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Abstract w 

This paper  presents  a s tudy  of wha t  is somet imes regarded as the  conceptual  
hear t  of q u a n t u m  theory,  namely,  the  or thodox 'physical '  in te rpre ta t ion  of non- 
commut ing  operators  as representa t ives  of incompat ib le  (non-simultaneously-  
measurable)  observables.  To provide  a f irm foundat ion  for the  analysis, 
a definite s t a t emen t  of the  essentials of modern  q u a n t u m  theory  is g iven 
briefly in the  form of a ma thema t i ca l  ax iomat iza t ion  together  wi th  a review 
of the  two measu remen t  constructs  in t roduced  elsewhere (Park, 1967b). 
Cont ra ry  to cus tom in discussions on s imul taneous  measurabi l i ty ,  the  un- 
ce r ta in ty  principle is not dwelt upon but simply stated carefully in order to 
establish its actual irrelevance to the problem at hand. It is then demonstrated 
that the much quoted 'principle' of incompatibility of noncommuting observ- 
ables is false. The axiomatic root of all incompatibility arguments is next 
identified ; and it is shown that, with a slight modification of the basic postulates 
which affects neither useful theorems nor practical calculations, quantum 
physics no longer entails illogical restrictions on measurability. Among the 
related topics touched upon are the problem of joint probability distributions, 
the 'logical' approach to quantum mathematics (wherein noncommutativity 
becomes incompatibility within a propositional calculus), and the field theoretic 
attempt to unify quantal and relativistic physics through a postulated connec- 
tion between incompatibility and space-like intervals. 

1. The Compatibility Problem 

I t  is characteristic of physics to represent observables by mathe- 
matical objects to which the numbers emerging from experiments are 
to be related. In classical physics the objects were functions, and 
numerical measurement results were merely identified with the range 
values of these functions. Quantum physics, on the other hand, uses 
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(Hermitean) operators instead of functions, and thereby complicates 
the relationship between its observables (i.e., their mathematical 
representatives) and the empirical numbers to which they must 
ultimately refer. Ironically, perhaps the most abstruse and con- 
troversial difficulty associated with such operator-observable corre- 
spondence arises from an obvious arithmetical law, namely, that  if 
a, b are numbers, ab = ha. Naturally this commutative law applies to 
all measurement results independently of the theory by which they 
are interpreted. In  classical physics, this numerical commutativity is 
reflected by the unrestricted commutativi ty of functions; in quantum 
theory, however, the analogous statement cannot be made, for pairs 
of Hermitean operators do not necessarily commute. In particular, it 
was discovered by Born in the early years of modern quantum 
mechanics that  even X and P, the operators representing the im- 
portant  observables position and momentum, do not commute but 
obey instead his famous equation [X,P] _= X P - P X  = ihl. Thus 
position and momentum are said to be noncommuting observables. 

Understandably, the presence in quantum theory of noncommuting 
observables has from the beginning elicited a great deal of academic 
curiosity, accompanied by the reasonable suspicion that  such a 
theoretical anomaly cannot merely be written off as a mathematical 
quirk. Some kind of physical interpretation must be given; the fact 
that  [X,P] r 0 surely expresses something very interesting about 
position and momentum. But what? The orthodox answer is this: 
noncommuting observables are incompatible, i.e., it is impossible to 
perform upon a single system simultaneous measurements of two such 
observables. The present work is devoted to the systematic analysis 
of this famous principle of impotence; but first, as a prelude to this 
endeavor, it seems appropriate to review briefly the more common--  
and frequently illogical--arguments typically advanced in behalf of 
the doctrine in question. 

(1) Semiclassical gedankenexperiments. I t  is quite fashionable in 
discussions on the foundations of quantum theory to lean heavily on 
the historical evolution of the subject. This tendency is not new to 
physics; it is in fact traditionally employed in studies of relativity, 
thermodynamics, and electrodynamics. But while the origin of any 
of these disciplines constitutes a fascinating chapter in the history of 
physical ideas, the relevance of chronological development to logical 
development must not be pressed too far. Sometimes history of 
science illuminates and clarifies philosophy of science; but in other 
cases it only distorts and confuses logical problems if it is forced upon 



SIMULTANEOUS MEASURABILITY IN QUANTUM TtIEOIgu 213 

them. For example, the historical fact that  J. R. Mayer's contributions 
to the formulation of the modern energy concept were inspired by 
observations of blood coloration differences between inhabitants of 
torrid and temperate zones sheds little light on any philosophic study 
of the nature of energy. Even more extreme is the case of Kekul6, who 
discovered the benzene ring in a dream about a serpent biting its tail, 
an historical vignette clearly irrelevant to the natural philosophy of 
organic chemistry. 

The typical historical account of quantum theory from Planck to 
the present outlines a rather smooth transition from the 'Old Quantum 
Theory' (Bohr atom, particulate photon, classical ontology) to the 
'New Quantum Theory' (state vectors, probability, complementarity) ; 
and from the purely historical point of view, this evolutionary descrip- 
tion is perhaps entirely acceptable. However, as indicated in the 
parentheses above, from a philosophical perspective there is no 
gradual metamorphosis from the 'Old' to the 'New' ; there is an abrupt 
discontinuity in theoretical structure, hence any discussion about 
modern quantum theory which employs concepts peculiar to the 'Old' 
to demonstrate alleged features of the 'New' is accordingly of little 
value. And such arguments are not uncommon; in fact, it is a good 
rule of thumb that  any discourse upon quantum theory that  calls its 
content 'intuitive' will probably commit this history-inspired blunder 
of mixing the 'Old' with the 'New'. 

Unfortunately, the standard demonstrations of the incompatibility 
of certain observables in quantum theory are of this type. They are of 
course the historic gedankenexperiments of Bohr (1949) and Heisen- 
berg (1930), which have been both repudiated and defended many 
times over the past 35 years. The present work will not present still 
another analysis of these thought experiments. Although such demon- 
strations are obviously not as irrelevant to the philosophy of quantum 
theory as is Kekul6's serpent to that  of chemistry, nevertheless their 
primary value is historical, as samples of the motivating thoughts of 
great physicists engaged in the construction of the quantum theory. 

