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This paper develops a method for extracting Jrom data the quantum theoretical state 
representation belonging to any reproducible empirical scheme for preparing a physical 
system, provided only that at least one observable has its possible values limited to a 
finite set. In Part 1, we formulate a general systematic procedure, based on the concept 
o.1" irreducible tensor operators, for the selection of  sets o f  observables sufficiently large 
to permit the unambiguous determination of  an unknown quantum state. 

1. INTRODUCTION 

Since in quantum physics the epistemic connection between the state concept and 
the datal experience to which it refers is inherently probabilistic, the problem of  
assigning the proper quantum theoretical state representation to a given empirical 
state preparation is not so transparent as the analogous problem in classical physics. 
In a previous publication, m we illustrated this problem of empirical state 
determination by discussing a quantum system whose Hilbert space had only two 
dimensions, i.e., the observables were restricted to having each only two eigenvalues. 

This investigation was supported in part under a grant from Research Corporation and by Graduate 
School research funds. 
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Simple criteria were given by means of which the quantum state could be deduced 
from empirical data on such "spin-½ type" observables. Here, we shall generalize 
the discussion to cover quantum systems with observables having any number of  
eigenvalues, the Hilbert spaces being expanded appropriately. 

2. T H E  M U L T I P O L E  A P P R O A C H  TO STATE D E T E R M I N A T I O N  

The following quantum mechanical propositions are adopted as axioms: 

A l: To every physical sys tem there corresponds a Hilbert space ~ .  
A2: Hermitian operators on , ~  represent physical observables associated with 

the physical system. 
A3: To every reproducible empirical scheme for the preparation of the physical 

system, there corresponds a density operator on ~ ,  namely p, such that, given any 
observable A on ~,o, the arithmetical mean value of a statistical collective of  
A-measurements obtained from an ensemble of  systems all prepared identically in 
the manner  symbolized by p, is equal to 

(A)  = tr(pA) (1) 

In our discussion, the term quantum state refers to the ensemble, not to any 
individual system1; the state determination is synonymous with the determination of 
the density operator p. Mathematically, therefore, the problem of state determination 
may now be concisely expressed as follows: 

Given an ~,~, find a set of  A's such that the system of corresponding equations 
(1) can be solved uniquely for p. 

Consider an N-dimensional Hilbert space ~N • The representation of a Hermitian 
operator in this space will be an N × N matrix of  complex numbers; Hermiticity 
of  this matrix restricts the number of  independent coefficients to N 2. It  follows that 
to determine any such operator on ~N requires N 2 real numbers. In particular, the 
density operator, conventionally constrained to have a unit trace, requires for its 
determination N 2 -  1 real numbers. Thus, we need a system of N 2 -  1 observables 
to generate N 2 - -  1 equations like (1) for a determination of the quantum state of  our 
ensemble. The problem is to determine what sets of  observables will in fact yield 
N 2 - -  1 independent equations for this purpose. In our earlier paper, a) where N = 2, 
a very simple solution to this problem emerged. For N = 3, we need to find a 
minimum of  eight independent observables, and it is already clear that an acceptable 
set of  observables may be far from self-evident. For larger values of N, it is obvious 
that some systematic procedures are absolutely necessary to ensure a successful 
search for the required minimum set of  N 2 - -  1 observables. 

The procedure we have adopted arises from the fact that the number N ~ is 
related to the number of  independent elements in a sequence of tensors defined in 

1 An ensemble may be generated, however, by taking a single system alternately prepared, measured, 
identically reprepared, etc. 
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terms of angular momentum operators, and referred to elsewhere in physics as 
multipoles. Thus, a multipole tensor operator of  rank k, Tk~, usually called a 2~-pole 
tensor operator, has 2k + 1 independent component  operators, q = - - k  ..... k, 
and because 

N--1 

(2k q- 1) = N 2 (2) 
~z=0 

we shall speculate that any observable in ~'~v can be expressed as a linear combination 
of the N z operators included in the set of  all tensor operator components {Tk~}, 
k = 0, 1 .... , N -  1. In effect, these N 2 operators constitute the basis for an N z- 
dimensional Hilbert space, referred to below as operator space, in which every 
observable of  interest is a vector. 

