‘F(t)>

= <Z e, ) ot @ i, z Loy P> e @ {Bxyz, Vi) 8XYZ>
[ k
= z <, ) oy ¥ Sy yiy Oxvz) {Bxvz> Vi)
kI

= Z [ets ¥D12|<{Bxv25 Vi) |?

It now turns out [6] that if & is the direction of field inhomogeneity, |{8xyz, y1)|?
is negligibly small except in the same Z-interval as one of the observed accumula-
tions on the final plate; similarly, |<{8xyz, va)|? practically vanishes outside the
neighborhood of the second deposit. The theory therefore fully accounts for obser-
vations of the Stern-Gerlach type described empirically above. Moreover, the theory
also reveals an interesting correlation between the internal eigenstates and the
center-of-mass motion. To be specific, in the expression for w(X, Y, Z), the
“strength” of the kth peak |[{Sxyz, vi»|?is “weighted” by |{e, > |?, a functional of the
internal eigenvector «,. This property is often invoked in Stern-Gerlach-centered
discussions on measurement theory. However, before getting into that, let us deter-
mine to what extent the quantal concept measurement has already been used in the
foregoing theoretical explanation of the actual Stern-Gerlach data.

First an assumption was made about the initial state s ® xo; thisamounted to a
number of conditional statements involving measurements never performed. For
example, to assume the hydrogen atom is initially in its ground state means, among

21 We take for simplicity the Phipps-Taylor case.
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other things, that if energy were measured, the result would be the lowest energy
level. This only illustrates that the concept of preparation ultimately depends on
that of measurement. To say that a certain physical act prepares a state p always
implicitly entails a set of conditional statements involving measurement in an essen-
tial way. Nevertheless, in the Stern-Gerlach experiment itself, none of these
measurements relating to the preparation of 4 ® y, is performed. It may be assumed
that such measurements have been made extensively in the past on a similar oven-
slit device or other source and that it is guaranteed to be a bona fide producer of
ensembles with p = P, g ,,.

The only measurements mentioned above in connection with the Stern-Gerlach
experiment as if they were actually performed are of the observables X, Y, Z,
i.e. atomic (center-of-mass) position coordinates. By contrasting this description
involving atomic position measurements to the more prosaic laboratory report of
Stern and Gerlach, we obtain a first indication of a point to be developed later,
viz. that the quantal concept of measurement is far more abstract and less empirical
than its name suggests.

The original Stern-Gerlach detection scheme—microphotographs of silver
deposits—was in fact too crude to perform a single position measurement. Yet
quantum theory explains the pattern of silver deposits as if they represented
numerous elementary position measurements, although the adherence of a single
silver atom to the glass plate is certainly never really observed. However, position,
measurements upon single microcosmic systems are not impossible; on the con-
trary, position is in a sense the most nearly “observable’ micro-observable there is,
as will become increasingly evident below. Now, suppose the glass plate is replaced
by a better detector which is able to perform an operation worthy of the name
position measurement. For example, impact of a single atom may trigger an “ava-
lanche” of reactions about the collision point which produce a photographable
‘“spot.” Atomic position can then be defined operationally by equating the center
coordinates on the spot with the “result of a position measurement.” (These
coordinates are determined by a “ruler,” a macroscopic device which, used cor-
rectly, will yield the same numbers regardless of the intuitive world view of the
experimenter; indeed he may employ quantum, Newtonian, or Aristotelian
mechanical concepts for his own personal thoughts about rulers.) Using that rule
of correspondence to relate the construct position measurement to empirical obser-
vation, the quantal explanation of the Stern-Gerlach effect in terms of “single
position measurements” is no longer problematical; however, this has not really
been the main point of this paragraph. Of more general value is the identification
of one rule of correspondence between a quantum observable (position) and a labo-
ratory operation.

Despite its innocent appearance, the foregoing operational definition is in experi-
mental practice not merely a specialized example; it is rather the fundamental rule
of correspondence in quantum physics, in the sense that all other quantum obser-
vables are actually measured by establishing correlations with the observable
position. All measurement paraphernalia—photographic emulsions, cloud cham-
bers, bubble chambers, counters—*‘‘directly’”” measure position in a manner similar



QUANTUM THEORETICAL CONCEPTS OF MEASUREMENT: PART II 395

to that described above. As Landé puts it,?2 . . . nowhere in physics do we have
‘direct’ data, the only exception being location in space and time, that is (q, t)-
values. Velocity, momentum, energy, etc. are always determined indirectly.”
DeBroglie makes the same point as follows [2]: “Any process of measurement of
a dynamic variable, such as the energy and momentum of a particle, is a complex
and indirect process which necessarily utilizes direct observation of particle local-
izations.” Probably deBroglie’s “‘necessarily” is too strong; the dominant practical
role of the observable position is a matter of fact rather than logic; but recognition
of this fact sheds more light on the nature and meaning of the quantal construct
measurement than do any of the so-called “‘theories of measurement” reviewed in
previous sections. What it suggests is that most quantum observables are never
“observed,” and that most of the measurements which are unavoidably mentioned
in every quantum theoretical explanation are in fact never performed. Indeed, in
a certain sense, they are perhaps unperformable. The remainder of this work
is devoted to the amplification and clarification of these remarks.

