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We wish to honor Alfred Landé by scrutinizing in this article one
of the shibboleths of the quantum doctrine: the impossibility of
performing simultaneous measurements of noncommuting ob-
servables. In his book! Landé regards as a half-truth the proposi-
tion: p and ¢ cannot be measured simultaneously. The present
paper presents an examination and indeed a justification of this
claim.

1. The Compatibility Problem

Quantum physics, in using operators instead of functions to represent
observables, complicates the relationship between its observables
(i.c. their mathematical representatives) and the empirical numbers
to which they must ultimately refer. Perhaps the most controversial
difficulty associated with this operator-observable correspondence
arises from the commutative law of arithmetic, viz. if @ and # are
numbers, then ab = ba. Naturally this law applies to all measure-
ment results, quite independently of the theory by which they are
interpreted. In quantum theory, however, the associated pairs of
Hermitian operators do not necessarily commute.

Understandably, the presence in quantum theory of non-
commuting observables has from the beginning elicited a great
deal of curiosity. Some kind of physical interpretation rnust be
given; the fact, for instance, that [X, P] # O surely expresses
something very interesting about position and momentum. But
what? The orthodox answer is this: Noncommuting observables are
incompatible, that is, it is impossible to perform upon a single system
simultaneous measurements of two such observables. The present paper
is an abbreviated report of a systematic analysis of this famous
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principle of impotence; but first, as a prelude to the substance of
the article, we feel it appropriate to review briefly the more com-
mon—and frequently illogical—arguments typically advanced in
behalf of the doctrine in question. Many of them have already been
subjected to criticism by Landé.

The typical historical account of quantum theory from Planck
to the present endeavors to present a rather smooth transition from
the “old quantum theory” (Bohr atom, particulate photon, classical
ontology) to the “new quantum theory” (state vectors, probability,
complementarity). Yet any discussion about modern quantum
theory which employs concepts peculiar to the “old” to demonstrate
alleged features of the “new” is of little value. The following sections
therefore contain a logical study of the notion of compatibility
entirely within the axiomatic framework of (new!) quantum
theory, independently of whatever dreams, intuitions, or Gedanken-
experimente historically might have inspired its ingenious creators.

(1) uUNCERTAINTY PRINCIPLE. Many Gedankenexperimente have been
designed to illustrate Heisenberg’s famous law; unfortunately,
the false impression is often conveyed that this principle, which is
actually a theorem about standard deviations in collectives of
measurement results, imposes restrictions on measurability. Simple
common-sense arguments quite unrelated to the quantum theory
could easily be adduced to show the elementary absurdity of such
an inference.

(2) PROJECTION POSTULATE (NAIVE VERSION).* Frequently ap-
pended to the useful postulates of quantum mechanics is one which,
if it were correct, could lead to the incompatibility doctrine as a
theorem. It is the notion of wave-packet reduction, according to
which any measurement invariably leaves a system in such a state
that an immediate repetition of the measurement would yield the
same result as the first measurement. The reasoning is: If simul-

* The fundamental irrationality, together with the mathematical strangeness, of
the view that a single observation shall in general fix the probability distribution
(state vector) of an entire ensemble has been emphasized repeatedly by one of
the present authors. (Refs. 4 and 5.) This point is further elaborated in Refs. 2
and 3.
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taneous measurement of noncommuting observables were possible,
such an act could leave a system in a nonexistent state. This argu-
ment is, however, unworthy of serious consideration, since the idea
of wave-packet reduction does not survive close scrutiny.>~°

(3) PROJECTION POSTULATE (VON NEUMANN’S MEASUREMENT INTER-
VENTION TRANSFORMATION).® There is a way’ to express the pro-
jection postulate in terms of ensembles and the selection of sub-
ensembles which does make sense. If this version represented a
universal trait of measurement, then it would imply the incom-
patibility principle as a theorem. We have proved this elsewhere.®
However, it can be demonstrated that even this ‘‘reasonable”
variant of the projection postulate does not describe all physical
measurements and is therefore unacceptable as a universal quantal
axiom.

(4) PROBLEMS CONCERNING JOINT PROBABILITIES. If joint (i.e.
simultaneous) measurements are possible, then there must exist
joint probability distributions. However, attempts to generate such
distributions for noncommuting observables using fairly standard
mathematical ideas have been unsuccessful, and this failure has
been interpreted as proof of the incompatibility principle. This
. position has been examined carefully in another paper by the
present writers.® There this first probability argument in behalf of
the incompatibility principle is traced to the same fundamental
errors which underlie the following argument (5). Since arguments
(4) and (5) stand or fall together, we shall here concentrate our
attention on (5).

(5) VON NEUMANN’S SIMULTANEOUS MEASURABILITY THEOREM. In
his classic work on quantum mechanics, von Neumann proved a
theorem which provides the best defense ever given of the incom-
patibility doctrine. Strangely enough, it is also the most widely
ignored argument for incompatibility, even though, unlike (1)-(4),
it is a logical deduction from a seemingly reasonable quantum
axiom set which does not include the projection postulate.* (Cf.

* To be sure, the projection postulate does appear in von Neumann’s book, but
it plays no role in the theorem here considered.
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Sec. 4.) The ensuing sections will emphasizc argument (5), the
only extant evidence for incompatibility which is firmly embedded
in the basic mathematical structure of modern quantum theory.

Because (5) arises deep in the theoretical framework of quantum
mechanics, it seems desirable here to interpolate a brief survey of
basic quantum axiomatics in order to furnish a basis for distin-
guishing clearly which quantum statements are hypotheses and
which ones are derivable propositions. Only in this way can the
deduction in (5) be properly evaluated.

As everywhere else, the objects of study in quantum mechanics
are called physical systems. Associated with them are the constructs
known as observables, which in turn are correlated via rules of
correspondence to empirical operations that generate numbers.
These operations are measurements. The numbers they produce are
called measurement results, and it is the function of quantum theory
to regularize, interpret, and make predictions about them.
Specifically, quantum physics deals with problems of this kind:
Given an actual (in contradistinction to a Gedanken-type) repeatable
laboratory procedure IT for the preparation of physical systems, what
will be the statistical distribution of measurement results obtained
from observations performed upon an ensemble of systems all
prepared in accordance with I1? This question may refer to any
observable and to measurements at any given time after preparation.