In our earlier paper, (1) we had N = 2, N 2 = 4, and the multipole operators 
were the 2 x 2 spin tensors (three components of  a dipole operator) and the identity 
(a monopole) operator. To prove the generality of  this procedure, we shall show that 
the Tk~ in fact constitute a complete orthogonal set in operator space, and we shall 
also show how to determine their N × N representations. Since we are interested in 
the trace of  a product of two operators--Eq.  (1)--we also need a theorem concerning 
the trace of  a product of  two T's. These purely mathematical considerations are 
developed in Sections 4 and 5. 

The virtue of  this scheme is of  course that we are able to characterize intuitively 
a sequence of observables as a "monopole ,"  a triplet of  "dipoles," five "quadru- 
poles," ..., 2k q- 1 "2k-poles, ' '  and so on, and to proceed systematically along this 
sequence until we have a sufficient number of  independent observables to determine 
the quantum state of  the ensemble. Hopefully, this will provide a general mathematical 
procedure that can be applied to any ensemble. 

3. OPERATOR SPACE: MULTIPOLE EXPANSIONS OF OBSERVABLES 
AND DENSITY MATRICES 

Our first definition is as follows. 

Definition 1. A multipole operator, or more explicitly; an irreducible tensor 
operator (ITO) of rank k is a (2k + 1)-plet of  operators {Tl~q [ q = - - k  ..... k} defined 
to satisfy the equations 

[Jr, Tkq] = qTk~ (3) 

[J~:, Tk~] = [k(k + 1) - -  q(q ± 1)11/3 Tk~l (4) 

where J~ and J~: are the familiar angular momentum operators for three-dimensional 
space: 

J 4 - = J x ± i J ~ ,  J × J : i J  (5) 

(k is always understood to be a nonnegative integer.) 
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For any system whose Hilbert space is YgN, we anticipate needing a sequence 
of  ITO's with ranks k : 0, 1 ..... N -- 1, to obtain a basis for the operator space 
mentioned above. 

The observables for such a system have N eigenvalues, and may be represented 
by N × N matrices; hence, it will be useful to have an N × N representation of all 
these ITO's. We can obtain this by adopting a notation based on the standard angular 
momentum eigenkets {1 J, M~I M = --J,..., J}, with N = 2J  + 1. 

Since an isomorphism exists between any two Hilbert spaces of the same 
dimensionality, mathematical procedures in the quantum theory of angular 
momentum that are used in connection with N-dimensional spaces invariant and 
irreducible under the rotation group will be formally transferrable to any ~ffN. 
Hence, the standard angular momentum eigenkets (t J, M~I M = --J ,  .... J)  may 
be regarded as spanning any 3¢ N , provided N---- 2J  + 1, even if the 3(f N occurs in 
connection with a physical system for which "angular momentum" is undefined. 
Accordingly, in what follows, it should be understood that the standard angular 
momentum operator and quantum number notation does not necessarily have its 
usual physical interpretation. (Note: since J may be any nonnegative integer or 
half-integer, there is a J for every admissible N value.) 

We begin with a brief survey of those rudiments of  irreducible tensor operator 
theory which are germane to our present purpose. Only proofs of  theorems not 
readily available in the literature (s) will be given. 

Theorem 1. (Wigner-Eekart, special case). The matrix elements of an ITO T~ 
with components {Tkq} on a (2J q- 1)-dimensional ~ff are given by 

(JM[ Tkq [ JM') : (2J q- 1)-'/2 (JI[ Tk t[ J)(JkM'q I JM> (6) 

where (JkM'q I JM~ is a Clebsch-Gordan coefficient and ( J  II "rk II J~ is a quantity 
(so-called reduced matrix element) independent of M, M',  q. 