12. Construction of an operational definition. Consider the quantum observable
spin. How can it be measured ? What does it mean to say that systems from an
ensemble with state vector ¢ will upon measurement of the Z-component of spin,
&, yield 14 with relative frequency |<{cy, >|2? It is instructive to take a close look
at how an operational definition of &, is usually developed from the Stern-
Gerlach experiment. Once again we suppose that an ensemble of ground state
hydrogen atoms is available for study. As noted above, the Stern-Gerlach apparatus
brings about this state evolution:

T G xo) = kz Loy ) e @ yilt)-

We have already seen that w(X, Y, Z) suggests an interesting correlation between
&, and Z, due to properties of the ;.. This may be seen more clearly by computing
the joint probability for results of S, and Z-measurements?® at time ¢ Let {5}
denote eigenvalues of Sy; then the joint probability density w(s,, Z) is found as
follows:

W(sn, Z)
B f.: J‘:o <Z S o @ v P“n®P6xvz ,Z ™ ‘/’>°‘k®7k> axdy
= fj:, fjom ; $y ey P oy otmy 0Pt <1, Poxyz Y dX dY

= [<om, ¢>l2f_: f :o [(8xvz, yud|? dX dY.

Recall that |<8xyz, ¥.»|? almost vanishes except near one of the Stern-Gerlach

22 19], 121.
23 We now drop the notational distinction between observables &, 2 and operators
S Z.
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accumulations, which we shall call the nth region. The distribution w(s,, Z) there-
fore implies that with near certainty an S,-measurement would yield s, when and
only when a simultaneous Z-measurement yields a result in the nth region. This
leads to the common identification of the Stern-Gerlach apparatus as a kind of
“spin-meter” which operates as follows: to measure the observable S (on a ground
state hydrogen atom), direct the atom through a magnetic field inhomogeneous
in the Z direction, and then measure Z, already operationally defined. A Z-result
in the nth region is considered to be a “reading” s, of the “spin-meter.”

It is therefore tempting just to regard this procedure as the empirical meaning
of the quantal term spin-measurement. Unfortunately, this cannot be done for two
reasons: (1) the operational definitions of Z and S, would then be contradictory,
and (2) the Stern-Gerlach method cannot be a spin-measurement because its own
detailed quantum mechanical description involves the concept spin-measurement
in a logically anterior way.

Reason (1) is a consequence of the mathematical fact that y,, v, are not quite
orthogonal. Thus, although |<8xy, y,>|? is minuscule outside the nth region,
it does not vanish. Hence, there is a finite probability, for example, that simultaneous
Z- and S;-measurements would yield a Z-result in region 1 and the S;-eigenvalue
s2. In other words, we are able to evaluate “how good” a “‘spin-meter” the Stern-
Gerlach device is; therefore it cannot be used to define the quantal term spin-
measurement. If it were so employed, the operational definition of Z would be
contradicted: the appearance of a “spot” in the nth region would always mean
that an S,-measurement has yielded s, but would no longer indicate with certainty
that the Z-measurement result coincided with the “spot”! The best conclusion
seems to be that the Stern-Gerlach “spin-meter” is excellent but not perfect, and
hence unsuitable for defining the concept of spin-measurement. The importance
of this result lies in the fact that in practice the above “spin-meter” seems to
be the only kind there is; therefore, the construct spin-measurement—of proven
value in theoretical explanations—refers to no actual “laboratory measurement”
at all. This suggests perhaps that quantum physics uses the term measurement in
two distinct senses, one traditional and one peculiarly quantal. That such is the
case will emerge presently from the following consideration of reason (2).

Since it is universally applicable to any conceivable quantal description of a
“laboratory measurement,” reason (2) is more fundamental than reason (1). The
principal point has already been discussed in some generality at the end of section
10: the term measurement necessarily occurs as a primitive even in a quantal
description of a measurement process. In the present case, this means that a
careful account of the operation of a Stern-Gerlach “spin-meter”” runs as follows:
if an S,-measurement,?* on the atom just prior to the measurement, interaction
with the “spin-meter” would certainly have yielded s,, then immediately after the
measurement, interaction, an S,-measurement, will certainly yield s, and a Z-
measurement, will (almost) certainly yield a Z-value in the nth region. Hence the
post-measurement, S -measurement; is redundant; a post-measurement, Z-
measurement, is sufficient to deduce what an S,-measurement, would have given

2¢ As before, the subscripts should be ignored for the moment.
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at the instant the Stern-Gerlach measurement, procedure began. We hasten to point
out that this is not mere semantic legerdemain. No alternative quantal description is
conceivable; to explain in detail the operation of a Stern-Gerlach “spin-meter”
in any other way is impossible within the language of quantum theory! Reference
must be made to the imaginary results of S,-measurements which are never per-
formed in any laboratory. Furthermore, the very concept of performing an S,-
measurement seems to designate no empirical act whatsoever. Thus the Stern-
Gerlach device is said to reveal “what an S,-measurement would have given”
earlier (just before the atom entered the magnetic field); yet this earlier S,-measure-
ment itself is not even an imaginable laboratory operation. Indeed, the very device
which supposedly performs that S;-measurement can itself be described only in
terms of what the .S;-result would have been if S, had been measured! As suggested
in section 14, similar conclusions may be drawn from the quantal explanation of
any “laboratory measurement” procedure whatever. An experimental scheme
designed to “make measurements of 27 will in general be described in terms of
unperformed and unperformable &/-measurements.

13. The dual meaning of measurement in quantum physics. Imagine for a moment
that S; were an observable in the classical sense; it would then be meaningful to
say that the atom entering the Stern-Gerlach device has S; = s,. Assume further
that theoretical analysis demonstrates, in analogy to the quantal case, that such an
atom is always channeled to the nth region. It would then be permissible to con-
clude that the term S;-measurement merely refers to this operation: pass the atom
through a Stern-Gerlach device and observe the spatial region of its emergence.
This act is a measurement in the classical sense because it leads to a determination
of what S;-value the atom possessed. Furthermore, nowhere in this or any classical
description of a measurement procedure does the term measurement itself enter in a
fundamental way.