Classically, measurement results are simply revelations of the
values of observable properties possessed by the system. The key
word here is possessed, for it expresses succinctly the classical and
indeed the common-sense relationship between measurement
results and observables. In quantum mechanics the connection is a
weaker one. It is no longer possible to pictorialize physical systems
as objects characterizable by definite values of the observables. The
possessive adherence of observables to systems fails. This peculiarity
of quantum observables has been characterized by one of the
authors as latency.'® A brief explanation of the idea of latency
relevant to the present problem is given in Ref. 9.
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The possessed quality of all classical observables brought the
ideas of measurement and preparation conceptually close to one
another. Since a measurement operation simply revealed a pos-
sessed value, the same operation could also be called a preparation
method for obtaining systems having that value of the measured
observable. In quantum theory, however, the constructs measure-
ment and preparation must be disjoined. Failure to do so leads to
an erroneous interpretation of the projection postulate.!' The
correlation between measured values and the state of a system is
less direct, and thus the idea of measurement needs more careful
analysis than is ordinarily necessary.

To measure the gosition of an object, one juxtaposes the object
with a scale and identifies its position with the scale mark. No
further analysis is required, because the tacit belief that the object
has the position avoids every complication. In this simple sense, a
position measurement is the establishment of a self-evident cor-
respondence between a set of numbers and the values of an ob-
servable—self-explanatory and self-validating. This manner of
correspondence between measured numbers and values of the
observable is part of every measurement in classical physics as well
as in quantum mechanics. It is often called “direct” measurement,
and we shall designate it by #,.*

The measurement of velocity is a little less obvious. If the speed of
a moving vehicle is to be determined, the reading of a speedometer
can be noted. What this measurement delivers directly via the .4,
concept is the position of the needle. To interpret this position as a
velocity requires assumptions of an interpretative, theoretical sort,
ideas beyond the content of the mere association . It involves a
mathematical analysis of the instrument, which leads to proof of
a further correlation between the possessed position values of the
* In this essay we employ script letters (., of, &, ...) to designate observables
[the general concept of measurement is regarded as an observable]; capital italic
letters (4, B) denote operators and lowercase italic letters (a, ) numerical

measured values; lowercase Greek letters (a, f), except p (the density operator),
denote quantum state vectors.
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of “direct” observation which was earlier denoted by #,. Since
quantum physics, owing to the characteristic latency of its ob-
servables, cannot make statements about correlations among
possessed values of observables, it speaks instead of correlations
among the results of primitive “direct’” measurements 4, which
are in practice theoretical constructs which can no more be per-
formed ‘“‘directly” than could the possessed values of, say, the
speed of a classical body be perceived “directly.”

For a microphysical illustration, consider the measurement of
electron position using a scintillation screen. The theory (4 ,)
which justifies identification of the location of the scintillation with
the position of an electron establishes a correlation not between two
possessed attributes (positions of electron and scintillation) but
between two .#,’s: one the genuinely “direct’” observation of the
scintillation, the other the more sophisticated, abstract, and
theoretically primitive relation that the observable position bears
to an electron in quantum physics. These . ’s are governed by
certain basic axioms to which Sec. 2 will be devoted.

Using the foregoing concepts, it is possible to define precisely
what is meant by simultaneous measurability of two observables:
Observables of and B will be termed compaiible, simultaneously measuréble,
or jointly measurable if there exists an M ,(sZ, &), that is, an operation
furnishing two numbers @, b with the same probabilities that
quantum theory confers upon the two propositions “.# (&) yields
a” and “.#,(#) vields 4, where both #,’s refer to the same
instant in time. The compatibility problem, to which the rest of this
paper is devoted, may therefore be stated as follows: If of, # are
noncommuting observables, is it quantum theoretically possible for
an # (A, B) to exist?

2. Quantum Axiomatics and the Uncertainty Theorem
The basic postulates of quantum physics will now be stated, and
several important theorems will then be reviewed.
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Pl CORRESPONDENCE POSTULATE

(Some) linear Hermitian operators on Hilbert space which have
complete orthonormal sets of eigenvectors correspond to physical
observables. If operator 4 corresponds to observable &, then the
operation % (4), where & is a function, corresponds to observable
F(A).

We shall use the symbol « to represent this operator-observable
correspondence; thus 4 « & means 4 “corresponds to’’ & in the
sense of Pl. The observable & (&f) is defined operationally as
follows: Measure of and use the result a to evaluate the given
function & ; the number % (a) is then the result of an % («f)-
measurement. The function & of operator 4, & (4), is found by the
following standard mathematical procedure: Consider the spectral
expansion of 4,

4 =Y aPF,,
%

where g, is an eigenvalue and P, denotes the projector onto the
span of eigenvector o, ; the operator # (4) is then simply

Zk: F (@)P,,

P2 MEAN VALUE POSTULATE

To every ensemble of identically prepared systems there corresponds
a real linear functional of the Hermitian operators, m(4), such that
if A <> of, the value of m(A4) is the arithmetic mean (&) of the
results of o/-measurements* performed on the member systems of
the ensemble.

The content of P1 and P2 is slightly different from von Neumann’s
axiomatizations. In the original form of the Correspondence
Postulate, observables and Hermitian operators were assumed to
stand in one-to-one correspondence; the postulate included both
of the following statements:

(1) Every observable has an Hermitian operator representative.
(2) Every Hermitian operator corresponds to a physical observable.

* Reference is here to the primary quantum-measurement construct ().
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In 1952, Wick, Wightman, and Wigner!? effectively challenged
the symmetry of this quantal correspondence by introducing the
concept of superselection rules, i.e. assertions which declare certain
Hermitian operators to be unobservable in principle. To embrace
superselection rules with minimal theoretic change, the word every
in (2) is replaced by some:

(2') Some Hermitian operators correspond to physical observables.

Just as superselection rules challenge the word every in (2), an
important facet of the compatibility problem hinges on the word
every in proposition (1). Accordingly, the need will arise sub-
sequently to distinguish between different “degrees” of operator-
observable correspondence. For this purpose the following termin-
ology will be adopted: Strong correspondence means that both (2')
and (1) are assumed; weak correspondence means that the Cor-
respondence Postulate includes (2') but not (1), as in PI.

In subsequent sections, the relationship of this choice of cor-
respondence schemes to the problem of compatibility will be
developed, and we shall demonstrate that only the weak type (P1)
is acceptable. Henceforth we distinguish between PI1S—von
Neumann, strong—and our P1.

Several “‘elementary” quantum theorems will now be stated
- without proof. Although the content of these theorems is well
known, the fact is not always acknowledged that they are theorems,
i.e. derivable from Pl and P2: Pl and P2 (or their equivalents)
rigorously imply all the general propositions of quantum statics.