The emphasis in the following sections will be placed rather on a 
logical study of the notion of compatibility entirely within the 
axiomatic framework of (New!) quantum theory, independently of 
whatever dreams, intuitions, or gedankenexperiments historically 
might have inspired its ingenious creators (Jamme, 1966). 

(2) Uncertainty principle. Many gedankenexperiments have been 
designed to illustrate Heisenberg's famous law; unfortunately, the 
false impression is often conveyed that  his principle, which is actually 
a theorem about standard deviations in collectives of measurement 
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results, imposes restrictions on measurability. To see the absurdity of 
such an inference, consider the following analogous argument. Suppose 
the widths of a large sample of desks were measured, the results 
tabulated, and the standard deviation Aw computed; similarly, let 
Al, the standard deviation for length measurements, be determined. 
I t  would not be especially surprising if there existed a constant k 
such tha t  A w A l  > k even if the sample were extended to include every 
desk ever manufactured. Now, reasoning as is often done in connection 
with the uncertainty principle, we would have to conclude from 
A w A l  > k (a) that  if the length of a desk is measured to within an 
'instrumental error' ~w, one cannot at the same time contrive a method 
for measuring the width with less 'error' than ~l = k/Sw, and hence 
(b) that  it is impossible to measure precisely at the same time the length 
and width of a desk. Obviously, these drastic conclusions are not a 
logical consequence of the inequality A w A l  > k. In Section 2, the 
uncertainty principle will be stated correctly in a proper theoretical 
context and briefly discussed. 

(3) Projection postulate (nagve version).t Frequently appended to 
the useful postulates of quantum mechanics is one which, if correct, 
would easily lead to the incompatibility doctrine as a theorem. I t  is the 
notion of wave packet reduction, according to which measurement 
invariably leaves a system in such a state that  an immediate repetition 
of the measurement would yield the same result as the first measure- 
ment (Mandl, 1957; Roman, 1965). I t  turns out that  if simultaneous 
measurement of noncommuting observables were possible it would 
usually leave a system in a nonexistent state; thus it is often argued 

t The  f u n d a m e n t a l  i r r a t iona l i t y ,  t o g e t h e r  w i t h  the  m a t h e m a t i c a l  s t r angenes s  
of t h e  v iew t h a t  a single o b s e r v a t i o n  shal l  in genera l  flx t he  p r o b a b i l i t y  d i s t r ibu-  
t i o n  (s ta te  vector)  of a n  entire ensemble has  b e e n  e m p h a s i z e d  r e p e a t e d l y  b y  one 
of t h e  p r e sen t  a u t h o r s  [Margenau,  1963 ; Pa rk ,  1967b ; a n d  partieularlyPhysieal 
Review, 49, 240 (i936)] .  This  p o i n t  is f u r t h e r  e l a b o r a t e d  b y  P a r k  (1968a, b). 
Brief ly  s t a t ed ,  our  p remise  here  is t h a t  eve ry  m e a s u r e m e n t  d e t e r m i n e s  a n u m b e r  
w h i c h  cha rac te r i zes  one e l e m e n t  of a n  ensemble .  Many such  n u m b e r s  define t h e  
d i s t r i b u t i o n  of p robab i l i t i e s  over  t he  ensemble .  Since a s t a t e  vec to r  is t h e  
e q u i v a l e n t  of a set of d i s t r ibu t ions ,  a single m e a s u r e m e n t  can  no t  in genera l  
d e t e r m i n e  a s ta te .  I f  i t  did,  q u a n t u m  mechan i c s  wou ld  be  a f reak  w h e n  v iewed 
as a n  example  of a s tochas t i c  t heo ry .  T he  p r o j e c t i o n  p o s t u l a t e  assumes  such  a 
miracle .  The re  are single m e a s u r e m e n t s  which ,  w h e n  coupled  w i t h  e x t r a n e o u s  
i n f o r m a t i o n  w h i c h  does no t  ar ise  ana l y t i c a l l y  f rom the  ax ioms  of q u a n t u m  
mechan ics ,  m a y  al low t he  e s t a b l i s h m e n t  of q u a n t u m  s t a t e s ;  b u t  these  are  
special  eases. (For  exam p l e  if a s y s t e m  is k n o w n  to h a v e  b e e n  i so la ted  for a long  
t i m e  a n d  I m e a s u r e  i ts  ene rgy  on ly  once, i t s  s t a t e  is fixed. This  is l ike k n o w i n g  
that an institution has inmates of the same sex. A single 'measurement' of the 

sex of an inmate then settles the distribution.) 
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that  simultaneous measurement is impossible. This argument is, 
however, unworthy of serious consideration since the idea of wave 
packet reduction does not survive close scrutiny. Such reduction 
cannot be consistently attached to quantum theory by postulation 
because of the inherent statistical nature of quantum states ; i.e., the 
physical reference of the density operator to ensembles (Park, 1968a) 
rationally precludes its changing abruptly in response to a single 
measurement. Moreover, it is not true in general that  an immediately 
repeated measurement always yields the same result as the first one 
(Margenau, 1937; 1963b; Park, 1968b). 

(4) Projection Postulate (yon Neumann's measurement intervention 
transformation) (yon Neumann, 1955). There is a way (Margenau, 
1963b) to express the projection postulate in terms of ensembles and 
the selection of subensembles which does at least make sense. I f  this 
version represented a universal trait  of measurement, then it would 
imply the incompatibility principle as a theorem. We have proved this 
elsewhere (Park, 1968b). However, it can be demonstrated that  
even this 'reasonable' variant of the projection postulate does not 
describe all physical measurements and is therefore unacceptable as 
a quantal axiom. Hence it is useless as an argument in behalf of 
incompatibility. 