By contrasting this fictitious classical description of a Stern-Gerlach “spin-
meter” to its quantal counterpart, the source of difficulty in the quantum case
becomes apparent. At several points in the classical account of a measurement
process, the concept of possessed observable is employed; but at the analogous
places in a quantal account, this notion cannot be used. The basic structure of
quantum theory forbids it. In section 4, we noted that this old concept of possession
had been superseded in quantum theory by the idea of /atency. Thus the quantum
axioms (section 2) connect observables to systems and states only in a dispositional
sense. This connection is made through the primitive construct .«/-measurement,
about which nothing is said except that when it is performed upon a system, it
yields a number. Hence the logically primitive construct 2/-measurement, a con-
sequence of latency, plays a role in quantum theory analogous to that of possession
in classical theory. Accordingly, to convert a classical description of a measurement
procedure to a quantum description, each classical statement of the form, “% has
o/ = a;”’ must be replaced by the quantal proposition, ““an 27/-measurement upon
& would yield a,.”

The term measurement, as it appears in the quantum axioms, has therefore a
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theoretical status quite distinct from that of the term measurement in its classical
usage and in the phrase, “theory of measurement.” In recognition of his homonymy,
we shall henceforth designate the primitive construct measurement, which is essen-
tial to the statement of quantum axioms, as .#,; an /-measurement will be
denoted by .#,(«7). On the other hand, .#,(«/) will represent the classical concept
of measurement, or at least the nearest quantal analogue to it. For example, the
fictitious classical .#4(S;) is an operation which employs physical interaction to
establish a correlation between possessed S~ and Z-values of the atom, so that an
observation of the Z-value (i.e. intelligently “looking at” the “spot” and “ruler”)
enables inference of the S;-value. Similarly, the quantal .#,(S;) is an operation
which employs physical interaction to establish a correlation between the potential
results of .#,(S;) and .#,(Z) so that the actual result of a performed .#,(Z)
enables inference of the potential result of a never performed .#,(S). This impor-
tant distinction between .#, and .#, was hinted at in sections 10 and 12, where
subscripts were attached to the word measurement to suggest its two meanings in
quantum parlance.

In connection with .#; and .#,, several questions must be raised: (1) How does
# fit into the general epistemological framework of physics ? (2) Similarly, what
is the role of .#, in the scientific method ? (3) How are .#, and .#, related ? and
(4) What has all this to do with the quantum theory of measurement ? We shall now
discuss these points in that order.

(1) The most striking property of .#, is its abstractness; it is an ultimate primi-
tive construct irreducible to any others. Epistemologically it is like the concepts
physical quantity and mass point in classical mechanics—no phenomenon can be
theoretically comprehended without it. Yetin spite of its deeply theoretical status, the
nature of .#,, as implied by its role in the quantum axioms, suggests an abstract
mimicry of a naive view which equates measurement and elementary observation.
Thus the statement—*“if .#,(2) is performed upon &, it will yield the result a”—
is beguilingly similar in form to this: “if an observation is made of the sky, it will
‘yield’ the color blue.” However, the apparent similarity is purely grammatical;
the differences are far more important. If a literal interpretation is demanded
for the clause “.#,(&) is performed upon #,” then we shall have to provide some
kind of “microelf,” or “quantum demon,” to do the performing; for, as we have
just seen in the special case of spin-measurements, real physicists do not, indeed
cannot, “perform #,(S;).” .#,(S;) is quite typical in this respect. Hardly any
M () is ever “performed” by an experimenter; in practice, macro-position obser-
vations are perhaps the only exception. Nevertheless, the construct #,(27), even
if it is imagined to represent the perceptions of omnipresent g-demons, is invaluable
and unavoidable in the quantum theoretical explanation of all actual empirical
observations.

(2) In the remarks of section 3, the term measurement was tacitly interpreted
in the usual way as the epistemological link between percepts and concepts. On
reflection we now see that this ordinary measurement concept is .#,. By implicitly
using ., to discuss the term measurement in the quantum axioms, we confused
# 4 in the natural manner with .#,, which we now recognize as the only measure-
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ment-construct appearing in those postulates. However, the fundamental mediatory
role of .#, is the same in quantum physics as in the remainder of science; the
novelty of the quantum framework lies in the fact that, as a consequence of the
latency of observables, among the constructs which .#, relates to datal experience
is A ;.

(3) In classical physics, an .#,(27) procedure is always understood as establish-
ing a correlation between the possessed value of an abstract .7 and the possessed
value of some observable Z directly accessible to the experimenter. With de
Broglie and Landé, we have tentatively (cf. section 15) adopted the view that Z
is always essentially a position; thus the physicist always “looks at” a “spot” and
“ruler,” thereby observing & directly. It should be clear that without the latter
direct observation, .#4(27) would be impossible and the theory at hand therefore
physically meaningless. Applied to the quantum case, this means that there must
exist an & directly observable by a real experimenter; i.e. the physicist himself must
be the g-demon who performs #,(Z) by a simple “look-and-see” observation.
As before, Z is presumably a position, which the physicist observes directly as a
coincidence of ‘“‘spot” and “ruler.” Were he a quantum purist, he would of course
describe his actions as follows: “.#,(Z) was performed (‘ruler’ placed near ‘spot’)
and yielded x (‘spot’ coincided with ‘ruler’ mark x).” Thus for .#, to be possible
at all, a quantum physicist must for some 27 be himself a g-demon capable of *“per-
forming” .#,(<7), although for most &7’s his “performing .#,(<7)” is as incon-
ceivable as, for example, the direct perception of (possessed) energy by a classical
physicist.

