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Abstract. Noting that a classical phase-space probability distribution w(q, p )  may be calculated 
from moment expectation values {<ampn>}, we inquire as to whether similar data in quantum mecha- 
nics would be adequate to determine the statistical operator e. For the family of simultaneous (q, p )  
measurement schemes investigated, it turns out that such momenta do not suffice to fix e. Comparison 
of the empirical information that is adequate to determine e with that required to find w(p, p )  reveals 
that in a sense more data are needed for state determination in quantum statistics than are needed 
in the classical case. 

Simultan-Messung, Phasenraum-Verteilungen und Bestimmtheit der Quantenzustiinde 
Inhaltsubersicht.  Da die klassische Wahrscheinlichkeitaverteilung w(p, p )  im Phasenraum 

aus den Erwartungswerten der Momente {<pmplz)} berechenbar ist, erhebt sich die Frage, ob sich nicht 
in ahnlicher Weise der statistische Operator der Quantenmechanik bestimmen IiiBt. Fur die Gruppe 
der untersuchten simultanen (9, p)-Messungen stellt es sich heraus, d a B  die 0.g. Momente nicht zur 
Bestimmung von Q ausreichen. Der Vergleich der zur Festlegung von e benotigten empirischen Infor- 
mationen mit denen zur Bestimmung von w zeigt, daB in gewissem Sinne mehr Daten zur Festlegung 
der Zustiinde in der Quantenmechanik erforderlich sind als im klassischen Falle. 

1. Introduction 
The statistical operator e in quantum mechanics is sometimes regarded as a theoreti- 

cal analog to the Gibbsian phase-space mobability density w(q, p ) .  Pursu ing this ana- 
logy, one may reasonably ask whether the same kinds of Rtatistical data that suffice to  
determine w(q, p )  in the classical case might also provide an empirical determination 
of the quanta1 c. To be specific, it is well known that classically the characteristic func- 
tion method permits the joint probability distribution w(q, p )  to be expressed in terms 
of the moments ((qmpn) I 12, nz = 0, I, 2, . . .}, where (qmpn) = $ dq J d p  qmpnw(q, p) .  
The question then is whether this same type of data-mean values of products of powers 
of simultaneous (q, p )  measurement results- would be adequate in a quantum-mechanical 
context to determine Q. 

We are of course well aware that there are staunch adherents of a rather extreme 
form of complementarity who would declare the question just posed to  be meaningless 
because in their philosophy simultaneous (q, p )  data. cannot exist. However, having reject- 
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ed this viewpoint for many reasons that have been elaborated elsewhere [I], and being 
therefore unencumbered by “neo Bohrian” dogma, we feel quite free intellectually to 
proceed with the proposed investigation. 

In the analysis which follows, we focus attention on one particular family of simul- 
taneous (q ,  p )  measurements, defined by the special feature that a direct measurement 
of q alone is in fact tantamount to a concurrent ineasurement of p .  The idea here is that 
a p datum may be inferred from each q datum by substitution in a prescribed function; 
i.e., a relation of the form p = s(q) holds for the (q, p )  data even though of course no 
such functional dependence is valid for the corresponding noncommuting operators for 
position and momentum. We find that for simultaneous measurement schemes of this 
type, the (q ,  p )  data analysis which is adequate to determine the joint distribution 
w(q, p )  is in general insu€€icient for empirical determination of the statistical operator e. 
Motivated by the breakdown in this sense of the analogy between e and w(q, p ) ,  we are 
led next to explore the relationship of this discovery to the established theory of quantum- 
mechanical phase-space distribution functions and the concomitant problem of finding 
rules of association between quantal operators and classical phase €unctions. The discus- 
sion concludes by comparing the inadequate data set ((qmpn)} with what we call the 
quorum [2] data-the information actually needed in quantum mechanics for the 
empirical determination of Q. As expected, the quorum for e turns out to embody more 
empirical information than that required to determine the classical w(q, p ) .  