™ 113
For each mean value functional m(4) there exists an Hermitian
operator p such that for each 4,
m(A) = Tr (pA).

The Hermitian operator p, known as the statistical operator or
density operator, is not only an “index” of measurement statistics
but also the seat of causality in quantum physics. For this reason,

we shall call p the quantum state of the ensemble to which it refers.
The general “law of motion” is given by the following axiom.
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P3 DYNAMICAL POSTULATE

To every type of closed quantum system there corresponds a linear
unitary operator 7 (the evolution operator) such that the temporal
development of the density operator p for an ensemble of like
systems is given by

ptz) = Tty t)p(t) Tty ty)-

In the following theorems, we assume the Hermitian operators
to have discrete spectra; but similar propositions hold for the
continuous case too.

TH. 2
The probability W,(a,; p) that an &/-measurement on a system

from an ensemble with density operator p will yield the 4-eigen-
value g, is given by

Wala; p) = Tr (PPx.()>

where #, is the subspace belonging to a,.

TH. 3
Trp =1

TH. 4
The only possible results of .«/-measurements are the eigenvalues
{a,} of 4, where 4 « .

TH. 5
The density operator p is positive semidefinite.

Careful analysis (cf. Ref. 9) of the foregoing theorems reveals
that only weak correspondence need be invoked to prove them;
they would of course still follow, however, if Pl were replaced by
an axiom of strong correspondence, namely
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P1S

The set of physical observables is in one-to-one correspondence
with the set of linear Hermitian operators on Hilbert space with
complete orthonormal sets of eigenvectors. Thus, if 4 « o, then
F(A) « F ().

A cursory examination of P1S and P2 seems to suggest that
nothing about simultaneous measurement could ever be derived
from such axioms, for in them reference is made only to measure-
ments of single observables via (/). Indeed, the absence of a
similar joint measurement construct #,(sf, &,...) appears to
Jjustify the conclusion that quantum theory is noncommittal to the
problem of compatibility and that, in order to disciiss simultaneous
measurements at all, P2 must be augmented by some kind of joint
probability postulate. This indifference is illusory, for P1S and P2
do in fact place severe restrictions upon simultaneous measurements
through a theorem to be reviewed in Sec. 4.

To approach the problem of joint measurements from an axiom
set referring only to single measurements, it is necessary to develop
a theory of compound observables, i.e. observables defined as functions
of several ordinary observables. Then information regarding joint
measurements can be extracted from an analysis of single measure-
ments defined as functions of the joint measurement results. For
example, a compound observable # (&, #) may be operationally
defined as follows: Measure & and % simultaneously, and sub-
stitute the results ¢ and 4 into the function & (a, b); the value
f = F(a, b) is then the result of the & (o, 2)-measurement. Then
by PIS, there exists an operator F to represent & (&, #); hence if
F is known, # (&, #)-measurements are subject to quantum-
mechanical analysis, and in this sense joint measurements would
be in the domain of the ordinary quantum theory of .#,’s.

This leads to an old quantum problem.’* Given the cor-
respondences 4 « &, B« #,... and a compound observable
F (A, B,...), what F corresponds to #? If PIS is adopted, the
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existence of such an F is assured (provided, of course, that
A, B, ... are simultaneously measurable). If, however, only the
weaker P1 holds, the existence of an Fsuch that F « # (o, &, ...)
is by no means guaranteed. In neither case is there a general
prescription for finding F, to be sure; but it is obviously necessary
that all deductions based on a proposed F be consistent with P2, the
definition of #, and the theorems reviewed above. Th. 1 and Th. 4
particularly suggest useful consistency conditions. To formulate
them, we employ the following notation.

Define the sets &(4) and A (F) thus: &(A) comprises the
eigenvalues belonging to the operator 4; A(F) is the set
of obtainable measurement results associated with an observ-
able &#. When & = &/, then A (o) = £(4) by Th 4.
However, when & is a function, let us say of & and £, then it is
possible that correlations between & and # might preclude the
occurrence of certain a priori conceivable values of &, i.e. preclude
certain of the values # (q, b,) calculable from eigenvalues of 4 and
B under the a priori assumption that all eigenvalue pairs (a,, b))
are possible. In this contingency, 8(F) < A (#). Finally, for a
state p, let W(a, b, ...; p) denote the joint probability that
simultaneous &, 4, . . .-measurements yield a;, b,, . ...

Two consistency conditions may then be expressed in this manner:
IfFo F(A,B,...), then

(©) T Wby 0 F (@ by..) = Tr (pF),

for every p, and
(Cy) S(F) s N[F (A B,...)]

Condition (C,) arises from Th. 1 and the definition of &, while
(G,) is needed to prevent conflict with Th. 4. The usefulness of
(C,) must however be questioned, for the joint probability W is so
far unknown. Nevertheless, this condition is not undiscriminating,
since for the proper choice of # it becomes independent of the
form of W. (Cf. Ref. 9.)
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Both P1 and P18 involve explicit postulation of the correspon-
dence F(4) « F (o), and a survey!® of the proofs of Theorems
1-5 indicates clearly the value of that rule. Since Th. 2 (ie. the
form of W) is the cornerstone of practical calculations in quantum
theory and therefore not a proposition that could easily be chal-
lenged, the following theorem suggests very strongly that the
correspondence F(4) « F (o ).could not reasonably be removed
from the quanturmn axiom set.

CONSISTENCY THEOREM
If Wyla; py = Tr (pPy,) and if there exists an operator F such
that F «> & (&), then F = F(4), where 4 & of. The proof is
simple.

The operator F must satisfy consistency condition (C;):
T Tr (o) # (@) = Tr (pF).
Thus,

Tr [p(F — ¥, F(a)Py,)] =0  for every p,
3
which implies

"F= ;f(a,,)P,,k = F(4).

This result also satisfies (C,).

The special case of F (&) that has received most attention is a
fairly complicated one: #F(of) = (of — ()% where (&) is a
real constant which is the arithmetic mean of the .#,(&)’s on the
ensemble of interest. Using P2, we see that # (of ) = (o — m(4))?;
then, by the correspondence rule in Pl, #F (o) « (4 — m(4)1)%
By definition,

(Aet)? = m[(4 — m(A)1)?] = (o — (A))?);

the standard deviation A&/ is a common statistical quantity defined
as a function of measurement results from an ensemble.
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Often, Ao/ has been linked—erroncously, we believe—to the
problem of compatibility by way of the Heisenberg uncertainty
principle. A few remarks seem appropriate here in order to invalidate
the popular contention that the uncertainty principle places
restrictions on simultaneous measurability. Heisenberg’s principle
is a theorem, rigorously derivable from the quantum postulates; it
states that under fairly general conditions,

Ad A% = }m([4, B])|,

where 4, B are Hermitian operators representing quantum ob-
servables of, #, and Asf, AR refer to collectives of /- and &-
measurerments.