(4) Having established the twofold meaning of measurement in quantum physics,
we are now able to state precisely the very most that any so-called quantum theory
of measurement could hope to explain. Simply put, such a theory can only offer a
description of an .# () in terms of M (/) and other #,’s. To reach that conclu-
sion, we assume that the final purpose of formulating a “quantum measurement
theory” would be to give a quantal description of actual laboratory measurement
processes, in particular, to achieve a quantum theoretical understanding of how
information about the microcosm is obtained. Roughly speaking, it is obvious that
knowledge of things unperceivable must be gained through correlations with
things directly apprehended. To be more scientific, a microsystem can be studied
only via physical interaction with it; otherwise, the requisite correlations could not
be established. On the other hand, a laboratory measurement scheme .#, can be
exhaustively described without using any postulates except those normally required
to explain other physical processes; this fact was essentially the crux of previous
sections in which we criticized the various extant ideas about measurement, some
of which seemed to regard quantum measurement processes as more than just
physical processes. Therefore, an .#, can and must always be explained in terms
of the basic constructs of quantum theory, among which are the .#,’s. The .#,’s
themselves, being ultimate primitive constructs, are not susceptive of further quan-
tal explanation. A ““quantum theory of .#,” would be tautological, like a “me-
chanical theory of motion.” Hence, a quantum theory of measurement can at most
be a quantum theory of .#,.
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14. Remarks on preparation. Several times in previous sections we have alluded
to the interdependence of the concepts measurement and preparation. Unfor-
tunately, many treatments of “measurement theory” fail to stress the differences
between these concepts. Frequently, measurement and preparation are regarded
as essentially equivalent; this premise leads inevitably to ‘“‘measurement” discus-
sions marked by severe ambiguities. For example, Schwinger’s ““algebra of measure-
ment” [17]is really a hybrid ““algebra of measurement and preparation’ in which the
two concepts are not carefully distinguished; and Groenewold [7] overtly ignores
the difference: I take all the time the term ‘measurement’ in a broad sense, includ-
ing initial preparations, intermediate observations and final detections. Those who
prefer another terminology are free to make the translation.”

This belief that measurement and preparation are practically equivalent arises
upon adoption at least of P’ as a universl quantum postulate. The latter has already
been discussed briefly, the principal conclusion being that P’, although occasionally
derivable, is required a priori in the quantal account of no phenomenon whatso-
ever. However, the equivalent treatment of measurement and preparation is most
often founded upon P (the logically untenable predecessor of P) which assigns a
state vector to a single system on the basis of a measurement result. Thus it is
sometimes asserted that an .»/-measurement which yields @, prepares the state
e

In this context, it is difficult to say whether the «/-measurement is .#,(¢) or
Mo(s7). Very formal treatments sometimes give the impression that an .#,(%/)
yielding a, is equivalent to the preparation II(P,,) of the state «;. Others seem to
suggest that when .#,(s7) reveals the result @, of an .#,(=), II(P,,) may be regar-
ded as having occurred at the time of .#,(s7), or even, as sometimes claimed [8],
at any time between .#,(=/) and the completion of .#,(2/)! In our opinion such
considerations are as nonsensical as the following sentence: “a g-demon prepares
& in the state «; by ‘looking at’ the «7-ness of & and ‘seeing’ @;.”

A similar comment applies to the contention that a commitment regarding the
post-measurement state is essential for the theoretical analysis of successive
measurements. If ‘“successive measurements” means successive .#,’s, then the
problem is unphysical; it amounts to an inquiry about a “sequence of g-demonic
acts.” On the other hand, if successive .#,’s are contemplated, all that is involved
is a physical process, fully describable without attributing any properties to succes-
sive A 4’s.

Like .#4(7), TI(P,,), or in general Ii(p), is correctly interpreted as a physical
process which always has a quantum theoretical explanation. To illustrate this
point and to clarify the distinction between measurement and preparation, we shall
present briefly the careful quantal description of a preparation scheme, a quantum
theory of preparation. Since it is commonly mentioned erroneously as evidence that
measurement and preparation are the same, the Stern-Gerlach “spin-meter” as a
preparation device will here be used to prove the opposite—that measurement and
preparation are basically different.

Once again, for simplicity ground state hydrogen atoms will be fed into the
magnetic field. This statement, as noted earlier, assumes that a preparation scheme
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for the initial ensemble of atoms is given. A theory of preparation can at most be a
quantal description of the physical process by which a desired ensemble is trans-
formed and/or extracted from an initial ensemble. It is of course impossible to
describe the ensembles or the process without the primitive measurement construct
# 1. Only in this sense is preparation ultimately reducible to the concept measure-
ment, but this is not the same as saying that measurement and preparation processes
(A4 and I) are equivalent.

If all members of the ensemble consisting of atoms which passed through a
Stern-Gerlach field are considered, the device has obviously prepared the state,

T(®) (¢ & xo) = Z Seter XD & (D)

However, since the position detector is absent, the preparation is not connected
with any measurement operation—a simple illustration that II and .#, are not
equivalent.