We shall need in particular the reduced matrix element for the identity: 

(J[[ 1 J1J~ = (2J + l) 1/~ (7) 

Theorem 2. I f  Te 1 and kJ,, are ITO's, then 

V~ k* ~ ~ (kq [ klk~qlq~) T~lql U~q ~ , q = --k,..., k (8) 
qlq2 

are components of an ITO ((kq I klk2qlq~) are Clebsch-Gordan coefficients). 
The expression (8) may be inverted, using Clebsch-Gordan orthogonality 

relations, to yield 

Z,,elqlUk2q~ = ~_. (k,k2q~q2 [ kq} V~ ~ (9) 
kq 

Theorem 3. If  T k is an ITO on a (2J q- 1)-dimensional space, then 

tr T~ = ~0(2J + 1) 1/2 ( J  II To TI J~ (10) 
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In particular, if we apply (10) to (8), there results 

tr v k1~2 ---- 3ko(2J q- 1) ~/3 ( J  ]] Vo k~k2 ][ J> (11) • /cq 

Now, it is possible to take the trace of (9) to obtain 

tr(Tk~qiUk~q~) = ~, (klk3qlq3 l kq} 3ko(2J q- 1) 1/3 ( J  It Vo ~ tl J> 
kq 

= (2J + 1) 1/2 <klk~qlq ~ [ 00><Jl] Vo k~k' H J> (12) 

But from tables, we find that 

(klk~qlq3 ] 00) = 3 ~  3qj._q~ (klklq I -- ql I 00> 

: 3k~e~ 3q~_q~ (--1)~+q~/(2kx q- 1) 1/3 (13) 

Substituting (13) into (12), we get 

tr(Tk~q~U~zq2 ) = (2J q- 1) 1/~ 8e~k2 8al-qa ( -  1)~+q~ (2kl q- 1) 1/2 <J I1 vo ~ II J )  (14) 

i.e., the only nonzero traces of products of ITO components have this form: 

tr(T~.U~_q) = [(2J q-- 1)/(2k + 1)]'/3 (--1) ~+~ <J [[ Vo~ II J )  (15) 

where 

V~  = ~ (00! kk  qlq3) Tk1~lU~q2 (16) 
qlq~ 

Combining (13) and (16), we have 

V~o ~ = E (2k + 1)1/3 T~U~2 
qlq2 

_ ( - 1 )  ~ 
(2k + 1)1/3 Z (--1)~ G~U~-. (17) 

q = - - k  

Now, from (5), we see that any rank-zero ITO, like Voko ~, must satisfy 

[d~, Vo~o k] = [d±, Voko k] = 0 (18) 

i.e., V0k0 k commutes with the generators of the rotation group; thus, by Schur's lemma, 

Vo~o ~ = G 1  (19) 

where C~ is a complex number depending only on T~, Uk. 
Combining (7) and (19), we get 

( J  l] VoTo ~ ]] J )  = Ck(2J + 1) 1/3 (20) 



216 James L. Park and William Band 

By substituting (20) into (15), and combining (17) and (19), we obtain the 
following theorem. 

Theorem 4. If  Tk~ and Uk2 are ITO's, 

(a) tr(T~1alU~2q~) = 0 unless kl = k~., ql = --q~ 

(b) tr(T~qUk_q) ---- (2J + 1)(--1) ~+q (2k + 1) -lm C~ 
(21a) 

where 
k 

(--1)~ ~ (--1) q T~qUk_q (21b) Q1 - (2k + 1)1/2 q=_~ 

We shall require only the special case of Theorem 4 where T~ = Uk, which 
we shall formulate as the following theorem. 

where 

Theorem 5. If  T~ is an ITO, then 

(a) tr(T~qT~,q,) = O, k ~ k'; 

(b) tr(Tk~T~_q) = [(--1)~/(2k + 1)] g~(2J ÷ 1), 

where 

Definition 2. 