The principal point to be stressed here is that A/ and A% have
physical meaning only within the context of statistics. It is therefore
illogical to interpret the uncertainty principle as a denial of the
possibility of simultaneous measurement of & and % upon a single
system if [4, B] # 0, as has sometimes been done. The only sense
in which Ao/ A® may refer to a single system is purely statistical,
i.e. to an ensemble involving one system sequentially measured and
reprepared. Furthermore it should be noted that the product
Asf A% is not even calculated from simultaneous measurements of
& and # performed on each system. Thus, whatever conclusions
one may reach concerning the notion of compatibility, i.e. simul-
taneous measurability of several observables on a single system,
there can be no conflict with the uncertainty principle, a relation
involving statistical properties of measurements of single observ-
ables.

To summarize: Regardless which propositions about joint
measurements may or may not be consistently incorporated into
quantum theory, the uncertainty principle remains unscathed so
long as its interpretation does not transcend the content justified by
its proof. Conversely, the uncertainty principle is not an a priori
restriction on any consideration purely about joint measurements.
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Strictly construed, the uncertainty principle is irrelevant to the
problem of compatibility. h

3. Trivial Joint Measurements and Commutability

There is a type of joint measurement whose consistency with
quantum theory is never questioned, for it involves the performance
of only one measurement upon the system. The resulting number
is then used to generate a set of numbers through a set of established
functions; the simultaneous measurement of a set of observables
has thus been performed, albeit in a rather trivial sense. Such joint
measurements, performed simply by arithmetical manipulation of
one measurement result for a single observable, will henceforth be
called trivial joint measurements.

The question then arises as to whether the joint measurement of
any two observables is reducible to a trivial joint measurement; if
5o, quantum theory could embrace the concept of simultaneous
measurement in a very natural way. However, the correspondence
rule #(A4) « F (&) may be used to prove that any two operators
jointly measurable in this trivial sense necessarily commute.

These considerations do not imply that noncommuting observ-
ables are incompatible; they merely establish that such observables
are not trivially compatible. Nevertheless, since [4, B] = 0is (1) a
necessary condition for trivial joint measurability of & and # and
(2) the only condition under which Asf A% = 0 may hold, it is
sometimes claimed (via one of the misinterpretations of the un-
certainty principle) that the only simultaneous measurements
permitted by quantum theory are the trivial ones, that com-
mutability is the mathematical criterion of compatibility. But in
view of our preceding remarks about the uncertainty principle,
such a position is evidently not tenable.

Although the notion of trivial joint measurement is not an
adequate basis for a general treatment of simultaneous measure-
ments, it does provide a means for deriving the joint probabilities
associated with several commuting observables.
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Omitting the detailed proof,'® we state herc only the essential
result. Let of and # be simultaneously measurable through an
auxiliary variable ¢ defined by

oS = F(6), B = 9(%¥),

supposing that [4, B] = 0.
The joint probability that .4 (/) and #,(#) will yield
(@, by) for the state p is then given uniquely by

Wi, b; p) = Welaw; p) = Tr (PPy,,,):

where the new symbols are defined through the spectral expansion
of C,

C =Y P, .
Zl:“m

This analysis leads'” to a proposition of some importance, namely:
(J) The joint probability W(a, b;; p), [4, B] = 0, is a unique
functional of the state p; thus the sfate of an ensemble is sufficient
to determine the distribution, as would be the case in classical
physics. In particular, no additional information regarding the
method of measurement is needed to obtain W; once a W for a
given p is found by the method of trivial joint measurement, it
may be assumed that it is the W associated with the given p, in-
dependently of how & and # might be measured.

Suppose, however, that [4, B] # 0. Then the method of trivial
joint measurements is of course inapplicable. Does (J) still hold?
Is the quantum state p alone sufficient to determine W’s for joint
measurements of noncommuting observables? We shall study this
matter in later sections.

4. Von Neumann’s Theorem: Noncommuting Observables
Are “Incompatible”

The popular belief that the only compatible observables are the
trivially compatible ones was reviewed in Sec. 2, where the un-
certainty principle, the standard basis of this dogma, was presented
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and found irrelevant. However, there exists also a rather formidable
logical demonstration that if two observables are compatible they
are trivially compatible. It is an elegant theorem,'® due to von
Neumann, that strangely enough appears to be almost universally
ignored, even by proponents of the viewpoint for which it is the
strongest support. Indeed the main impact of the theorem seems

19 interested in modern

to have been to influence mathematicians
physics to define the term “simultaneously measurable” by the
commutability condition for trivial joint measurability, which is
not very helpful in view of the fact that both words in common
physical usage already had other definitions, as explained in Sec. 1.
Because von Neumann’s theorem is of central importance to the
problem of compatibility, it is appropriatec here to consider it,
even though space does not permit a full analysis of the hypotheses
on which it is based. It reads:

SIMULTANEOUS MEASURABILITY THEOREM
If of and & are compatible and & «— 4, # <> B, then (4, B] =.0.

Expressed succinctly, the theorem says that if of and # are
compatible, they are trivially compatible, for their operators
" necessarily commute. Unlike the semiclassical Gedankenesxperimente,
the vague interpretations of the uncertainty principle, and some
strange philosophizing about subjective wave-packet reductions,
the theorem offers an argument strong and clear in behalf of the
proposition that noncommuting observables cannot even in prin-
ciple be measured simultaneously. It affirms that the very notion
of general compatibility simply cannot logically be appended to
the established theoretical structure of quantum physics, unless the
latter is somehow modified. This possibility of nullifying the theorem
by such a basic alteration in the quantum postulates will be con-
sidered later.

We note here merely that von Neumann’s proof crucially in-
volves the postulate of strong correspondence, discussed in Sec. 2.