More interesting preparations based on the Stern-Gerlach experiment require
the concepts of subensemble selection and A-equivalence. For definiteness, we
consider II(P,, s ,,), @ preparation process often associated with the Stern-Gerlach
setup. The customary description of the method is rather naive: since the magnet
has spatially separated the “beam” into the two disjoint regions, an «; ) y;-
“filter” may supposedly be constructed by erecting an absorber #” in region 2.
The complete apparatus—II(Pyg ,)-device, Stern-Gerlach magnet, and # —
would therefore constitute a II(P,, ,,)-device. Now, it may be that this experi-
mental arrangement does indeed effect II(P,,®,,); but, if so, there must exist
an explanation better than the preceding “filtration” argument. This notion of
filtering arises from an erroneous classical interpretation of the aforementioned
probability distribution w(s,, Z). As has been stressed repeatedly, quantum theory
involves only probabilities that a specified measurement will yield a given result;
it does not and cannot meaningfully speak of the probability that a system will be
found “in” a given state. Thus the fact that w(s,, Z) practically vanishes outside
region 1 does not mean that an atom detected in that region was ““really in” the
state «; ) y; all along, an obvious presupposition behind the above “filtration”
scheme. The ensemble to be “filtered” is in fact pure—its density operator is the
projection Py, ¢ay, vy v—and therefore in principle irreducible to distinct pure
subensembles such as Py, @y,

This invites the possible reply in defense of the “filtration” picture that we have
been ignoring the very practical fact that only a restricted set of observables A is
really of any interest here. Thus our admonitions regarding the theoretic impos-
sibility of subensemble selection, or filtration (relative to all observables) may be
irrelevant if just the observable set A is studied. In terms of A-equivalence, it may
be that

Pﬂk(ak, U ae® v AZ I<ak’l>|2 Palc® Yo
k

hence that the desired selection may acfually be possible relative to A. As a matter
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of fact, if A is the set of all observables either of the form 4 &) 1 or 1 &) B, then the
foregoing A-equivalence relation is valid (to an excellent approximation).?®* To
prove that, recall that the atom is formally treated as a composite system in the
sense that its “internal motion” is separated from its “‘center-of-mass motion”;
thus the desired A-equivalence may be established by proving the following rela-
tions:

6)) Try p = Tr1 pass
2 Try p = Tr; pus

where P = Pricars wyar® ves P = Z |<°‘k’ ¢'>|2 Poe® 3
k

The required calculations are straightforward:

Trip = §<an | Z e o Q 1) @ Laier Pt @ Ve | ny
= 3 S, Y28t ) l) i
= 2 Ko DI P
Tr, py = §<«xn| Z |[<etier 4312 P, @ Py, |ty
= g et I (2, <o Py a7) P
= 2 Kow D12 Py
Trop = [[[dXdY dZ(8xy, [Z ey Py @) @ Letes 6301 ® Vel Sxvz )
= X [[]dX dY dZ e, 4> < > leod <l w1 i Bera>

& D> [t $)1? P
k
since {8xyz, Y10> {8xvz> Yok # I, are each nonzero in disjoint X, Y, Z-regions.

Tro pu = ffdedeZ<8xyz l; <ot 312 Po @ Pn-l 8XYZ>
= 2 [<eter 9312 ([ [ [dX Y dZ{8xy5, Py, 8xv5)) Pey,

= ; l<°‘lc, ¢'>12Pmc'

28 This equivalence class is not complete; i.e. there do exist operators outside A for which the
two p’s are equivalent. Gottfried [6], e.g. uses in the Stern-Gerlach problem a class different
from our A.
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1t is therefore tempting to declare that the total ensemble prepared by a Stern-
Gerlach device may be split into pure subensembles with state vectors o ) vy,
k = 1, 2, provided only observables in A are considered. Hence selection of sub-
ensemble P, g, would constitute II(P,,g,,; A) i.e. preparation of the state
a; & y, relative®® to A. If this conclusion were correct, then our above critique of
the “filtration” argument would be reduced in practical cases almost to verbal
quibbling; however, owing to an inherent weakness of the “relative preparation”
concept II(Py,@4,; A), we still insist that the “filtration” argument does not
justify the claim that the apparatus in question—i Q) yo-source, Stern-Gerlach
magnet, and # —prepares P,, g 5, in any sense. The trouble with “relative prepara-
tion” II(p; A) is its reliance upon A-equivalence, which is not a temporally in-
variant property. Although it is true, as demonstrated above, that Tr(pd) =
Tr(pyuA), for each 4 in A at a given instant, say ¢,, it does not follow that Tr(7pT"A)
= Tr(TpyT'A4) for each A in A, where T = T(t,, t,). Consider, for example, the
probability densities w(s,, X, Y, Z; p(¢)) and w(s,, X, Y, Z; pu(2))

w(sn, X, Y, Z; p(®) = Tl’(p(t) Ppo 6xyz)
= !g@zk, > Ctn @ Sxxzs T v,

W(S,,, X, Y, Z; PM(t)) = Tr(PM(t) Puo 6x¥z)
= ; I<°‘k’ P> {otn @ 8xyz, T @ 714))]2-

Att = t;, T = 1, and these expressions are of course equal; but for t>#, T 5 1
and the distributions are unequal. This demonstrates that the A-equivalence of
p and py at ¢, is useful only in statics; in general, even if the only observables ever
considered are in A, still p cannot be replaced by p,, for dyramic applications. Only
p correctly represents the idea of state in its causal role; py, while equivalent to
p at t,, leads to incorrect predictions and cannot therefore be regarded as the state.
Hence the foregoing “filtration argument cannot be accepted as a quantal explana-
tion of the state preparation II(P,,g,,)-

Thus far, it has been left undecided whether or not the combination of &) xo-
source, Stern-Gerlach magnet, and %~ may actually be used to prepare Py, g,,;
all that has been established is the classical naivete of the common description in
terms of “filtration.” The success or failure of the proposed device as a Py, g,-
preparer depends mainly upon the nature of the system #". The ¢ & xo-source
plus Stern-Gerlach magnet has prepared Pgya,» vye® v; What must be shown is
that the interaction with #” could convert this pure ensemble into a mixture from
which the pure subensemble 7, g ,, might be extracted. We shall now discuss two
model theories of preparation which would explain in a sensible quantum theoretic
way how the combined apparatus in question could perform II(P,,q,,).