(22a) 

/e 

g~l = ~ (--1)q Tk~Tk_~ (22b) 
q=--/c 

An ITO Tk is said to be Hermitian if and only if 

Tk t = Tk (23) 

T t Z t (24) (T#)~ =-- ( - -  1)~ ( ~)_~ = ( - -  1)~ ~_~ 

(The dagger on the right side of (24) is just the ordinary Hermitian conjugate of a 
single operator.) 

Thus, for a Hermitian T~, 

T k_q = (-- 1) q T*kq (25) 

If  T~ is Hermitian in the sense of Definition 2, Eq. (22) may be expressed in 
terms of {Tkq} and {Tk*q} as follows: 

tr(TkqT~q ) = [(2J q- 1)/(2k q- 1)] g~ (26a) 

gkl = ~ T~T~q (26b) 
q = - - k  

where 

Note that gk is in this case real. 
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To adapt the ITO formalism to the problem 9f state determination, we shall 
construct an auxiliary vector space, to be called operator space, whose elements are 
the linear operators on JC'N. Operator space is defined by specifying a basis: 

Definition 3. Any sequence of ITO's of the form {'1- k I k = 0, 1,..., 2J} will be 
called a basis for the N~-dimensional operator space auxiliary to 5/f N , where 
N = 2J  @ 1. The elements of operator space are all the linear combinations of 
the basis components. 

For  convenience, we adopt a basis consisting of Hermitian ITO's with a specified 
normalization: 

Definition 4. In the special basis {r~ ] k = 0, 1 .... ,2J} for the operator space 
auxiliary to ~ N ,  N = 2J  ÷ 1, (a) each rk is Hermitian in the sense of  Definition 2, 
and (b) we have the following: 

k 

Z ~k~'~*~ = (2k + 1) 1, k = 0,..., 2J (27) 
q=--7~ 

Henceforth, we shall use the special basis exclusively; any element A of operator 
space is then a linear combination of the form 

2 J  /z 

A = Z Z A~o~-ko (28) 
k = 0  q = - - k  

where the {A~q} are in general complex numbers. 

Definition 5. 
defined by 

The scalar product of two elements A, B of operator space is 

(A I B) ~ tr(A+B) (29) 

From Theorem 5, (26), and (27), we then have in particular 

('rklql I ~~2q~) = 3k1~2 3q~2 (2J ,-}- 1) (30) 

Now, (30) implies that the elements of the special basis are mutually orthogonal 
in the sense of the scalar product in Definition 5. As we shall see in detail in Section 4, 
Theorem I may be used to construct (2J + D-dimensional matrix representations 
of the {~-~q}; thus, (28) may be regarded as an expression for an N × N matrix A 
in terms of N × N matrices {%q}, where N ~ 2J  + 1. Thus, the question of com- 
pleteness arises: Given an arbitrary N × N matrix A, can a set {A~} be found such 
that A may be expressed in the form (28) ? 

To verify that the set {~kq} is in fact complete in this sense, it suffices to note 
that the total number of orthogonal {~-~q} is 

2 J = N - - 1  

(2k + 1) = N 2 (31) 
k = 0  
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which is of course the number of  elements in the arbitrary matrix A. Hence, given A, 
the components {Akq} for the expansion (28) may be ascertained as follows. 

Multiply (28) by rz,~ and take the scalar product: 

(~'~m I A) = ~ Akq(rtm I ~'~q) (32) 
kq 

Using (30), we then obtain 

kq 

= A,~z(2J-b 1) 

Hence 

ikq = (~'k~ I A)/(2J-k- 1) 

We summarize the considerations leading to (33) as the following theorem. 

(33) 

Theorem 6. The operator space spanned by the special basis of Definition 4 
is complete for all linear operators on ~ N ,  N = 2J ÷ 1. 

It follows as a corollary that any observable (Hermitian operator) associated 
with a physical system whose Hilbert space is ~N will be an element of the operator 
space and expressible in the form (28). 