A s  we have argued in other publications [3] concerned more generally with the quan- 
tum theory of measurement, there is one structural feature paradigmatic of the quantum 
description of any operational measurement scheme: a physical arrangement is quantum- 
theoretically certified to be a bona-fide measurement procedure for A ,  the observable 
of interest, if it can be proved that the probability distribution for A-data matches the 
probability distribution for D-Data, where, measurement of D is the directly performable 
act (e.g., reading a meter). This point of view, solidly grounded in the statistical inter- 
pretation of quantum mechanics, has been attacked by a few authors-JAucH [4] for 
example- who apparently believe that more than such probability matching is required 
to validate a quantum measurement scheme. However, we remain convinced that quan- 
tum theory cannot possibly transcend its own intrinsically probabilistic mode of reason- 
ing; and hence the foregoing characterization of measurement is not only proper but is 
in fact quantally complete. 

The concept of probability matching has many routine practical applications in 
explaining the operation of measurement devices, but our need for it here is of a more 
esoteric nature. We seek state preparations (statistical operators e) for which a probabili- 
t y  matching occurs between the distributions for momentum p and some function s of 
position q,  a rather exotic property to  be sure, but not an unrealizable one. For a par- 
ticle prepared in such a state it becomes possible to measure p by directly measuring q 
and then computing p = R(q), a procedure justified by the probability match; in other 
words, for such states we have a scheme for simultaneous measurement of q and p .  

In  quantum simultaneous measurement theory, it is of utmost importance to avoid 
misinterpretation of any expression such as p = s(q) which is valid only within the 
context of its derivation (i.e., for a certain family of quantum states). In  particular, 
p = s(q)  must not be regarded as a general relation between the quantal observables  
(dynamical variables) Q and P, for it is in fact merely a connection between measure-  
m en t r es  u 1 t s (data) q and p ,  which is applicable only under certain circumstances which 
must be specified in the formulation of the simultaneous measurement scheme. Thus 
p = s(q) ,  a data1 relationship derived from a probability match valid for particular 
states, does not imply P = s(Q). Indeed the latter expression would generate dynamical 
absurdities. The time-of-flight illustration given below provides a familiar example of 
a particular p = s(q)  which is empirically useful in both classical and quantum mechanics 
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but which obviously does not lead in either theory to P = s(Q) as a general relation 
between dynamical variables. This technicality has been discussed more thoroughly in 
a general article [I] on simultaneous measurement, and the point is also elucidated in a 
recent paper [ 111 on the determination of quantum states from data. 

Before turning to the mathematical analysis of this situation, we should like to 
remark that nothing that either has been or will be said here in any way violates the 
uncertainty principle, for no statistical operator can possibly do so. Moreover, we do 
not claim that the particular type of aimultaneous (q, p )  measurement being considered 
here is the only kind, or even the most interesting kind; it is, however, adequate for the 
present theoretical discussion. For a recent attempt to formulate a comprehensive 
quantum theory of simultaneous measurement and joint probability distributions, the 
reader is referred to  the work [5]  of DE MUYNCE et  al. 

2. A Family of Simultaneous Measurement Sehemos 
To derive a condition on e such that the associated probability distributions for p 

and s(q) match, let &, P denote the position and momentum operators, their 
respective eigenkets, and WA(m[u,, a,]; e )  the probability that an A-measurement on a 
systeiii prepared in the state e will yield a value in the interval [a,, a2]. From the ordinary 
rules of quantum theory we have that 

where s-l denotes the inverse function to  s, i.e., 
s-"s(q)l = P *  (3) 

Wp(Z)E[?)l, %?I ; @) = W8(Q)(SE[p1, ?%I ; (4) 

The probability match condition to be imposed on e is 

for every p,, p2.  If we change the dummy variable in (2) by lett'ing q = s- l (p) ,  the inte- 
gral takes the foriii 

which permits (4) to be written, using (1) and (2), as 

for every p,, p2. The arbitrariness of the limits of integration then implies that 

The 1.h.s. of (7) may be expressed in the Q-representation by inserting identities, so that 
with li = 1 we obtain 
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Combining (7) and (8) and substituting p = s(q) finally yields 

(9) 

where the subscript Q has been suppressed since all density-matrix elements are now 
in the position representation. Equation (9) is the desired condition which e must satisfy 
if it embodies a probability match between P and a(&). 