54 JAMES L. PARK AND HENRY MARGENAU

Inspired by the preceding theorem, various authors?® have
suggested that quantum mechanics should be rephrased in a new
logical framework which would properly allow for incompatibility.
We believe, and intend to show in subsequent sections of this
article, that von Neumann’s mathematics does not in fact establish
incompatibility as an intrinsic quantal property. Hence, if our
analysis is correct, any ‘‘quantum logic” designed to embrace
incompatibility is founded upon a mistaken interpretation of
quantum physics. We shall now expose certain salient features of
so-called “‘quantum logic,” in order to establish its relation to von
Neumann’s theorem.

Propositions, or questions, can be introduced into quantum theory
as functions of observables. Consider an observable &f < A =
Y« 4P, and the proposition #,: “ # , (s ) will yield a,.”” Proposition
2, is simply the observable “measured’ as follows: Measure & ; if a,,
results, assign to 2, the value 1; if a,(5a,) emerges, assign to 2,
the value 0. In short, #, = # (o), where #, is defined by
¥ (a) = 6, Hence

’?n And ﬁn(A) = ;'?n(ak)l)ak = Pa,.'

A suitable projection operator may also be found for any proposi-
tion involving commuting observables; but because of von
Neumann’s theorem, any compound proposition involving non-
commuting observables must be regarded as undecidable, or
absurd. For any two compatible propositions 2 and 2, it is possible

)

to find operators corresponding to the logical relation # “or’
2=20u2andP“and” 2 =P N 2:

PUde P+ Q- PQ,
#n 3 e PQ.

The change in logic said to be necessitated by quantum mechanics
has to do with the classical distributive law of propositions:

P20(2UR)=(PADU(PAAR.
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Suppose, for example, that 4, B are operators in a two-dimensional
Hilbert space. If [4, B] # 0, and 2 « Py, 20 P,, R P,,
then, because of von Newmann’s theorem, the distributive law
cannot hold in quantum theory. This stems from the correspondence

20 (2UAR) Py (P, + Py — P P,) = Py (1 —0) =P

but (N 2) U (# N R) is an absurd proposition, for neither
P N 2 nor P n R is measurable, since they are compounds of &
and 4 with [4, B] # 0. Thus, since the distributive law apparently
cannot hold in quantum theory, it has been suggested that some
“nondistributive” logic is required for quantum propositions.

We shall return to this point in Sec. 7.

5. Counterexamples Suggesting That Noncommuting
Observables Are Compatible
Mathematically, von Neumann’s simultaneous measurability
theorem is beyond criticism; it is a legitimate deduction from P1S
and P2. If, therefore, one could find a counterexample, i.e. describe
quantum mechanically a physical process fully certifiable as a simul-
- taneous measurement of, say, position and momentum, then the
basis of von Neumann’s theorem would require reformulation. It
would then establish not the incompatibility of physical observables
but rather the inconsistency of the quantum-mechanical axioms. It is
possible to construct such counterexamples, and two of them will
be recorded.

Consider first the quantum theory connected with the measure-
ment of a single observable, viz. the “time-of-flight” method for
measuring the momentum £ of an electron. The rule of correspon-
dence for position % might consist, for example, of the direct
observation of a coincidence between a scale mark and a macro-
scopic spot appearing on a photographic plate in response to an
electron impact.
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An “electron gun” prepares the state p = P,. Using non-
relativistic wave mechanics, we find that the probability density
we(p; ¥) for A (P) at the time of preparation is

l 1 * - ipx/h |
we(p; ¥) = i»\/éw;; f e M (x) dx|
ve -0

This distribution is the quantum-mechanical test for deciding
whether a proposed experiment which generates numbers via the
established operational definition for .#, (%) qualifies as a momen-
tum measurement scheme . ,(2). If the numbers in question are
to be regarded as ., (P)-results, they must satisfy the theoretical
distribution wa{p; ¥).

Let ¢ = O be the time when the electron is known to be in the
prepared state p = P,. The wave function y(x, ¢ = 0) is assumed
to be of compact support, and it is convenient to set up the origin of
the x-axis so that the interval where Y(x) # 0 is {—xg, x5). The
M ,(P)-procedure?! is simple: We simply wait a very long time
(t = ) as the electron moves freely, and then we measure the
observable #(Z) = mZ[t, where m is the electron mass. The
number obtained then counts as the result of .4, (2) att = 0. To
justify this operational definition of # quantum mechanically, one
must prove that the probability for .#,(2) to yield p € (), p,) at
t = 0 equals the probability that 4, [F ()] vields (mZt) € (py, p;)
at t — 00. The details are given in Ref. 9.

We conclude that the results of “direct” # (Z)-measurements,
performed sufficiently long after the preparation of Y (x, 0), will be
distributed just like the theoretical results for .#, (#) upon Y (x, 0).
This time-of-flight arrangement is therefore fully certified quantum
mechanically as an operational definition of #. Because quantum
theory can make only statistical predictions, no further guarantee
that this method “really” makes #-measurements is required.
Indeed, further guantal analysis of the question is theoretically

meaningless.
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One can also see that this time-of-flight method for obtaining
the results which #,(#) at ¢t = 0 would yield, determines likewise
the result which #,(#2) would yield any time ¢ > 0. This follows
at once from the fact that momentum is conserved in the free

motion of the electron; in quantum-mechanical terms,

Walt € (p1:£2); ¥( 0)] = Walp e (b1, £2); ¥(x 1)]-

Hence, by the same reasoning which validated the time-of-flight
method as a rule of correspondence for (%) at t = 0, we can
regard the results of #,[#(2)],t - o0, as #,(P)-results for any
t > 0. In particular, consider the instant when the electron strikes
the photographic plate and the result emerges. For that instant we
may conclude with full quantum-mechanical justification that
M, (P) would have yielded F(x) where x is the result of the
M (Z). Contrary to the prohibitions of von Neumann’s theorem,
we have here an empirical method for the simultaneous measure-
ment of & and #, two renowned noncommuting observables!
There is a tendency to dismiss simultaneous measurement
schemes such as the one just described as if they did not in fact
legitimately challenge the orthodox view. One authoritative argu-
ment was first employed by Heisenberg and may be summarized
by his statement?? that “the uncertainty relation does not refer
to the past.” In the time-of-flight experiment, by the time the
%, P-values emerge, the time to which they refer—the instant
just prior to the electron’s collision with the photographic plate—
is past; and the electron is then buried in the plate. According to
Heisenberg, such “knowledge of the past is of a purely speculative
character, since it can never . . . be used as an initial condition in
any calculation of the future progress of the clectron and thus
cannot be subjected to experimental verification. It is a matter of
personal belief whether such a calculation concerning the past
history of the electron can be ascribed any physical reality or not.”23
In rejoinder to this distinctly philosophical and somewhat sub-
jective disposal of the matter, we offer the following comments.