Theorem 7. 

then 

If A is Hermitian and 

2 J  ,~ 

A = E ~ A~q'Ckq 
k = 0  q=--k 

Ak_ ~ = (--1) 4 Ak* (34) 

The Herrniticity condition (34) is an immediate consequence of (25). From (34), 
it follows that in the expansion (28) of any Hermitian A, the (2k + 1) complex Akq 
associated with each value of k will involve only (2k q- 1) independent real numbers. 
In light of the discussion of the multipole concept given in Section 2, it seems 
appropriate therefore to adopt the following terminology: 

Definition 6. If  A is an observable in the operator space auxiliary to ~(¢n, 
N = 2 Jq -  1, so that 

2 J  k 

k = 0  q ~ - - k  

then the (2k + 1)-plet {Akq} will be called the 2k-pole component of  A. Similarly, 
for a density matrix 

2,/ ,~ 

p = Z E (35) 
k = 0  q ~ - - k  

the (2k q- 1)-plet {pkq} will be called the 2~-pole component of  p. 
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Theorem 8a. The monopole component of an observable A associated with a 
physical system with Hilbert space o~ N is 1IN times the sum of the eigenvalues of A. 

To prove this proposition, consider the monopole (k -- 0) case of (33): 

('r0o I A) 1 tr(%,0 A) (36) 
A°° - -  2J + 1 = 

By the same reasoning that led to (19), plus the normalization requirement (27), 
we find that 

%0 = 1 (37) 

Hence, Aoo = ( l /N) t r  A and Theorem 8a is demonstrated. 
Since a density matrix has trace unity, we have also the following theorem. 

Theorem 8b. The monopole component of the density matrix for a physical 
system with Hilbert space ~¢t°~ is 1/N = 1/(2J-I- 1). 

Hence, 

1 2J ,~ 

P = 2J +-----T 1 + ~ Z p~q~~ (38) 
k=l  q=--k 

Later, we shall find it convenient to write down these multipole expansions of 
observables and density matrices in the following, more compact form: Let Ak 
denote a (2k ÷ 1)-vector whose components are {Akq}. Then, 

Similarly, 

2J 2J k 

A =  Z A~'r~=-- Z Z Akq'Ckq (39) 
k=O k=0 q~--k 

1 2J  

P = 2 J +  1 r°-t- ~2 0~ ' ru  (40) 
k = l  

Thus, for example, the dipole component of A is a 3-vector A1 ; the quadrupole 
component, a 5-vector A2 ; the octupole component, a 7-vector A3 ; etc. 

4. THE ALGEBRA OF OPERATOR SPACE 

In this section, we derive several useful relations involving the special basis 
{vk). Theorem 1 (Wigner-Eckart) plays a significant role in these developments; 
however, we shall henceforth express it in terms of 3=] symbols instead of Clebsch- 
Gordan coefficients. 

Since the 3-j symbol is defined by 

".2a] ~ (JlJzmlm~ IJz - -  ma) (41) 
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(6) may be expressed with Tkq = ~'kq as follows: 

<jMl~rkq l jM,  > = <jiiT~llj>(__l)_j+k_ u (M J k --JM) (42) ' q 

Theorem 9. ( J  Ii T~ II J> = [(2J + 1)(2k + 1)]~/L 

Proof. Combining (26) and (27), we find 

tr(r.* ~ ' .  ) = 2J + 1. /cq ~q (43) 

An application of (42) then yields 

tr(r;q~-kq ) = ~ (JM"~ -r;q I JM><JMI ~'kq [ JM'> 
MM" 

MM" q 

MM" q 

Hence, 

<JHT!cHJ) : [(2J -~ 1)IMAM, ( J ,  k q J M ) 2 ]  1/2 (44) 

The denominator in (44) is evaluated using the following identity involving 
3-j symbols: 

(Jl J~ J3](Jl J2 J 3 ' ] =  ~JsJ,'~3"~a ' (45) 
~ ml m2 m3/ \ml ms m3'l 2j~ + 1 

Thus, we obtain the desired result: 