If, say, the r.h.s. is multiplied by A, then (9) assumes the standard form of a homo- 
geneous Fredholm integral equation of the second kind in two independent variables ; 
the density matrices of interest to us are then the eigensolutions of this equation belong- 
ing to eigenvalue A =  1. Although we are not concerned in the present analysis with a 
general mathematical study of (9), it is perhaps of interest to note that there does exist 
at least one family of solutions having a familiar physical interpretation. 

I d s  < q le 1 q> = - - J Q‘ J%” e- i“’-Q’’MQ) <q‘ le I q”> , 
27L dp 

To see this, consider the particular function 

4!7) = orq, 2 0 
and the statistical operator 

where eo is any statistical operator having the property 

(P l e o l  q)  = 0 if P 4  [-Po, no]. 

( i l e o l p > <  J / ( i l e o I i ) ( d e o t ~ > ,  

(P leal 5 )  = 0 if either $4 [-Po, qol 01 !24 E-qoo, qol. 

(P’ le I q“)  = 2 I 4  $4 I dP’ J dp,‘ 

Since the nonnegative definiteness of eo implies that 

it follows by combining (12) and (13) that 

For the e given by (ll), the &-representation density matrix has the form 
1 

(274 

Xe’p‘q’ 
ip” ip”’ _ -  
fa  e-ipe; (i I eo I p >  e i P 4  e z  e--iP”q” 

which becomes, after elementary integration, 

Now, when the expression (10) for s(q) is inserted, the integral equation (9) becomes 

(17) 

and it may be readily demonstrated as follows that (16) satisfies (17) in the limit OL -+ 0. 
First note that restriction (14) permits taking this limit inside the integral in (16) and 
fhereby eliminating factors not containing q’ or q”. Thus, for OL --f 0, 

oc 
<q’ 1 e I q” )  9 

(q le I q> = - J Q’ J 4’’ e - i ( d - Q ” ) a q  
2n  
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Next substitute (18) into the r.h.s. of (17); when the resulting elementary integrals are 
worked out we have, for u -+ 0, 

where step (20) invoked again restriction (14). Finally use (18) to evaluate the 1.h.s. of 
( t 7 ) ,  obtaining, as u -+ 0, 

<a l e l  q )  ~ J ~ J G  e-b@+l)  CP \pol  I> (21) 

which for any q obviously shares the common limit zero with (20) as oc -P 0. 
The physical intrepretation of this family of solutions is a time-of-flight experiment 

that has in the past occasionally been a subject of philosophical controversy. If we inter- 
pret po as a state preparation at  t = 0 then (12) and hence (14) mean only that the initial 
preparation localizes the particle to within a finite interm1 [-qo, qo], a very mild stric- 

ture from an empirical standpoint. If we further take u = -, where m is the mass of 

the particle, then (11) describes the free-flight evolution of the statistical operator to 
time t. The integral equation therefore expresses the intuitively reasonable theorem that 

as t -+ 00, the probability distribution for 9 matches that for p, provided the particle 
t 

was finitely localized about q = 0 at t = 0. 
Returning now to the general caae, let us suppose that for some given s(q), a set of 

density matrices satisfying integral equation (9) has been found. (The foregoing time- 
of-flight illustration exemplifies this possibility.) For state preparations belonging to 
that set, it will be true that probability distributions for observables s(Q) and P match 
and hence that each &-measurement amounts to a simultaneous measurement of Q 
and P. 