58 JAMES L. PARK AND HENRY MARGENAU

The word knowledge is not unambiguous when employed in dis-
cussions regarding quantum measurement. As we have seen, from
a strict quantal point of view, an electron never possesses properties
Z, 2 of which one can be knowledgeable or ignorant. (There does
not exist a preparation scheme Il which produces electrons always
yielding the same measured %', P-values.) Accordingly, measure-
ment should never be described as though it increased knowledge
by revealing perhaps with growing precision the actual, previously
unknown, ‘“‘value” of an observable. Measurements merely generate
numerical results associated with certain operations upon the
system of interest. The meaning of these numbers is provided by
the theory into which they are fed; in quantum theory the numbers
are not to be regarded as measures of possessed attributes.

It is therefore not very meaningful to say that the uncertainty
relations do not refer to the past. They refer to the standard devia-
tions of collectives of measurement results at any time and have
no bearing on measurements upon a single system at a single time,
since standard deviations refer only to measurements upon en-
sembles. Hence, as already explained in Sec. 2, the emergence of
simultaneous %, P-values upon measurement in no way violates
the uncertainty principle.

In the time-of-flight method, the %, #-measurement results-
admittedly refer to the instant just prior to the electron’s impact
on the plate. They are indeed useless for predicting (in classical
fashion) the result of a future %-measurement, yet they are no
more “speculative” or lacking in “physical reality” than any other
measurement result. Their lack of predictive power stems from the
fact that the “motion” of quantum systems is not governed by
Newtonian laws. Reference of the &', #-values to a past time is no
special feature of simultaneous measurements; it is characteristic of
all quantum measurements. Certainly, the time-of-flight measure-
ment of & alone referred to ¢ = 0, although the result did not

emerge until ¢ —» co. Nevertheless, such #-measurements play a
key role in the process of empirical verification ; for example, their
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statistical distribution determines whether or not the state prepared
by the “electron gun” is really ¥/(x, 0). Surely, if the physical sig-
nificance of such &, P-values is a matter of “personal belief,” then
all measurement results for single observables are likewise merely of
solipsistic significance.

We are therefore forced to conclude that the foregoing method
for simultaneous measurement of &, 2 is as significant as any
other quantum-mechanical measurement scheme.

We now present another counterexample to the simultaneous
measurability theorem. Consider two quantum systems S,, §, with
observables o |, &, and o , associated with §; and .S, respectively.
Let [4,, B;] # 0 and denote eigenvectors and eigenvalues as
follows:

1 (1 2
Ao = aPofl, Ay = dPuf?.

Although §; and §, are noninteracting, they are assumed to be
in a correlated state:

e
Y = Zk:°k“5<) ® o).

If o, has an operational definition, the correlation in ¥ that
relates A, (of |)-results to (o ,)-results may be used to con-
struct an . ,(of ). As in the # ,(2) case of our previous example,
we must establish a theoretical matching between probabilities
associated with .#,(sf,) and .4, (/,). Since

[AnAz] = [A] ®L1® Az] =0,

& and & , may be jointly measured (trivially) through an auxiliary
observable (cf. Sec. 3). The joint probability W (af", a{?’; W) is
then

W(“Sc”; a$2); ¥) = Tr (PsyP,,}(n ® “('2)) = |‘l;|2 5“'

From this expression it is apparent that when #(«/,) yields
a, a simultaneous 4, (,) would yield 4. Hence we have an
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M ,(s#,) scheme: To measure &), simply measure o,; if a®
results, then @iV is regarded as the result of A, ().

Suppose #,, like o ;, also has an established operational defini-
tion. Now, since the . ,(&/,) just outlined involves no interaction
with §,, we may perform .#(#,) simultancously with .# ,(&,)
and thereby jointly measure noncommuting observables &, and
%, Once again von Neumann’s theorem is contradicted.

6. Strong Correspondence —the Root of Quantum
Inconsistencies

Three conclusions may be drawn from the last two sections. (1)
The standard quantum postulates (P18, etc.) rigorously imply that
noncommuting observables are incompatible. (2) The same
postulates permit empirical arrangements which must be regarded
as legitimate schemes for the simultaneous measurement of non-
commuting observables, provided the term ““measurement’ is used
in its normal sense. (3) Hence the standard postulates of quantum theory
are inconsistent. We must therefore reexamine the axiomatic basis of
von Neumann’s simultaneous measurability theorem in order to
discover the false hypothesis which enables the rigorous deduction
of this false theorem.

Any theory about the simultaneous measurement of several
observables, from axioms referring only to measurements of single
observables .4 (&), requires the notion of compound observable
(Secs. 2 and 4); and this concept is subject to consistency con-
ditions (C;) and (C;), which would have to be satisfied by any
operator corresponding to such a compound observable.

Let us examine the correspondence o + # < 4 + B. Con-
dition (C,) alone implies this rule.?* Explicitly, P1S guarantees the
existence of an operator corresponding to the observable & + 4,
that operator would satisfy (Cy) and (C,). But (Q)) for o + #
can be satisfied by only one operator, namely 4 + B. Condition
(C,), therefore, need not be used at all. This observation provides an
important clue in our search for the false hypothesis in question.
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We ask: Is & + & truly an observable? If not, P1S cannot be
invoked to assure the existence of an operator counterpart. To
answer the question, we recall the last example of Sec. 5. L't showed
how two systems §; and §, in a realizable state could be used to
construct an appropriate rule of correspondence for simultaneous
M () and #(H,). Now the experimenter is obviously free to
add the two results; hence it is apparent that &, + 2, is ob-
servable. Therefore, if P18 is true, there must exist an operator § such
that o + # < § in general.

The following simple, contmven;ng example defeats this claim.
Let system §; be a “spin” whose relevant states and operators span
a two-dimensional spinor space. For our noncommuting observables
oy, B, we take x- and z-components of spin, &, and &,. Thus,
in the Pauli representation,

P [ PR T
2\l 0 20 1

Now simultaneous measurements of &/; and #, employing the
correlation with the auxiliary system §, will, by Th. 4, always yield
one of the eigenvalue pairs: (£/2, //2), (R/2, —k]2), (— K2, A]2),
(—#/2, —#/2). Hence only the three values £, 0, — % are possible
for results of measuring & ; + ;. To use the set notation of Sec. 2,
Ny + By) = {—Hh0, h};

and by condition (C,), if &; + #,; « §, quantum mechanics
would be self-contradictory unless
(C,) &6(8) s ¥ (A, + By).