2J + 1 ]1/2 
<J[1% I] J> = (2k + 1)  - 1  = [(2J @ 1)(2k @ 1)] 1/2 (46) 

where 

Theorem 10. 
2J k 

rklq~'7~ = ~ ~ Es(klqlk2q2kq) "kq (47a) 
k=O q=--k 

Es ~ ~q,~l+q2[(2J + 1)(2k + 1)(2kl + 1)(2k~ + 1)] 1/2 

t) X Z (--1) s*/+q' 
M=-s . q l + q 2  M - - ( q l - ? q z )  -- 

71 J s J s × (47b) \ ql M - - q 1  - -Ml \qz  M - -  (ql + q2) - - M  + ql l 



A General Theory of Empirical State Determination in Quantum Physics: Part I 221 

Proof. 
multipole expansion of rqh re~q ~ : 

i.e., 

Using (33), we obtain an expression for the kq-component in the 

f 7" (2J + 1)(%,q~rk=q=)ea = tr(%qre,q, ~q~) (48) 

The trace in (48) may be evaluated using (42); to simplify the expressions, let 

and 

Re -~ ( J  IJ T,,c Ii J )  = [(2J @ 1)(2k @ 1)] 1/2 

(M[  7.eq I M' )  ==- ( JM I 7.eq [ JM')  

Then, (48) becomes 

(M'17.~q 
MM'M ~ 

=Z<M' 
MM' 

M ) ( M  I relql I M") (M" I rk~q~ [ M')  

But a 3-j symbol 

( 7.~q [ M )  ~ Rkl(--1) -s+el-M J kl 
M" ql M ~ 

(49) 

(50) 

vanishes unless ml -[- m2 + ma = 0. Hence, (50) may be written as follows: 

= %q [ M> t, o ~ l",~+k~-M 
MM" 

~ Z (__I)--M" (MJt kl __.JM) J k2 J 

- -  R ( 1 ~+k2+qt - F~ <M'l  7.L 1 M> R~ ~t - -  
MM" 

× 8~2+M,_ql+M (51) 

The remaining -r~q matrix element in (51) may be expressed in terms of a 3-j 
symbol using (42). The presence of the Kronecker delta makes possible summing 
over M'. In addition, the following property of 3-j symbols helps eliminate some of 
the exponents of (--  1): 

(mJ~ m~L J%)=  (_l)h+J,+J~ (2~ mlJl ~a) 

895/I/3-3 
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Finally, we obtain 

(~'klq~ 7~q2)kq : Ej(klqlk~q2kq) (52) 

where Es is defined as in (47b); thus, the theorem is proved. Using Theorem 10, it is 
possible to derive expressions for commutators and anticommutators in terms of 
their multipole expansions. Moreover, Theorem 10 is useful in the process (to be 
exemplified in Part II) of analyzing the multipolar character of operators formed by 
multiplication of other operators whose multipole components are already known. 

5. STATE DETERMINATION: THE QUORUM OF OBSERVABLES 

The fundamental mean value equation (1) may be expanded in terms of the 
multipole components of an observable A and density matrix p: 

<A> ~- tr(pA) 

lc'q" kq 

----- Z Z Pk'q'Akq(--1) q (2J + 1) 3k'~ 8q,_q" 
k'q" kq 

= (2J -}- 1) Z pkqAk * 
kq 

(53) 

where the relations (25) and (30) have been used. 
We next express (A> in terms of the (2k + 1)-vectors introduced in (39), (40), 

and apply Theorem 8 to obtain 

2J  

<A> = ( 2 J +  1) ~ ok" A~* 
k=0  

2J 

= Aoo + ( 2 J +  1) ~ Pk" A~* (54) 
J~=l 

Recall that Aoo is the average of all the eigenvalues of A (Theorem 8a), so that, having 
decided upon the operator A, A00 is known. Thus, the experimental data which give 
<A> also yield the value of ~A ~ (A> -- A00 ; and Eq. (54) can be written 