m 
t 

3. Phase-space Distributions 
The joint probability density w(q, p) describing the distribution of (q, p) results that 

would be obtained from simultaneous measurements performed in the particular man- 
ner just discussed is obviously given by 

an expression valid only when e satisfies the integral equation (9). From (22) it is iinine- 
diately apparent that w(q, p) depends only upon the diagonal elements of e in the Q- 
representation. It is therefore conceivable that many distinct statistical operators, all 
satisfying (9) might shareonesingledistribution w(q, p). (The free-flight case in the preced- 
ing section is an example of this.) We are thus led to conclude that even in a quantal 
situation where it is in fact possible to gather (q, p) data and hence compute w(q, p), 
such information is not necessarily adequate for a complete empirical determination 
of e ;  for the family of simultaneous measurement schemes we have explicitly considered, 
knowledge of w(q, p) is definitely insufficient to determine e. This means in particular 
that, despite the seeming analogy between the classical version of w(q, p) and e, the 
moments ((pmpn)} generally do not determine the quantal e. 

w(q, P) = (q  1 e I q) 4 1 p  - s (~ ) l ,  (22) 

13 Ann. Physik. 7. Folge, Ild. 37 
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The quantity w(q, p ) ,  defined here in terms of relative frequencies of (q, p )  data from 
siniultaneous measurements, is mathematically a joint probability distribution whose 
marginal distributions are the usual quantum mechanical ones associated with the single 
observables Q and P ;  thus if w(q, p )  has the form (22), it is easy to  verify that 

Eq. (23) follows immediately upon inspection of (22); to derive (24), note that the change 
of variable q = s- l (@) yields 

= r<P lel PZt 
where step (26) is based on the relation (7). 

There is in the literature of quantum physics an extensive theory of phase-space 
distribution functions w(q, p )  satisfying marginal conditions (23) and (21). However, the 
original context of that theory was not the problem of simultaneous measurement ; 
indeed the w(q, p )  function8 usiiitlly considered are only quasiprobability distributions 
which, lacking nonnegat,ive-definiteness, cannot be interpreted physically as relative 
frequencies of (q, p )  measurement results. Nevertheless, one formulation of quanta1 
phase-space distributions, that due to  COHEN [GI is rich enougb to aecoinmodatenonnega- 
tive forms of w(q, p) such as (22) ; in this theory, the following canonical form associates 
with any pure state p a function w(q, p )  whose marginal distributions will match the Q 
and P distributions inherent in y :  

Unlike others (cf. Refs. [7, 81 and other work cited therein) who have considered similar 
mappings froin y to w(q, p ) ,  COHEN does not insist that f be independent of p; and it is 
essentially for this reason that only his theory is broad enough to encompass the distri- 
butions arising from simultaneous measurement schemes. 

Indeed iff is not permitted to be state-dependent, then a theorem due to WIGNER 
[9] establishes that w(q, p )  cannot be nonnegative definite. However, WIGNER [lo] has 
discovered an alternative distribution function Z(q, p )  which is always nonnegative, even 
when f is state-independent and w(q, p )  is consequently indefinite as to sign. Wigner’s 
function Z(q, p )  is related to w(q, p )  by the defining equation 
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While the marginal distributions derivable from Z(q, p )  do not equal the quanta1 pro- 
bability densities associated with thestate ly), therearenevertheless connections between 
Z(q, p )  and such densities; for example, according to WIQNEE [ lo] .  

I @ z(q, PI = / d p ’  ISP’ I 1 ’12  exp - a ~ p  - p ~ }  - v 
Whether there exists a useful interpretation of the nonnegative Z(q, p )  in terms of 

siiniiltaneous (q, p )  measurement results is at present unknown to us. Therefore we shall 
continue to h i t  the present discussion to nonnegative definite w(q, p )  and hence to 
the case where Cohen’s function f is state dependent. 

Equation (27) may be generalized to embrace all quantuin states, pure and mixed, 
by replacing Iy)  (y1 with a statistical operator e. Then, noting that 

and  

(32) 

(33) 
as nli~y be verified directly by substitution back into (32). The algebraic steps connecting 
(30) and (31) are straightforward manipulations involving repeated use of the formula 

1 
w(q, p )  = - - - i / d O / d t f ( O ,  T )  e - - i ( O ~ . + ~ p )  T r { ~ e ~ ( ~ Q + ~ p ) } ,  

(2n) 
which has the inverse 

f(f3,t) = [Tr(ee i (BQ+Tp)} ] - l I ( Ip .$4  w(q, p )  e i ( e P . + r ~ )  

ial3 

(34) eiaQ+ iSP = eiaQeiSPe 7. 