However, (C,) must also be satisfied by §. As shown in Sec. 4, the
only § meeting this requirement is

S___fi(() l)_}_fi(l 0)=_{z(l l).

2\ 0 230 -1 2\ —1

But an elementary calculation reveals that the eigenvalues of this
operator are fj2'/%, — k212, in other words, the set £(S) =
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{—#2"2, 2!}, Comparing A4 (&, + #,) and &(S), with
Ay + B; < 5, one finds that

HN(Ay + RN ES) = .

We conclude that the only operator § capable of satisfying (C,)
does not satisfy (C,).

To summarize: o ; + %, is demonstrably observable. Axiom P1S
then ensures the existence of § « &, + #,. If the quantal axioms
are consistent, that § must satisfy both (C,) and (C,). The unique S
which satisfies (C,) violates (C,). Hence the axioms PIS and P2
are inconsistent.

This conclusion was already suggested at the beginning of this
section upon confrontation of von Neumann’s theorem with the
counterexamples of Sec. 5. But we now see where the difficulty lies
among the initial hypotheses leading to that theorem. The theorem
is false because P1S—strong correspondence—proclaims the existence
of operator-observable correspondences which cannot exist in
harmony with the remaining postulates. Thus the axiom set—
P18, P2—must be altered. The modification we propose is to re-
place P1S by P1. Further corroborative cvidence for the need of
this change (e.g. Temple’s theorem) is presented elsewhere.?®

7. The Consequences of Weak Correspondence

The suggestion that strong correspondence be abandoned is not
altogether welcome, primarily because quantum theory would
suffer a certain loss of universality as it will not cover all empirical
procedures. The historian may console himself in thinking that a
fuller range of applicability may be provided by future theoretical
discoveries.

At the moment we ask the nonspeculative question: What effect
does the replacement of strong by weak correspondence have on the
principal quantum theorems? Clearly Th. 1, for example, which
implies that every real linear functional m(4) of the Hermitian
operators may be expressed in the form Tr (p4), is quite indepen-
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dent of the physical problem as to whether operators can be found
to represent all observables; all that matters is that the operators
which are involved do represent observables. Within the mathe-
matical framework, operational definitions are irrelevant, and
quantum mechanics is a set of mathematical ohjects subject to
given rules.* Their application to the world is made possible by
the discovery of rules of correspondence with the P-field of ex-
perience.?® None of the parts of linear algebra which form the
foundation of quantum theory will be affected by the elimination
of strong correspondence. In fact, a careful search through quantum
theory for a proposition dependent upon strong correspondence
convinced the present writers that no basic theorem involving the
analysis of ensembles, statistics of measurement results, etc., requires
P1S rather than P1 in its proof.

If only weak correspondence is adopted, the physicist cannot
demand in a priori fashion that the mathematician furnish an F
for every one of his &’s. Given an observable #, the operator
algebra is not expecled to produce an F; instead, it is simply asked
whether or not F does exist such that # « F. In short, what were
formerly regarded as “‘correspondence theorems” are now inter-
preted as tests of validity for proposed correspondences.

We now offer a summary of the correct interpretation of the
theorems of this kind which were mentioned in previous sections:
(1) o + & A4+ B: (C;) uniquely determines the operator
A + B but (C,) is often violated. The correspondence is therefore
not generally valid.

(2) B « 3(AB + BA): Von Neumann’s theorem (Sec. 4), in
the proof of which this correspondence was central, actually
demonstrates that this correspondence can apply only to commuting
operators (in which case it takes the simple form o/ # «— 4B = BA).
(3) What corresponds to #/#%? Temple’s theorem exhibits the
ambiguities inherent in this triple product when P18 is assumed.?”

* Among these are tacit rules concerning the construct (o) which give
meaning to the primitive term observable as it appears in PL.
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It is perhaps instructive to consider a simple example which
illustrates why consistency condition (C,) required only £(F) <
N[F (s, #)] and not the equality of these two sets. Suppose
oA = LB = i¥, where ¥, is the z-component of orbital
angular momentum, %, < L, = (hfi)3/dp. & and & are
measured simultaneously, and the results are added together. The
set of all possible results of this procedure, 4 (& + #), is given by
N (L 4+ 5#,) = {m*K* + nk?}, since &(L,) = {mh}. But the
eigenvalues of L2 + 4L, comprisc the set &(L2 + kL, =
{k(k 4+ 1)A?%}, which is only a subsct of #°(of + #). The reason
for this inequality is easily understood if postulate (J) of Sec. 3 is
recalled. Any measurement of the observables #2 and A%, must
yield results correlated in the same manner as would be the results
of a trivial joint measurement of these observables. One such joint
measurement involves simply measuring &%, and evaluating
#? + h¥,. But that procedure can yield only numbers in the set
{k(k + 1)E*} = &(L? + AL,). This demonstration merely affirms
the consistency of (J), with the postulated correspondence # (%) «
F(C).

Elementary treatments of quantum mechanics occasionally
employ correspondences (1) and (2) as if they represented a universal
method of “deriving”’ quantum operators from classical functions.
Since (1) and (2) are false for most & and #, it is evident that
so-called “quantization” schemes based upon (1) and (2) are at
best memory aids taking advantage of our familiarity with classical
mechanics. (Cf. Ref. 9.)

While replacement of P18 by Pl has no effect whatsoever on the
normal applications of the theory to experiment, this revision does
have considerable theoretical and philosophical significance.
Primarily it shows that von Neumann’s simultaneous measurability
theorem is a correct mathematical theorem physically misinter-
preted as a restriction on measurability. It turns out to be a reductio
ad absurdum proof that the correspondence A H «— $(AB + BA) is
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false unless [4, B] = 0; in other words, a proof that [4,B] =0is
a necessary condition for the validity of o/# « (4B + B4).
Hence .any physical or metaphysical idea motivated by, or
founded upon, the concept of incompatibility now requires careful
reexamination. Two very common propositions based on incom-
patibility are the following: (1) Because noncommuting observables
are in principle not simultaneously measurable, it is meaningless to
contemplate joint probability distributions of quantal measurement
results. (2) Since any proposition about the outcome of simultaneous
measurements of noncommuting observables is meaningless, a new
system of logic is required for quantum physics.
(1) When the incompatibility doctrine has been discarded, there
remains no a priori restraint against the study of joint distributions,
(For a systematic study of such distributions, cf. Ref. 9.)
(2) At the end of Sec. 4, we indicated how incompatibility led to
the notion that quantum mechanics requires a new, “nondistribu-
tive” logic, i.e. a system which does not involve the law

PNn(2UR)=(PNnYHU(PNR),

which merely expresses an idea most physicists—including quantum
theorists “off duty,” to use Landé’s phrase—regard as “common
sense.” The problem was that propositions &, 2, and # can be
given for which there does exist an Hermitian operator correspond-
ing to the left member but there is not one for the right member.
Apart from the esoteric context in which it is cast, this problem is
not different from the difficulty encountered with the correspondence
o + & < S. Just as an appropriate § exists only when [4, B] = 0,
similarly a D exists such that Z N 2 « D only when [P, ] = 0.
When [P, Q] # 0, it simply means that the compound proposition
2 2 has no operator representative D. Naturally it is then
impossible to write down an operator counterpart to the distributive
law; but this does not make the law wrong!