2J 3A 
0k'Ak* = 2 J +  1 (55) 

k = l  

Equation (55) is linear with N 2 -  1 unknowns {0kl k = 1,..., 2J}, where 
N = 2J + 1. Thus, a system of N 2 -- 1 equations like (55) is required in general to 
determine p uniquely. Accordingly, the problem of state determination for a physical 
system with Hilbert space sfg N is essentially a search for N 2 -- 1 observables such that 
the corresponding system of N 2 -- 1 equations like (55) will be determinate. 
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Definition 7. A set of N ~ -  1 observables { A ~ ] n  = 1 ..... N 2 -  1} whose 
multipole components {A~ "} are such that the system of linear equations 

k=l 2J-t- 1 n =  1,. . . ,N 2 - 1  (56) 

possesses a unique solution set {0e} will be termed a quorum of observables. (Note 
that n is a label, not an exponent.) 

In a previous paper {1} which dealt exclusively with the J = ½ case, we suggested 
the phrase minimal  set o f  noncommuting observables to describe the quorum concept. 
In that context, the phrase seemed appropriate for contrast with the notion of 
complete set o f  commuting observables which is sometimes erroneously linked to the 
problem of state determination. Moreover, in the J = ½ case, noncommutability of  
{A '~} is alone sufficient (and necessary) for determinateness of the system (56), because 
the determinant of the coefficients in (56) vanishes if any two of the {A '~} commute. 
However, this simple connection between that determinant and the commutability 
of the {As} does not generalize to J > ½, because of the complicated 3=] symbols in 
the expressions for commutators that may be derived using Theorem 10. 

The determinant of the coefficients for equations (56) has rows which are 
(N 2 -- 1)-plets expressible in terms of the multipole components of A'~; the nth row is 

A s ~- (AI~, A2~ ..... A~T ) (57) 

i.e., A m denotes the (N 2 -- 1)-plet in (57) and p the analog for the unknown density 
matrix. 

The system of equations (56) then becomes 

P'Am* - -  2J-}- 1 n =  1 , . . . ,N z -  1 (58) 

Now, the determinant of the coefficients for (58) will be nonzero and hence the 
state p may be determined if and only if the set {A '~} is linearly independent (L1). 
Thus, the problem of state determination--the search for a quorum--centers on the 
formulation of physically useful criteria enabling selection of an observable set {A n} 
such that the associated set of ( N  2 - -  1)-dimensional vectors {A s} is LI. 

To develop a systematic procedure, we return to the multipole expansions. 

Definition 8. Apure ly2 t -po lar  observable is one having only a U-pole component. 
For example, a purely octupolar observable O would have the form 

O = O3"r3 

Theorem 11. If  L is a purely U-polar observable, then 

p~ . L *  = 8L/ (2J- t -  1) (59) 

The proof follows immediately from (55) and Definition 8. Moreover, from (57) 
and Definition 8, we obtain the following theorem. 
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Theorem 12. If  L and M are purely 2 z- and 2m-polar observables, respectively, 
then L and M are perpendicular, provided l =/= m. 

From Theorem 11, we see that the U-pole component of p may be determined 
from measurements of purely 2~-polar observables. Specifically, to determine 0~, 
we need (2l ÷ 1) purely U-polar observables {L '~} such that the associated vectors 
{L~ ~} are LI. Thus, one procedure for constructing a quorum of observables would 
be to choose three purely dipolar observables {D "} with LI {D~'~}, five purely quadru- 
polar observables {Q~} with LI {Q2 ~} ..... and 2(2J) ÷ 1 purely 22S-polar observables 
{Z "} with LI {Z~j}. Recalling that N = 2J ÷ 1, this is consistent with our introductory 
remarks about Eq. (2). Theorem 12 affirms the consistency of this procedure with the 
remarks following (58). We shall call a quorum consisting entirely of purely U-polar 
observables a natural quorum or n-quorum. 

A somewhat more flexible procedure for generating a quorum of observables 
may be developed in terms of a class of observables defined as follows. 