(5) Problems concerning joint probabilities. I f  joint (i.e., simul- 
taneous) measurements are possible, then there must exist joint 
probability distributions. However, at tempts to generate such distri- 
butions for noncommuting observables using fairly standard mathe- 
matical ideas have been unsuccessful, and this failure has been 
interpreted as proof of the incompatibility principle. This position 
will be examined carefully in Section 8. 

(6) Von _h~eumann's simultaneous measurability theorem. In his 
classic work on quantum mechanics, yon Neumann proved a theorem 
which is undoubtedly the best defense ever given of the incompati- 
bility doctrine. Strangely enough, it is also the most widely ignored 
argument for incompatibility even though, unlike (1)-(5), it is a 
logical deduction from a seemingly reasonable quantum axiom set 
which does not include the projection postulate~ (Section 4). 

As stated above, the purpose of the present work is to scrutinize and 
evaluate the principle of incompatibility of noncommuting observ- 
ables. However, it is not our intention to consider the six preceding 
arguments one by one; as a matter  of fact, most of them will scarcely 

t Of course the  pro jec t ion  pos tu la te  does appea r  in yon N e u m a n n ' s  book,  b u t  
it  p lays  no role in the  t h e o r e m  here  considered.  
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be mentioned again. In particular, no further discussion will appear 
concerning (1), (3), and (4). The value of semiclassical gedanken- 
experiments (1) has already been commented upon; and the absurdity 
of the naive projection postulate (3) and the inadequacy, or lack of 
universality, of its sometimes correct version (4) are fully discussed 
elsewhere by  one of the present authors (Park, 1968a, b). As to the 
uncertainty principle (2), enough will be said in Section 2 to demon- 
strate its irrelevance to the compatibility principle. Thus ensuing 
sections will emphasize (5) and (6), the only extant  arguments for 
incompatibility which are firmly embedded in the basic mathematical 
structure of modern quantum theory. 

Because (5) and (6) arise not in shallow classical intuition but  deep 
in the theoretical framework of quantum mechanics, it will be neces- 
sary to survey basic quantum axiomatics in order to distinguish 
clearly which common quantum 'truths' are assumed hypotheses and 
which ones are derivable propositions. Only in this way can the 
deductions in (5) and (6) be properly evaluated. The remainder of the 
present section sets the stage for this analysis by  reviewing several 
important definitions from the quantum theory of measurement and 
then using them to obtain a clear statement of the compatibility 
problem. 

As in other branches of physics, the objects of s tudy in quantum 
mechanics are called l~hysical systems. Associated with these systems 
are the constructs known as observables which are in turn correlated 
via epistemic rules to empirical operations which generate numbers. 
Such operations are called measurements. The numbers they produce 
are called measurement results, and it is the responsibility of quantum 
theory to regularize, interpret, and make predictions about them. 
Specifically, quantum physics is designed to cope with problems of 
this format: given a repeatable laboratory procedure H for the 
preparation of physical systems, what will be the statistical distribu- 
tion of measurement results obtained from measurements performed 
upon an ensemble of systems all prepared identically (in the manner 
/ / )  ? This question may refer to any observable and to measurements 
at any given time after preparation. 

To avoid unnecessary philosophical dilemmas, it is extremely 
important to understand the peculiarly quantum theoretical nexus 
which relates the concepts of measurement result, observable, and 
system. Perhaps these connections are best understood by  contrasting 
them to their classical analogues. In prequantum rhetoric the process 
of measurement could be described as follows: physical systems are 
endowed with certain observable attributes characterized by numerical 
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values; measurement is an empirical procedure for discovering just 
what these values are. Thus, classically measurement results are simply 
revelations of the values of observable properties possessed by the 
system. The key word here is possessed, for it expresses succinctly the 
classical relationship between measurement results and observables. 

In quantum mechanics the connection is a weaker one. I t  is no 
longer possible to pictoriMize physical systems as objects eharac- 
terizable by  definite values of the observables. A classical billiard ball 
has values for position, momentum, energy, angular momentum, etc. 
A 'quantum billiard ball' has no such values. Nevertheless, it remains 
true in quantum physics, as in the rest of science, that a system's 
observables are operationally defined and that measurements of them 
do yield the numerical results upon which theory feeds. Thus for the 
'quantum billiard ball', it is proper to speak of the numerical results 
of position, momentum, energy, or angular momentum measurements, 
but it is improper to interpret these numbers as past, present, or 
future properties of the ball. According to quantum theory, no 
physical mode of preparation/7 exists which could produce systems 
certain to yield upon measurement a preassigned pair of values (x,p) 
for position and momentmn, for example. This peculiarity of quantum 
observables has been characterized by one of us as latency (Margenau, 
1950; 1954). A brief digression in explanation of the idea of latency 
seems appropriate at this point. 

Traditional philosophy features a distinction between primary and 
secondary qualities, an issue which recalls such figures as Galileo and 
Locke. I t  relates to a division of observables into two categories, those 
which, like size, shape and position, adhere intrinsically to physieM 
objects and those which arise in the process of perception, e.g. color, 
taste, and smell. This issue may now be regarded as dead because the 
latter class has been recognized as the subjective ('protocol') counter- 
part  of the former. There are, to be sure, primary qualities (like 
magnetic fields) to which, because of our limited sensory equipment, 
no secondary qualities correspond, hence there is no unique corre- 
spondence between primary and secondary qualities. Nevertheless a 
distinction between observables (qualities) which adhere to the objects 
of inquiry and others which do not has been revived by the quantum 
theory. The latter, however, are no longer secondary but  latent. They 
do not arise in the act of observation but  become concrete or actualized 
or numerieM when the system is subjected to measurement. 