Later we shall need an expression for the f (0, z) associated with joint distributions of 
the form (22). Thus, using (33), we have 

f ( 0 ,  t) = [Tr{eei(eQ++’)}]--l J @ J d p  ( q  I q)  d[p - s(q)] e i (BQf7p)  

= [ ~ r { e e i ( w + 7 ~ ) } ~ - i  jdq (p l e  I p) e i t e ~ + r w ~  (35) 
= “J“,{eei(eQ+7p)}~l  Tr{piIW+ 78(Q)I}, 

an expression which, as expected, is not independent of Q. 

4. Rules of Association 
Intimately linked with the quasiprobability distributions are so-called rules of asso- 

ciation; such a rule defines an operator Q corresponding to each phase function g(q, p )  
to that the following equality will hold: 

Givcn g(q, p ) ,  w(q, p) ,  and hence via (33), f(O, t), a solution to (36) that is customarily 
chosen is the general rule of association 

I @ I dP w(% P) !?(!I, 2)) = W e @ )  * 

G = Jdg J d r y ( &  t ) f ( 6 ,  t) ei(eQ+7p), 

(36) 

(37) 

13. 
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where 

(38) 
1 

y(8, t) = - J dq J d p  g(q,  p )  e-i(eq+7p). 
(W2 

It is of particular interest in the present investigation to ask what quanta1 operator 
G,, corresponds to the moment phase function qmpn when Q satisfies (9); i.e., when the 
state preparation is such that there is a known method (Sec. 2) for measuring qmpn- On 
the basis of conclusions drawn in the work of PARK and MAROENAU [l] dealing in a differ- 
ent way with the problem of simultaneous measurement, we would anticipate that no 
ordinary (state-independent) operator G,, corresponding to qmpn oan exist, because 
qmpn is a member of the class of compound ohservablea for which there apparently cannot 
be operator counterparts unless the fundamental quantum axioms aresomehow modified. 
Nevertheless, it is instructive to approach this matter along the alternative path afforded 
by the general rule of association (37). 

Substituting g(q, p )  = qmpn into (38), we obtain 

To exhibit the strong dependence G,, has one in the simultaneous measurement sche- 
mes discussed in Sec. 2, it suffices to consider just the relatively simple case nb = n = 1. 
Sincef(0, t) =f(8, 0) = 1, (42) reduces to 

?f 2 i (eQ+rp)  

= - (" >e at + m 1 } e = 7 = 0  

It is a routine exercise to demonstrate that 

(43) 

Hence we have 

aa the operator corresponding to the product qp. To complete the evaluation of GI1, 
we must study the mixed derivative of the particular f(8, t) associated with the siniul- 
taneous measurement schemes of Sec. 2. Differentiation of (35) with the aid of (44) and 
the fact that e has unit trace leads, after algebraic simplification, to the expression 
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Examination of (45) and (46) bears out our expectation that no normal quantum- 
mechanical operator can correspond to  the compound observable qp;  indeed G,, is highly 
dependent on e. Moreover, if we recall that the theory of rules of association is based 
entirely upon seeking operator solutions to (36), it is evident that if (2 solves (36), then so 
docs 

K = G + J ,  (47) 
provided 

Tr(eJ) = 0. 
Hence we would be equally justified in regarding either G or K as the operator associated 
with g(q, p ) .  Applied to Gll, this observation implies that the simplest operator counter- 
part’ to q p  is just the state-dependent c-number 

Since in our siniultaneous measurement scheme e is restricted by the probability-match- 
ing condition (4), i t  follows that 

wliich makes the last term of (49) vanish. Thus in effect, for the simultaneous measure- 
ments here envisaged, the operator associated with q p  reduces to the trivial form 