(1) For a simple but rather fanciful model, assume #" is a slab of antimatter
initially containing N antiatoms. Since annihilation processes connected with
matter-antimatter interaction must be considered, we need three Hilbert spaces:

2¢ This should not be confused with Everett’s concept of “relative state [4].
7—P.S.
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H# &, associated with the atom; -, with the slab; and 5%, with electromagnetic
radiation. Let ¢, denote the radiation vacuum state, ¢ some other radiation state,
wy a stationary state for the N antiatoms, vy _; some state for (N-1) antiatoms, and
¥, the atom’s vacuum state. Suppose the initial state of the composite system
F+W + Fis

(Z Coy Py @ 71:) @ on @ po.

If U denotes the evolution operator for this total system from the preparation of the
above initial state until a time when the atomic wave packet would have passed
beyond the absorber position if #~ were absent, then in terms of U-matrix elements,
the following assumptions define a #~ capable of producing the desired mixtures:

<K® A® fl U‘(“1®')’1)®wN®?’o> =0
unless « = T(x; Q) 1), A = wy, & = ¢, where T describes the evolution of the
atom when # is absent.

<"® A@ ‘fl U|(°‘2®'}’2)® wN®¢Po> =0,

unless « = ¥, A = vy_,;. (Classically speaking, these expressions mean that an
atom may traverse region 1 undisturbed but in region 2 would be destroyed.)
The final state of the composite system would therefore be of the form

U[(; {01 @ 716) @ wy Qo)
= Loy, PI[T(ey @ y1)] & oy & @o + oo, P Qo1 Q .

“Tracing out” the antimatter and radiation parts, we find®" that the atom-ensemble
now has the density operator

P11 = l(“l, 'l'>|2 PT(a1® yw T |<°‘2a ¢'>lz Pwo,

which shows that only the fraction |{e;, #>|? of the atoms from the original
# & xo-source emerge from the complete apparatus and that this subensemble has
state vector 7(a; Q) y,). (For the short time interval of interest, 7 ~ 1; hence we
have effectively a II(P,,s ,,)-device.)

(2) A somewhat more realistic model results if #” is taken as a slab of ordinary

matter. If U again denotes the evolution operator during interaction, the idea of
“region 2 absorber” may perhaps be expressed as follows:

Ul(e, @ v1) Q@ wy] = Ty @ v1) @ wy = (01 Q@ y1) K w,
U] [(052 X 72) Q wy] = Z VPt & O,y

where {w,} is a complete set of stationary states for #, {p;} is a complete eigen-
vector set associated with the atom, and v,,, has these properties: v,y =~ 0, for each

27 This tracing is easily done if one just notes that <T(x; ® v1), ¥'od = {wy, vy_1) =
{po, > = 0; the general mathematical form is then the same as that encountered in the correla-
tion assumption of orthodox measurement theory (section 7).
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I; vy = 0, unless 2, [<on & Sxyz, @ip|? is essentially nonzero only within the slab,
for each m.
The final state of the total system is then

V(X o 9o @ 7) @ ]
= ey, (e @ y1) @ wy + (ag, x/l)Z Vi@ & .

Let Z Vin®t = EnOms {Opy 8> =1, m # N;
]

{ay, > = qn, a; Q@ yy = Oy; and {ag, ¥>gm = g, m # N.
With these substitutions, the final state becomes

G O & ooy,
2

where {w,} is an orthogonal set but {6,} is not. Now, consider the reduced density
operator for the atom alone:

pr = Try PEqualc@wk
= Z<wm I zZ 2.6, & “’t> <zk: 90 @ ay, | wm>

= Z%q;f [0:> <Ox| 81 Spem

kim

= Z |qx|? Po, = e, ¥D1? Poyo v, + z |qx|? Pe,.
k k#N
Thus the atom ensemble has become a genuine mixture from which it is possible to
select the subensemble P, ,,. Since all other subensembles are localized in the
slab by the interaction, we may conclude that the ensemble of atoms emerging
from the complete apparatus (the fraction |{ay, |2 of the original atoms) has
state vector «; & y;. This model therefore exemplifies a rational quantum mechani-
cal explanation of a II(P,, g ,,)-device; yet no measurement, process was involved.

It should now be clear that II(P,,s,,) 1S a physical process different from
A 5(Sz) but inexplicable without tacit reference to .#,’s. In particular, there is no
justification for any general statement that II(P,,s,,) is equivalent to an .#,(Sy)
yielding s,. The apparatus just described—Stern-Gerlach magnet plus region 2
absorber—would effect I1(P,,,,); but it would not perform .#;(S;) (unless the
detection of nothing in region 1 is regarded as a measurement of Sy yielding s, !).
Indeed the preparation of the P, ,,-ensemble still occurs even if the absorber is
not a detector at all, i.e. even if it simply does not record whether or not it captured
any atom.

The Stern-Gerlach example of the past few sections has demonstrated that the
constructs #,, .#,, and II should be carefully distinguished in “measurement
theories™; otherwise ambiguity and confusion are inevitable. An excellent example
of this confusion is the term “‘selective measurement’ [17] which is sometimes used
quite indiscriminately to refer to both measurement and preparation whenever a
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““separation and filtration” scheme like the Stern-Gerlach device is the physical
basis of both Il and .#,. As a result, it is virtually impossible to determine the
meaning or purpose of a discussion on so-called “‘selective measurements.” The
distinction between 4, #,, and Il is abnormally subtle in the Stern-Gerlach, or
“selective,” case; for this reason, it is a favorite example among proponents of
wave packet reduction and/or the equivalence of .# (/) and II(P,,). Nevertheless,
as we have seen, the differences among these concepts can still be exposed.