A free electron in an energy eigenstate yields a definite number 
when its position is measured. Yet a similar measurement on it when 
the same state has been reprepared may yield another value : There is 
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a dispersion of measured values. As we have noted, the classical 
tendency is to account for this dispersion by invoking the disturbance 
of the state of the electron by  the measuring device. This, for many 
reasons (some of which have already been cited), is an erroneous 
explanation which at tempts the impossible logical feat of deriving the 
more general theory (quantum mechanics) from its own special ease 
(classical mechanics). Certainly, disturbance by  measuring devices 
can be used to exemplify the quantal dispersion, but  not to explain it 
in its universality. The origin of the dispersions lies deeper than that.  
I t  is not proper to suppose that  the electron in a state of the 
SchrSdinger form exp (ipx) has a position which we merely do not 
know until we measure it. I ts  ability to interfere with itself clearly 
implies that  'it is in many places at once'. In other words, it does not 
have a position, position is not a possessed observable. We call it a 
latent one. A latent observable does not in general have a value at all ; 
it assumes one when a measurement elicits it. I t  is clear, of course, 
that  an observable which is generally latent can under special cir- 
cumstances be regarded as possessed, namely when the system is in an 
eigenstate of that  observable. We feel that  the acknowledgment of the 
existence of latent qualities in nature is far safer, simpler and less 
compromising than the usual talk about complementarity, which 
becomes unnecessary when latency as a primitive idea is accepted. 

The change, brought about by  the quantum theory, then, is this. 
The old primary qualities correspond to possessed observables, those 
which, when they reveal themselves in repeated measurements on 
systems identically prepared or, when possible, on the same systems 
in their continuing undisturbed states, do not scatter their values. 
Secondary qualities are replaced by  latent ones which, in a certain 
obscure but  primitive sense, 'come about '  or 'spring into being' when 
a measurement is made, yet allow no inference with respect to numeri- 
cal values present in the premeasurement state. At the present time 
elementary quantum theory recognizes a few possessed observables 
such as the mass, the charge and the (absolute value of the) spin of an 
electron; its position, momentum, energy, vector spin and most 
others are latent. In classical philosophy, every secondary quality had 
a primary counterpart. Latent  observables, so far as is now known, do 
not point to possessed companions. 

In a speculative and unrigorous manner of arguing one might say 
that  the discovery of latent qualities in quantum mechanics is merely 
the recognition of a situation that  is commonplace in the behavioral 
sciences. Happiness, equanimity, anger are observable qualities of 
man, but  they are latent, not necessarily present or numerically 
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descriptive of a person at all times. And they, too, can spring into 
actuality by a psychological measurement, a certain felicitous or 
infelicitous act of inquiry. But we do not wish to press this analogy 
too far. 

A more proper question which arises here is this. Are not perhaps all 
physical observables in the strictest sense and in their last analysis 
latent ones ? Clearly if there is a spectrum of masses, charges and spins, 
and thus for each an operator with eigenvalues equal to the values of 
these observables now known, they too become latent. We tend to 
believe that  a future theory will show all observables to be ultimately 
latent ones, and that  the concept of a possessed quality is nothing but 
a limiting case of the former. 

Incidentally, the possessed quality of classical observables brought 
the concepts of measurement and preparation conceptually close to 
one another. Since a measurement operation simply revealed a 
possessed value, the same operation could also be called a preparation 
method for obtaining systems having that  value of the measured 
observable. Despite such classical intuition, however, the constructs 
measurement and preparation must be severed in quantum theory. 
Failure to do so leads to the projection postulate with its a t tendant  
physical and philosophical problems (Margenau, 19 3 7). 

Since quantum physics is a theory about measurement results 
instead of possessed properties, it is natural that  a concept of measure- 
ment should appear among its primitive terms in a place analogous to 
that  occupied by 'possession of attributes'  in classical theory. In other 
words, numbers associated with observables are conceptually linked 
to systems only through statements like this one : 'if observable g] is 
measured on system S, the numerical result a will emerge . . . .  ' This 
is the primary meaning of measurement  in quantum theory, and we 
shall designate this measurement construct, which supersedes the 
classical idea of possession, by the symbol ~ /~(d) .  

In quantal as in classical physics, it is also necessary to recognize 
the basic idea of measurement as an empirical procedure yielding 
numbers associated with observables. Just  as in classical physics one 
must have both the possession concept and measurement schemes to 
determine the possessed values, similarly quantum physics requires a 
traditional measurement concept in addition to J/1.  Assume that  in 
classical and quantum mechanics we have a 'direct' operational 
definition of position. For example, a position measurement may be 
performed upon a speedometer needle essentially by looking at it. 
From the position measurement on the needle a number is inferred 
which is declared to be the result of a speed measurement upon the 
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system of interest. The theoretical justification of such an inference 
will be called a theory of measurement. A classical theory of measure- 
ment for the speedometer would consist of a mathematical analysis of 
the instrument leading to proof of a correlation between the possessed 
position values of the needle and possessed speed values of the system. 
The concept of measurement exemplified by  this speed measurement 
will be denoted by  ~/2. In short, J/[2 is the normal measurement 
construct of all science; d / 2 ( g J , ~  . . . .  )represents any empirical pro- 
cedure yielding numbers a, b . . . .  which through a theory can be inter- 
preted as the values associated with observables d ,  ~ ,  . . . .  In quantum 
theory, the values are associated with the observables via d/1(5r 
J / l ( ~ )  ... and not by possession. Thus, for example, a quantum theory 
of measurement for the speedometer would consist of a mathematical 
analysis of the instrument leading to proof of a correlation between 
the probabilities that  ~//1 (needle position) would yield certain values 
and the probabilities that  d/1 (speed of system) would yield certain 
values. A measurement scheme J//2 is thus explained quantum 
theoretically in terms of the primitive measurement construct J /1.  

Using these concepts, it is possible to define precisely what is meant 
by  simultaneous measurability of two observables : observables 5~' and 

will be termed compatible, simultaneously measurable, or jointly 
measurable i f  there exists an Js ~) ,  i.e., an operation yielding two 
numbers a, b with the same probabilities that  quantum theory confers 
upon the two propositions ' J / l (~ ' )  yields a' and '~/~(~) yields b', 
where both ~ / l ' s  refer to the same instant in time. The compatibility 
problem, to which the rest of this paper is devoted, may therefore be 
stated as follows: if ~2',~ are noncommuting observables, is it 
quantum theoretically possible for an d/2(5], ~ )  to exist? 