Definition 9. An observable G is of multipolar type l if and only if 

k = 0  

i.e., all multipole components Go = 0 for k > l. (Note that the purely U-polar 
observable of Definition 8 is a special case of the type l observable of Definition 9.) 

A quorum for determining p may be formed by choosing three type-1 observables 
{D ~} with LI{DI~}, five type-2 observables {Q~} with LI{Q2~},..., (2l ÷ 1) type-I 
observables with LI 2~-pole components ..... and 2 ( 2 J ) ÷  1 type-(2J) observables 
{Z '~} with LI {Z~s}. To see in detail why such a set constitutes a quorum, consider 
the following sequence of operations. 

I f  the quorum just proposed is substituted into (56), we obtain 

01"Dr*- -  2 J ~ 1  n----- 1,2,3 (60a) 

02" Q~* - 2J ÷ 1 01" Q1 n n ~-- 1 .... ,5  (60b) 

l 6Z,~ 2s-1 I 
P2s'Z2~*-- 2 J ÷ ~ - -  y~ 0~ 'Z~ ~ n = 1 ..... 2 (2J )+  1 (60c) 

The system (60a) may be solved for P1 since {D1 '~} is LI. The right-hand side of 
(60b) is then known; hence, (60b) may be solved for P2 • By continuing this pattern, 
we could find all the {ok}, hence determine the state p. 

The foregoing method for state determination may be formally expressed as 
follows. 

Definition 10. A set of observables {I s} is U-polar-LI if and only if the U-pole 
components {Iz ~} constitute a linearly independent set. 
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Theorem 13. Let {P}z denote a set of (2/q- 1) 2Z-polar-LI type-/observables. 
Then, the set of such sets 

{{I"}z II = 1,..., 2J} 

constitutes a quorum of observables for determining the state p of a physical system 
with Hilbert space a(~,  N = 2J + 1. 

Let det{{I~}~} signify the determinant whose rows are the vectors of the kind 
defined in (57) which are associated with the quorum defined in Theorem 13; similarly, 
let det{I~}z denote the subdeterminant whose rows are 2t-pole components of the 
{In}z. Then, from Definitions 9 and 10, it is tedious but straightforward to verify 
the following theorem, which only validates in another way the quorum of Theorem 
13. 

Theorem 14. The following holds: 

2,/ 

det{{I~}~} = I~ det{I~"}k ~= 0 
k = l  

Perhaps the simplest way to assure that (2/-k 1) type-/observables are 2~-polar-LI 
is to choose type-/observables {C '~} such that the (2l q- 1) vectors {C~ ~} are mutually 
perpendicular. 

Definition 11. A set of observables {C'*} is 2~-polar-Cartesian if and only if 
the 2~-pole components {C "} constitute a mutually perpendicular set. 

Since 2~-polar-Cartesian is a special case of 2~-polar-LI, Theorems 12 and 13 
apply. 

Other quorums could be discovered by seeking decompositions of the determinant 
of the coefficients different from that given by Theorem 14. We shall henceforth refer 
to the quorum described in Theorem 13 as a graduated quorum or simply g-quorum. 
Note the n-quorum is a special case of the g-quorum. 

Using the concept of 2Z-polar-LI observables, we summarize now our simple 
method for generating a quorum of observables, and thence determining the quantum 
state. 

(1) Choose three dipolar-LI type-1 observables {D~}, obtain {3D "} by analyzing 
data gathered from an ensemble of measurements of the {Dn}, and solve 
(60a) for 01. 

(2) Choose five quadrupolar-L! type-2 observables {Q~}, obtain {SQ ~} from 
data, and solve (60b) for 02- 

(3) Continue the procedure until all multipole components of p are determined. 

The pragmatic value of this state determination procedure depends of course on 
whether actual empirical measurement procedures can be identified that constitute 



226 James L. Park and William Band 

operational definitions for the 2~-polar-LI type-/observables constructed abstractly. 
Specific physical examples which suggest that the g-quorum method here proposed 
is indeed reasonably efficacious will be presented in the sequel to this paper. 
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