Ordinary applications of quantum theory are normally successful in spite of the
occasional confusion of preparation and measurement. However, the distinction
can be quite important in basic theoretical considerations. A good example of
faulty reasoning due to the implicit assumption that preparation must be accom-
plished through measurement occurs in connection with the superselection rules of
quantum field theory. These rules arise from invariance principles which, applied
to states, require that certain distinct state vectors (rays) be physically equivalent.
Now, there are at least two ways to guarantee this equivalence: (1) Postulate
that not all Hilbert vectors represent physically realizable states, or equivalently
that there is no process II(P,) for certain #’s. The Pauli principle is a familiar
example of such a requirement. In the case of superselection rules, it turns out that
the distinct state vectors which must be equivalent can be eliminated by postulating
that all physically realizable state vectors are eigenvectors of certain operators
(total charge, e.g.). (2) Modify the common axiom that all Hermitean opera-
tors represent observables by explicitly denying the ‘“‘observability” of all
operators having different mean values for those state vectors which must be
equivalent.

The concept of superselection rule is relatively new and still under development.
It is therefore impossible to make very definite statements about it.2® The only
point to be made here is that a standard “theorem’ which purports to derive (2)
from (1) is fallacious because it confuses measurement and preparation. A typical
presentation of the argument is given by Schweber [16]: “If not all rays are
realizable, then clearly no measurement can give rise to these nonrealizable states.
They cannot therefore be eigenfunctions of any Hermitean operator which corre-
sponds to an observable property of the system. To be observable a Hermitean
operator must therefore satisfy certain conditions (superselection rules).” The
first sentence is incontestable; indeed, if a state vector cannot be prepared at all,
certainly no measurement process can do the job. The second sentence is a non-
sequitur obviously based on the false premise that an .# () yielding a, is the same
as II(P,). Thus if II(P,,) is impossible, .#,(7) must be impossible. The third
sentence follows from the second and is just alternative (2) above. We see therefore
that confusion of measurement and preparation is here responsible for the thecreti-

28 In our opinion alternative (1), a natural generalization of the Pauli principle, is preferable
to (2) and is all that is really needed to account for physical facts of the type which suggest the
existence of superselection rules, e.g. the fact that the superposition of an electron state vector
and a positron state vector apparently describes no actual ensemble. If (2) were unnecessary,
the word some would be unnecessary in P1, and P2 would not have to make the rather odd
demand that m(A4) be real even when A4 is an Hermitean operator representing no observable.
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cal illusion that (2) is a consequence of (1), whereas in fact (2), if needed, should
be postulated independently.

Although .#,, .#,, and II must never be regarded as equivalent, there are of
course connections among them which we do not wish to deny. These relations may
be expressed as follows: (1) .#, and II are both laboratory processes the quantum
theoretical description of which necessarily involves the primitive construct ;.
(2) (), like any physical process, leaves the systems involved in some state;
and the ensembles of these systems would have calculable density operators. In this
trivial sense, all physical processes, .#4(7) included, prepare states. However,
these states need not exhibit any special relation to &; in particular, preparations
effected by # (=) are not necessarily, nor even usually, II(7,,). To defend his
use of an &, in a complex situation where .# (=) would never be performed,
Schrédinger [15] once remarked: “A purist might challenge the use of a wave
function not determined by measurement. But he would have to give up using wave
functions altogether, since none has ever been determined by measurement.”
(3) Similarly, the physical process I1(P,) might conceivably be utilized as an .,
perhaps even .#,(27); but this need not be the case. Usually all that is known from
1I(P,,) is that, if 4 (=Z) were performed, the correlations thereby established would
show that an &/-measurement, i.e. .#,(%/), must yield ay.

15. Summary: quantum theory of measurement. The problem of quantum measure-
ment was introduced in section 1 in the customary way as a logical challenge to be
met within the quantal framework. At issue was the fact that the explicit appearance
of the term measurement in the postulates of quantum theory automatically confers
some properties upon that concept. Yet the notion of measurement does not really
belong to quantum physics in particular; indeed measurement is basic to all of
physical science and presumably comes to quantum theory already endowed with
characteristics inherent in its more general epistemological role. A “quantum theory
of measurement” would then be a confrontation of the measurement concept in
quantum theory with the idea of measurement in general in order to demonstrate
the consistency of the quantum viewpoint.

However, a fundamental defect in this program gradually became apparent.
The quantum measurement construct is well defined in the sense that the postulates
offer clear instructions as to its use in theoretical explanations of physical processes.
On the other hand, the general philosophical understanding of measurement can-
not be expressed in simple mathematical terms. To demonstrate this point, we
critically surveyed the major classes of proposed quantum measurement theories;
invariably, the extraquantal strictures placed upon measurement were found to
result in physically unwarranted “overspecifications” of its root meaning. Scrutiny
of these overly narrow definitions of measurement served mainly to expose mis-
understandings about the nature of quantum theory.

Eventually we recognized that this entire approach was foredoomed. Even if a
grand, all-embracing mathematical definition of a general measurement process
were discovered, it could not serve to establish the consistency of the quantum
theoretical usage of the term measurement; for no physical process, measurement
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schemes included, can be described by quantum theory without the term measure-
ment, which has therefore the logical status of an ultimate primitive, irreducible
to other constructs.

This state of affairs, essentially a consequence of the latency of quantum obser-
vables, suggested the necessity of distinguishing between .#; and .#,. The nature
of these two measurement constructs as well as their significance for quantum
measurement theory was explained in several preceding sections. However, to
clarify these ideas, we shall now briefly recapitulate by describing .#, and .#, in
another way, viz. by focusing upon their epistemological status. To insure direct
passage through the sometimes labyrinthine halls of scientific epistemology, it is
helpful to refer to a chart (Fig. 1) originated by Margenau [10].