2. Quantum Axiomaties and the Uncertainty Theorem 

To provide a framework for systematic analysis of the compatibility 
problem, it seems appropriate to discuss at the outset certain basic 
propositions of general quantum axiomatics. Accordingly, the basic 
axioms of quantum physics will now be stated, and the proofs of 
several important theorems will then be reviewed. 

P I :  (Correspondence Postulate). (Some) linear Hermitean operators 
on Hilbert space which have complete orthonormal sets of eigen- 
vectors correspond to physical observables. I f  operator A corre- 
sponds to observable ~ ,  then the operator ~ ( A )  corresponds to 
observable ~ ( d ) ,  where ~ is a function. 
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I t  is convenient to use the symbol +-~ to represent this operator- 
observable correspondence relation; thus A +-+ ~ means A 'corre- 
sponds to' d in the sense of 1)1. The observable ~ - ( ~ )  is defined by 
this measurement procedure: measure d and use the result a to 
evaluate the given function o~; the number ~ ( a )  is then the result of 
an f f (d ) -measurement .  The function ~ of operator A, o~(A), is 
found by the following standard mathematical procedure: consider 
the spectral expansion of A, 

A = ~ akP~ 
]c 

where ae is an eigenva]ue and P ~  denotes the projector onto the span 
of eigenvector ~k; the operator ~ ( A )  is then simply 

~2 ~(al,) P ~  
k 

(Extension to degenerate and/or continuous spectra is straight- 
forward.) 
P2: (Mean Value 1)ostulate). To every ensemble of identically pre- 

pared systems there corresponds a real linear functional of the 
Hermitean operators, re(A), such that  if A +-+ d ,  the value of 
re(A) is the arithmetic mean <o/) of the results of d-measure-  
ments~ performed on the member systems of the ensemble. 

The content of 1)1 and 1)2 is slightly different from that  of their 
analogues in typical yon Neumann-inspired axiomatizations (yon 
Neumann, 1955). In the original form of the Correspondence 1)ostulate, 
observables and Hermitean operators were assumed to stand in one- 
to-one correspondence; in other words, the postulate included both 
of the following statements: (1) Every observable has an Hermitean 
operator representative; (2) Every Hermitean operator corresponds 
to a physical observable. Wick, Wightman and Wigner (1952) 
challenged the symmetry  of this quantal correspondence by introduc- 
ing the concept of superselection rules, i.e. assertions which declare 
certain Hermitean operators to be unobservable in principle.$ To 

t I n  p o s t u l a t e s  a n d  t heo rems ,  t h e  t e r m  %~/-measurement '  refers  go t he  
p r i m a r y  q u a n t u m  m e a s u r e m e n t  c o n s t r u c t  d / l ( d ) .  

I n  effect, t hese  superse lec t ion  rules  keep ce r t a in  subspaees  of t he  full  
H i l b e r t  space a p a r t  b y  fiat,  in  t he  sense t h a t  t he re  c an  n e v e r  be  a phys ica l  s t a t e  
w h i c h  is a supe rpos i t i on  of vec to r s  f rom dif ferent  subspaees .  F o r  ins tance ,  no  
angu l a r  m o m e n t u m  s t a t e  can  be  a supe rpos i t i on  of in t eg ra l  a n d  hal f  in tegra l  J .  
( In  th i s  ins t ance ,  t he  i n c o m p a t i b i l i t y  of t he  spaces  can  be  p r o v e d  on  t h e  basis  
of re la t iv i s t i c  invar iance . )  The  re l evance  of superse lee t ion  rules  f rom the  
p r e sen t  p o i n t  of v iew is this .  I t  is m a t h e m a t i c a l l y  possible  to  c o n s t r u c t  t he  
f o r b i d d e n  supe rpos i t i on  a n d  p r e s u m a b l y  to  f o r m u l a t e  a n  H e r m i t e a n  ope ra to r  
for w h i c h  i t  is a n  e igens ta te .  T h a t  opera tor ,  ev iden t ly ,  does no t  co r respond  to  
a n y  phys ica l  opera t ion .  
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embrace superselection rules with minimal theoretic change, the 
word every in (2) is simply replaced by some: (2') Some Hermitean 
operators correspond to physical observables. Although this par- 
ticular proposed variation turns out to be irrelevant in the present 
context and will henceforth be ignored, it does suggest that  the 
universal correspondence proclaimed in (1) and (2) is less than sacro- 
sanct. 

As we shall see later, just as superselection rules challenge the word 
every in (2), an important facet of the compatibility problem hinges on 
the every in proposition (1) above. Accordingly, the need will arise 
subsequently to distinguish between different 'degrees' of operator- 
observable correspondence. For this purpose the following terminology 
will be adopted:Strong correspondence means that  both (2') and (1) 
are assumed; weak correspondence means that  the Correspondence 
Postulate includes (2') but not (1), as in P1 above. 

In  subsequent sections, the relationship of this choice of corre- 
spondence schemes to the problem of compatibility will be deve]oped 
and eventually it will be demonstrated that  only the weak type (P1) 
is acceptable. 

Several 'elementary' quantum theorems will now be stated and 
proved. The proofs are not new, but  we shall nevertheless reproduce 
them in some detail in order to show their independence from strong 
correspondence. Although the content of these theorems is well 
known, the fact tha t  they  are theorems, i.e., derivable from P1 and P2, 
is rarely acknowledged. Instead, they are often given as extra postu- 
lates (or conjured up heuristically) in textbooks; such an approach 
easily gives the impression tha t  P1 and P2 (or the equivalent) are mere 
guidelines, whereas in fact they rigorously imply all the general 
propositions of quantum statics. 