K,, = Tr{t?Qa?)) 1- (51) 
The state dependence of Gll and K,, is of course only a manifestation of the state 

dependence of f(0, z), which, as we noted earlier, is a consequence of the nonnegative 
definiteness of the functions w(q,  p )  that are derived from simultaneous measurement 
schenies. We are therefore led to conclude that for the family of siinultaenous measure- 
ments described in Sec. 2, the theory of rules of association provides no state-independent 
quanta1 operator corresponding to q p ;  and it is quite apparent that an extension of the 
foregoing argument establishes in general that the theory generates no acceptable opera- 
tors corresponding to such compound observables as (q”p”) or functions thereof. This 
concliision, however, is not a total surprise, as the literature on joint distributions [ B ]  
and on siinultaneous measurements [ 11 already contains a t  least two independent argu- 
nicnts against the existence of such correspondences. 

5. The Quorum of Observables 
We liavc seen that even in quantum-mechanical situations where there is a known 

mct hod for nieasiiring ((qmptb)) and hence determining w(q,  p ) ,  such information proves 
to 1)e insufficient to determine the statistical operator Q. In these same situations, stand- 
ard rules of association yield no ascceptable operators corresponding to joint functions of 

Therefore the question remains open as to what data would in principle be sufficient 
to determine p for an ordinary nonrelativistic quantum system characterized by obser- 
vnhles &, P and functione of these operators. 

Interestingly, there is a pure ly  fo rma l  operator generalization of the classical 
nicthod of characteristic functions that does indeed yield a list of theoretical observables 
whose mean values would suffice to fix the statistical operator. We call such a list a 
niatheniatical quor  um. 

q and p .  

We have demonstrated in another article [ll] that tlieset - (&“P + P”&”) con- 

stitutes a quorum for a spinless particle moving in one dimension. It is noteworthy that 
these quoruiii operators have a ma themat i ca l  form reminiscent of the classical fiinc- 

1: 1 
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tions (p"pn} but they definitely havea quite different phy  s i  c a1 meaning;  for, as wehave 
shown, there are no useful operators corresponding to  {qmpn}. Moreover, even if there were 
operator counterparts for {qmpn}, their mean values would determine only w(q, p )  but not 

e,  whereas the quorum means {,T / 1  (QnPm + PmQn))} do in fact suffice to determine@. 

quorum information [(+ ( Q " P  + PmQfl)\) in terms of the quantities [,,-,} when- 

An interesting parallel to this situation may be found in yuantuin optics, where the 
"optical equivalence theorem" due to SUDARSHAN [12, 131 establishes that in a certain 
representation the quantum theory of coherence bears a fo rma l  resemblance to the 
classical theory of analytic signals despite the phys ica l  inequivalence of the two de- 
scriptions. 

We have also reported elsewhere [ll] a procedure for obtaining the mathematical 
ldnQm\ 

Pa 
2 iM ever the systeni Hamiltonian has the coninion form H = - + V ( Q ) .  The latter, being 

mean nth-order rates of change of powers of Q, admit of a simple empirical interpretation 

constitute there- in terms of position ineasurements at various instants. The rates 

fore a physically-interpreted quoruin of observables for the determination of e.  
The classical and quantal prescription for empirical determination of statist icnl 

states may now be summarized as follows: 
(a) To determine the classical phase-space distribution w(q, p ) ,  it suffices to  measure 

the expectation values of {qmpn}. 
(b) In  quantal situations where the observables fp"pn} are measurable, such informa- 

tion is inadequate to determine the statistical operator n. Furthermore, these compound 
observables do not correspond to normal state-independent operators. 

(c) To determine the statistical operator for a spinless, nonrelativistic particle with 
0 2  
1 -  

Haniiltonian of the form H = - + V ( g ) ,  it suffices to measure the expectation 2M values of {-}. d n v  

Finally we note that in the classical case the dat,a required to compute rates analogous 
to those described in (c) would be more than adequate to determine ((qmp")} and hence 
w(q, p ) .  Therefore, in view of point (b), i t  may be concluded that state determination 
in quantum mechanics requires in a sense more data than the corresponding problem in 
classical statistics. 
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