C-field’ P-plane
Fig. 1

A simplified legend for this “epistemological map” would make these identifica-
tions: (1) The P-plane represents uninterpreted sense impressions, those elements
of experience variously called the given, the percepts, the direct observations, data,
and by Margenau, the protocols. (2) The C-field is the domain of reason, of ideal
models; its members (denoted by circles) are known as the categories, concepts, or
constructs; and in Einstein’s words, they are “free creations of the human mind”
[3]- (3) A set of rational connections (single lines) among constructs forms the
logical matrix of a theory. (4) Some constructs are related to direct observations
at the perceptual level (P-plane) by conventions (double lines) which may be called
operational definitions (Bridgman [1]), rules of correspondence (Margenau [11]),
or epistemic correlations (Northrop [13]). (5) The distance of a construct from the
P-plane is to be regarded as an indication of its relative abstractness, or, in a sense,
its objectivity. This horizontal “scale’ is of course rather vague, but it is not mean-
ingless. For example, the construct “electric field” is obviously far to the left of
“electric shock™; the sequence of concepts ‘‘entropic-derivative-of-internal-
energy,” ‘“thermometric-temperature,” and “hotness” evidently range from
extremely far into the C-field to extremely close to the P-plane.

The general notion of measurement as a universal feature of the scientific method
—what we have designated .#,—refers to an important part of the complex of
linkages between the most profound constructs and the practically self-evident
ones just short of the diffuse boundary of raw, undifferentiated percepts. Measure-
ment, is concerned directly with those constructs called observables which mediate
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between mathematical models and direct observations; the defining characteristic
of any measurement, scheme is therefore the extraction of numbers from observa-
tions and their theoretically meaningful assignment to the observables. The overall
purpose and pragmatic value of this procedure is fully discussed in books on the
philosophy of science, but these matters are not at issue here.

With the above understanding of measurement, as the provider of numbers
to observables, it is easy to describe in a general way, using Margenau charts, just
what a “theory of measurement” would be. Consider an observable .7 which is
defined constitutively by the properties of its representative 4 among the mathe-
matical constructs of the theory. Suppose that an operation has been discovered
the performance of which yields numbers and that these numbers can be consistent-
ly associated with 27, in some sense, as its “‘values.” The measurement concept
M () is then simply the rule of correspondence which specifies that operation
(Fig. 2).

Fig. 2

A theory of measurement, is then simply a theoretical analysis of the operation
identified as .#4(=). In other words, part of the rule of correspondence itself is
explained in terms of fundamental constructs. As a result, the concept .#(27)
acquires a more complex “structure” (Fig. 3).

Fig. 3

On the epistemological chart, the unanalyzed double line connecting &7 to the
distant P-plane is replaced by theoretical connections from 7 to an observable Z°
plus a very short double line from £ to the nearby protocols. The closeness of Z
to the P-plane signifies that, as far as physics is concerned, & is regarded as directly
observable. In earlier sections, Z was taken to be position, said to be measured
by “looking at” the coincidence of a “spot” and a *“scale marking.” However, we
adopted this specific identification of %, suggested by the writings of de Broglie
and Landé, only to exemplify the ultimate contact of physical theory and empirical
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experience; there is no reason to regard it as the sole direct observable of potential
value for physics.

What has been said about measurement, thus far has been applicable to science
in general. Hence problems motivated by the foregoing remarks cannot be legiti-
mately interpreted as quantum dilemmas in particular. For example, the unanalyzed
connection of an & to the diffuse realm of immediacy suggests the problem of infi-
nite regression quite independently of quantum theory, as noted in section 15.
At any rate, the measurement concept #,(%) is epistemologically the same in
quantum physics as in the rest of science; and a quantum theory of .# (/) should
be of no more philosophic interest than are classical disciplines such as thermo-
metry and photometry.

On the other hand, the measurement concept .#, is peculiar to quantum theory.
To find its proper ‘“location” on the Margenau chart, recall that the essence of
measurement, is the extraction of numbers from observations and their theoreti-
cally meaningful assignment to the observables. Hence the description of an .#(=/)
must always be given in terms of such assignments; but we have seen in previous
sections that classical and quantal physics do not employ the same relation between
an observable and its numerical values. Classically, an observable is said to “have”
its value; quantally, the only connection is through the auxiliary measurement
concept #,(2/). Accordingly, on the epistemological chart, let us replace the

observable symbol () by if o/ “has” a value and by (L#,()) if the latent

results of potential .#,(s7)’s represent the only connection between &/ and its
values. Comparison of the classical (Fig. 4) and quantal (Fig. 5) realizations of
Fig. 3 then serves to clarify the epistemological status of .#.

A

T A

Cj/ A )
\o
Fig. 4
Peu
/—\Y/‘ —
L ,_
N =Dy
(operator) -

Fig. 5
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These charts represent an attempt to summarize graphically the main points about
quantum measurement concepts discussed in previous sections. In particular, they
emphasize that .#; is analogous to the classical idea % of “having” a value. It is
meaningless to consider further analysis of either # or .#; logically, both are ulti-
mate primitives in their respective theories in the sense that no physical process
can be described without them. There could no more be a “quantum theory of
#,” than there could be a “classical theory of %”’; either would be quite circular.
Hence the term “quantum theory of measurement” can only refer to a theory of
M (), the statement of which will necessarily employ .#,’s. Understood in this
way, so-called quantum theories of measurement, are of no more or less philoso-
phic interest than analogous classical theories of measurement, which explain the
operation of calorimeters, spectrometers, etc. Indeed the rather extraordinary
qualities sometimes attributed to quantum measurement derive from the various
misinterpretations of quantum theory which the present work has sought to expose.
Once the distinctness of .#, and .#, is recognized, the general concept of measure-
ment .#, is no more mysterious in quantum physics than elsewhere.
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