Th l  : For each mean value functional re(A) there exists an Hermitean 
operator p such that  for each A, 

re(A) = Tr (pA ) 

Proof (yon Neumann, 1955, pp. 313-316; Gleason, 1957). Let {%} 
be a complete orthonormal set, and A~k = (~%,A~vk}. Since A is 
Hermitean, Ak~ = A~*k, i.e., I~eAk~ = ReAn> ImAkn = - ImA~k. 
Since {%} is complete, 

~ P ~ =  1 
~b 
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A m a y  therefore be expressed as follows : 
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= 2 I%}A~@o.] 
n 

+ Z (!%}@~.1 + [~k}(~%])ReA,~e 
k < n  

k < n  

I t  is easily verified t ha t  the following operators are Hermi tean:  

P~. = Iw)<v.I  

K(n,  k) = i([~n}(~kl -- ] ~ } ( W )  

Thus A now has the form of a linear combinat ion of Hermi tean  
operators : 

A = E AnnP~ + E K(n, lc) Re A~k + Y~ K(n, k) Im Ank 
n k < n  k < n  

Now by  P2 the mean value functional  re(A) is linear. Hence 

re(A) = ~ A~nm(P~n ) + • [ R e A ~ m ( K ( n ,  k)) 
k < n  

+ ImA~km(K(n, k))] 

= E PnkAn~ = Tr (pA) 
kn  

where p is defined by  its mat r ix  elements : 

Dnn -~ m(P~,) 

Pk~ =- � 8 9  k))  - l i m ( K ( n ,  k)) ,  Ic < n 

P~k -= 1 r e ( K (  n ,  k))  + � 8 9  k)) ,  lc < n 

Finally,  by  P2, re(B) is real for any  Hermi tean  B, in part icular  for 
P~n, K(n, lc), I~(n, k). Thus P,~k = P~., i.e., p is Hermitean.  Q.E.D. 

The operator  p, known as the statistical operator or densi ty 
operator, is not  only an ' index'  of measurement  statistics, bu t  is also 
the seat of causali ty in quan tum physics. For  this reason, p m a y  be 
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called the quantum state of the ensemble to which it refers. The general 
'law of motion' is given by the following axiom : 

P3:  (Dynamical Postulate). To every type of closedt quantum system 
there corresponds a linear unitary operator T (the evolution 
operator) such that  the temporal development of the density 
operator p for an ensemble of such systems is given by 

p(t2) = T(t2, tl) p(tl) T~t~,tl ) 

In the following theorems, we assume the Hermitean operators to 
have discrete spectra; similar propositions hold for the continuous 
c a s e .  

Th2 : The probability W~c(ak; p) that  an ~-measurement  on a system 
from an ensemble with density operator p will yield the A-eigen- 
value ak is given by 

W~(ak; p) = Tr (PP:/c~) 

where ~ k  is the subspace belonging to a~. 
Proof: W~(ak; p) is (by the physical definition of probability) the 
mean value of the observable ~ k ( d ) ,  where J k  is defined by 

{1, a=ak} 
~ k ( a ) =  0, a # a k  

By P1, ~'k(A) e-~ ~ k ( d ) .  Hence, by Thl ,  

Wd(ak; p) = m(~'k(A)) = Tr (p~k(A)) 

Consider the spectral expansion:~ of A and form ~k(A) : 

A = F~ a.P~.~ n 
ndn 

nd~ d~ 

Therefore 
W~(ak; p) = Tr (pP~)  Q.E.D. 

t I n  general, o p e n  systems, i.e., those interacting with other systems, do not 
evolve causally by uni tary  transformation. Thus composite quantum systems 
with interacting constituents are in this dynamical sense i n d i v i s i b l e  [compare 
Park, 1968a)]. 

Here we have allowed for degeneracy ; however, in later sections spectra will 
usually be assumed nondegenerate. The eigenveetors belonging to eigenvalue 
an  are denoted by anal ,  dn  = 1, 2 . . . . .  
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Th3 : Tr p = 1. 
Proof: Consider the trivial observable J defined as follows: 
measure any observable d ;  whatever the result, we shall say 
that an J-measurement has been performed with numerical 
result unity. Symbolically, J = o~(d) where o~(a)= I. The 
operator corresponding to J is therefore 

Y ( A )  = E ~ ( a k ) P  .. . .  = E P . . . .  = 1 
kd~ kd~ 

the identity operator. 
Now, it is obvious from the definition of J that  ( J }  = 1; 

hence Tr(pl) = Trp = 1. Q.E.D. 

Th4:  The only possible results of d-measurements  are the eigenvalues 
{ak} of  A ,  where A ~-~ ~ .  
Proof: The probability Z that  an d-measurement  will yield a 
number which is not an A-eigenvalue is equal to the mean value 
of the observable ~(~/), where 

1, a not an A-eigenvalue 1 
N(a) = 0, a an A-eigenvalue 

The operator to which N ( d )  corresponds is 

~(A) = Z ~(a~)P~o = E ( 0 ) P ~ n  = 0 
n 

Hence Z = Tr (p0) = 0. As is customary in scientific applications 
of probability theory, we assume that  zero probability for an 
event means that  the event will never occur.~ Q.E.D. 

Th5:  The density operator p is positive semidefinite. 
Proof: The projection operator Pv'  Pv ~-+~, has eigenvalues 0, 1 
(p arbitrary). Thus by  Th4$ ( ~ }  >~ 0. By Thi,  (~ }  = Tr (oPv). 
Hence for all p, Tr (PPv)= (9, PP} ) 0 ,  i.e., p is positive semi- 
definite. Q.E.D. 

Although all of the foregoing theorems required only weak corre- 
spondence, they would of course still follow if P1 were replaced by  an 
axiom of strong correspondence : 

P I S :  The set of physical observables is in one-to-one correspondence 
with the set of linear Hermitean operators on Hilbert space having 
complete orthonormal sets of eigenvectors. I f  A ++ d ,  then 
~ - ( A )  ~ o~(~ / ) .  