There are other interesting implications with respect to the
“microcausality principle.” They are discussed in Ref. 9.
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8. A Search for “Simple” Simultaneous Measurements

It is shown elsewhere 28-3°

that attempts to approach the study of

quantum joint probabilities of noncommuting observables via more
or less natural random-variable techniques are thwarted at some
stage by ignorance of, or perhaps even the nonexistence of, operators
corresponding to compound observables. It is therefore desirable to
develop a method for examining simultaneous measurements which
does not depend on unknown operator-observable correspondence
rules. To do this, we return to the general ideas concerning quantum
measurement which were reviewed in Sec. 1. It was seen there that
the primitive classical notion of possession (“System S has of-value
a,”’) is superseded by the primitive quantal measurement construct
My (“If # () is performed on system S, the value g, will result
with probability . . .”*). While a theoretical explanation of measure-
ment processes in classical physics involved relations among
possessed attributes, a quantum theory of measurement at best
describes connections among the unanalyzable .#’s. On the other
hand, statements of such connections and associated empirical pro-
cedures constitute the usual scientific concept of measurement, or
measurement scheme (operational definition, the epistemic cor-
respondence rule®'). To signalize the logical distinction, we have
designated the latter class of constructs, which form part of the
theoretical structure of our problem, by .#,. They were exemplified
in Sec. 5.

Thus far we have shown by way of examples that there are
procedures which permit an assignment of values to pairs of non-
commuting observables. OQur present aim goes beyond such in-
dications; it is to clarify within the context of measurement theory,
as presented in the foregoing pages, how such empirical operations
function as parts of the complete mathematical structures. We shall
see that certain kinds of .#, are free from theoretical difficulties,
while others seem to generate internal contradictions.

Because every physical process—hence any measurement scheme,
single or joint—has a quantum-theoretical description, it seems
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reasonable that, whatever the correct joint probabilities are, they
should be derivable within the framework of a quantum theory of
M ,. That is, if a given procedure 4 ,(Z, #) is to be regarded as a
method for simultaneous measurement of & and 2, the scheme
must be certified by a theory establishing relations between
ML), #(P) and whatever “direct meter readings” are used as
the basis for inference of simultaneous .#,(%)- and #,(2)-results;
from this analysis it should be possible in principle to find the
probability for the occurrence of those “meter readings” that imply
any given pair of &- and P-values. This measurement-theoretical
approach to the joint-probability problem bypasses the difficulty
associated with the operator-observable correspondence, which
obstructed the methods reviewed earlier. All this will be clarified
below by explicit examples.

To develop these ideas further, we next distinguish two kinds of
M ,-concepts: (1) simple or type A and (2) historical or type B.
This distinction will later turn out to have considerable bearing on
the problem of compatibility.

(1) A simple .#, begins with system § in an arbitrary state
p., at some specified time ¢, and demonstrates how some single
operation upon S eventually leads to numbers from which may be
inferred J,-results to be associated with § in state p,. It is to be
especially noted that the state of S before ¢, is completely irrelevant.
We shall also refer to this class of measurement as belonging to
type A.

(2) An historical # ,-theory also seeks to certify some operation
as a bona fide supplier of numbers which can be meaningfully
interpreted as . -results for S in state p,,. However, unlike the
simple type A, the historical # ,-theory cannot be worked out
without detailed information concerning the structure of p,,. Such
information might be deduced from facts about the history of the
system, e.g. its state at some earlier time ¢, < f, plus its physical
environment between ; and #,. An example of each type appeared
in Sec. 5: the simple time-of-flight .#,(#) of type A and the
historical time-of-flight .#,(%, #) of type B.
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Physically, the # ,-theories of type A have been of greatest in-
terest, because they represent the idea of measurement in its most
primitive form, as a process applicable to a system at any instant
independently of its past. Similarly, in quantum mechanics the
language of 4,’s tends to presuppose that measurements are
performed upon systems in states which are simply given without
details as to the actual method of preparation. Accordingly, 4 ,-
schemes for single observables (or commuting sets of observables)
have been of type A. One might therefore be tempted to seek a
simple . ,-theory covering the simultaneous measurement of
several noncommuting observables. However, in view of the fact
that both examples of simultaneous measurement given in Sec. 5—
the time-of-flight .#,(%, #) and the use of two systems already
correlated at the time of interest—were of type B, there is so far no
reason to expect any simple theory for simultaneous measurement.

Elsewhere®? we have examined two fairly general procedures
which, at the outset, seem to be altogether plausible methods for
achieving simultaneous type A measurement of two noncommuting
observables. In both cases, theoretical obstacles eventually arose,
and this may be interpreted as evidence that quantum theory does
perhaps forbid type 4 simultaneous measurements. Deeper reasons to
anticipate such a theoretical prohibition have also been explored.?3

These examples furnish partial evidence for this proposition:

©
Simultaneous type A measurements of noncommuting observables
are theoretically impossible.

Of course, merely citing two unsuccessful attempts to develop a
simple # ,(&f, &) does not prove (0); nevertheless there appears,
for the first time in the present study, good rcason to suspect that
quantum theory may indeed place some restriction upon joint
measurability. If so, the qualification will not be a sweeping mandate
to the effect that #,(sf, #) is generally impossible, since that
common version was refuted in Sec. 5 by counterexamples. Rather,
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(0) would mean only this: Given at time {, a system S of unknown
history, it is impossible to devise an operation 4 ,(of, #) which
leads to numbers (a,, b)) interpretable as #,(o/)- and #,(B)-
results for time £,.
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