F r o m  a p r a c t i c a l  v i e w p o i n t ,  th i s  m a k e s  sense  ; h o w e v e r ,  in  t h e  ideal  case  of 
a n  infinite ensemble, the interpretation of zero probability can at best be that 
the event in question is of measure zero in the sample space of interest. 

Ignoring superselection, we assume that every P~o represents an observable. 
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A cursory examination of P l S  and P2 seems to suggest that  nothing 
about simultaneous measurement could ever be derived from such 
axioms, for in them reference is made only to measurements of single 
observables, i.e., ~/t'1(5] ). Indeed, the absence of a similar joint 
measurement construct JZ/l(5] ,~ , . ..) appears to justify the con- 
clusion that  quantum theory is silent to the problem of compatibility 
and that  in order to discuss simultaneous measurements at all P2 must 
be augmented by  some kind of joint probability postulate. We shall 
see later (Section 4) that  this 'silence ~ is illusory, that  P1S and P2 do 
in fact place severe restrictions upon simultaneous measurements. 

To approach the problem of joint measurements from an axiom set 
referring only to single measurements, it is necessary to develop a 
theory of compound observables, i.e., observables defined as functions 
of several ordinary observables. Then information regarding joint 
measurements can be extracted from an analysis of single measure- 
ments defined as functions of the joint measurement results. For 
example, a compound observable ~ ( s / , ~ )  may be operationally 
defined as follows: measure d and ~ simultaneously, substitute the 
results a, b into the function ~ ( a ,  b); the value f = ~ ( a ,  b) is then the 
result of the J ( d , ~ ) - m e a s u r e m e n t .  Then by  P1S, there exists an 
operator F to represent ~ ( d , ~ ) ;  hence if F is known, ~ ( d , ~ ) -  
measurements are subject to quantum mechanical analysis, and in 
this sense joint measurements would be in the domain of the ordinary 
quantum theory of d/ l ' s .  

This leads us directly to an old and interesting quantum problem 
(Groenewold, 1946; Shewell, 1959): given the correspondences 
A +-~ d ,  B+~  ~ ,  ... and a compound observable ~ ( d , ~  ...), what 
F corresponds to ~ ?  Note that  if P1S is adopted, the existence of such 
an F is assured (if 5], ~ ,  ... are simultaneously measurable), for every 
observable must have an operator representative. If, however, only 
the weaker P1 holds, the existence o f a n F  such that  F ~ Y(5] ,  ~ ,  ...) 
is not guaranteed. In neither case is there a general prescription for 
finding F ; but  it is obviously necessary to require that  all deductions 
based on a proposed F be consistent with P2, the definition of ~ ,  and 
the theorems reviewed above. In particular, Thl  and Th4 suggest 
especially useful consistency conditions. To formulate such criteria, 
the following notation will be helpful. 

Let the sets E(A) and J / ( ~ )  be defined as follows: #(A) is the set 
of eigenvalues belonging to the operator A; s V ( ~ )  is the set of 
conceivable measurement results associated with an observable ~ .  
When ~ = ~/, X ( ~ )  = #(A) by  Th4. However, when ~ is a function 
of ~ / a n d  ~ ,  for example, it is possible that  correlations between 5Y' 
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and ~ might preclude the occurrence of certain a priori conceivable 
values of Y, i.e., preclude certain of the values ~(ak, bl) calculable 
from eigenvalues of A and B under the a priori assumption that all 
eigenvalue pairs (ak, b~) are possible. In such a case, 4r c ~J/(~).  
FinMly, for a state p, let W(ak, bz . . . .  ; p) denote the joint probability 
that  simultaneous zr ~ ,  ... -measurements yield ak, bz, . . . .  

Two consistency conditions may now be expressed as follows: if 
F+-~ ~ (~ r  . . . .  ), then 

(cl) F, W(ak, bl, . . .  ;p) ~(a~,  bl, . . .)  = Tr (pF), 
kl 

for every p 

(e2) #(F)  _~ ~r[~-(.~, 2 ,  . . .)] 

I t  is easy to see that  (cl) arises from Thl and the definition of 
while (Ce) is needed to prevent conflict with Th4. However, the 
usefulness of (Cl) must be immediately questioned, for the joint 
probability W is of course unknown. Indeed the search for W is an 
important phase of the compatibility problem (compare Sections 
8-10). Nevertheless, condition (cl) is not so mute as it appears, since 
for the proper choice of ~ ,  it becomes independent of the form of W 
(compare Section 4). 

I t  will be noted that  both P1 and P1S include explicit postulation of 
the correspondence ~(A)*-+ ~ ( d ) ,  and the above survey of the 
proofs of theorems 1-5 indicates clearly the value of that  rule. Never- 
theless, later developments could cast doubt upon its necessity as a 
postulate unless there is good reason to regard it as indispensable. 
Since Th2 (i.e., the form of W~) is the cornerstone of practical calcula- 
tions in quantum theory and is therefore not a proposition which could 
easily be challenged, the following theorem indicates strongly that  
the correspondence ~-(A) r ~ - ( d )  could not reasonably be removed 
from the quantum axiom set. 

Consistency Theorem. I f  Wo~(ak; p) = Tr (pPz~) and if there exists an 
operator F such that  F +-~ ~-(~e'), then F = ~ ( A ) ,  where A +-~ d .  
Proof:  The operator F must satisfy consistency condition (cl) : 

Thus 

15 

E Tr (pPj&) ~(ak) = Tr (pF) 
k 

for every p 
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which implies 

F = E ~ ( a k . ) P ~  = J~(A) 
k 

(Note that  (%) is also satisfied.) Q.E.D. 

The o~(s]) which has probably received more attention than any 
other is a fairly complicated one: ~ ( ~ ' )  = (-J  - <d})  2, where < d }  is 
a real constant which is just the arithmetic mean of ~ ' l ( s / ) ' s  on the 
ensemble of interest. Using P2, we may write ~(sr = ( d  - re(A))2; 
then by  the correspondence rule in P1, ~ ( ~ ) e - +  (A - m ( A ) 1 )  2. By 
definition, 

( A . j ) 2  = m [ ( A  - r e ( A )  1) 2] = < ( d  - <~2 ' ) ) 2 )  

A d ,  called the standard deviation, is a common statistical quanti ty 
measured in the obvious way as a function of measurement results 
from an ensemble. 

Historically, A d  has often been linked erroneously to the problem 
of compatibility by  way of the Heisenberg uncertainty principle. This 
is not the place to dwell upon its misinterpretations; however, a few 
remarks are needed in order to dispel the popular contention that  the 
uncertainty principle places restrictions on simultaneous measur- 
ability. First of all, precisely what Js the uncertainty principle? I t  is a 
theorem, rigorously derived from the quantum postulates; it states 
that  under fairly general conditions, 

~ d ~ d  > ~lm([/, B])I 

where A, B are Hermitean operators representing quantum observ- 
ables d ,  d and A d ,  A d  signify the standard deviations for colleetives 
of d -  and d-measurements.  

Hence this remarkable theorem has the following physical sig- 
nificance: Given two identical ensembles of quantum systems, if 
d -measurements  are performed on one ensemble, d-measurements  
on another, then the quantities A d ,  A~, calculated from the measure- 
ment results, will satisfy the relation above. 

The principal point here stressed is that  A d  and A ~  have physical 
meaning only within the context of statistics. I t  is therefore illogical 
to interpret the uncertainty principle as a denial of the possibility of 
simultaneous measurement of d and d upon a single system if 
[A,B] ~ O, as has sometimes been done. The only sense in which 
A d A ~  may refer to a single system is purely statistical, i.e., to an 
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ensemble involving one system sequentially measured and reprepared. 
Furthermore it should be noted that  ~J~Fz]~, as presented above, is 
not even calculated from simultaneous measurements of d and 
performed on each system. Whether or not that  is a meaningful 
alternative method of calculation remains at this point undecided 
and will be deferred to later sections. For the present, it suffices to 
observe tha t  whatever conclusions are reached concerning the notion 
of compatibility, i.e., simultaneous measurability of several observ- 
ables on a single system, there can be no conflict with the uncertainty 
principle, a relation involving statistical properties of measurements 
of single observables. 

Finally the uncertainty principle is often interpreted not as a denial 
of simultaneous measurability but as a statement about the accuracy 
of simultaneous measurements of noncommuting observables. For the 
interesting special ease of position s and momentum ~ (whose 
operators satisfy IX,P] = ihl)  this interpretation typically runs as 
follows : I t  is impossible to measure simultaneously :~ and ~ exactly ; 
the product of the 'inaccuracies' A : ~ J ~  is never less than what the 
uncertainty principle allows, i.e., A:~z]~ ~ �89 Properly understood 
as physicists' jargon, this interpretation of the principle is not too 
objectionable, for its implicit meaning is the same as the more careful 
explanation above. To see this, it is only necessary to realize that  the 
phrase 'to measure simultaneously ~r and ~ exactly' here refers 
experimentally to a collective of 2~- and ~-measurement results, each 
obtained by a measurement performed upon a member of the ensemble 
ag some given time relative to the preparation of that  member. From 
such a collective the term 'exact' draws its physical meaning; thus if 
2~-measurements are performed on an ensemble of identically prepared 
systems each at the same time relative to preparation, and if all these 
results are identical, experimental jargon would say that  'an exact 
position measurement has been made,' since A2~ = O. 

To summarize: whatever propositions about joint measurements 
may or may not be consistently incorporated into quantum theory, 
the uncertainty principle remains unscathed so long as its interpreta- 
tion does not transcend the content of its theoretical statement and 
proof by making unjustified references to joint, rather than single, 
measurements. Conversely, the uncertainty principle is not an a priori 
restriction on any consideration purely about joint measurements; as 
noted earlier, perhaps the principle can be generalized to cover joint 
measurements once a theory for the latter has been devised, but no 
such requirement need be stipulated in advance. Indeed, the un- 
certainty principle is irrelevant to the problem of compatibility. 
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3. Trivial Joint Measurements and Commutativity 

There is one type of joint measurement whose consistency with 
quantum theory is certain, for it involves the performance of only one 
measurement upon the system. The resulting number is then used to 
generate a set of numbers through a set of established functions; 
hence, the simultaneous measurement of a set of observables has been 
performed, albeit in a rather trivial sense. Accordingly, joint measure- 
merits performed simply by arithmetical manipulation of one measure- 
merit result for a single observable will henceforth be called trivial 
joint measurements. 

The question then arises as to whether the joint measurement of any 
two observables is reducible to a trivial joint measurement; if so, 
quantum theory could embrace the concept of simultaneous measure- 
ment in a very natural way. However, the correspondence rule 
~-(A) ~-~ ~ ( o / )  may be used to prove that  any two operators jointly 
measurable in this trivial sense necessarily commute. To see this, 
assume the existence of an observable c# and functions ~ ,  ~ such 
that  the observables ~/, ~ are expressible in the form 

~ / =  ~ ( ~ ) ,  

By the above correspondence rule, if 

~ ( ~ )  ~ J ( c )  = 

~ ( ~ )  ~ ~ ( c )  = 

Since two different operators cannot 
able,~ it follows tha t  A = ~(C) ,  B = 

= ~ ( . )  

C +-~ c#, C~'k = Ck~k, 

E ~(ck) P ~  
k 

Z ~(~n)P~ 

correspond to the same observ- 
e(C). Hence 

[A,B] = Z ff(ck) ~(c~)[Pv~,Pv~] -- 0 
kn 

The trivial joint measurements thus do not exhaust all a priori 
conceivable simultaneous measurements. But this does not imply 
that  noncommuting observables are incompatible; it merely estab- 
lishes that  they are not trivially compatible. Nevertheless, since 
[A,B] = 0 is (1) a necessary condition for trivial joint measurability 
of d and ~ ,  and (2) the only condition under which A ~ / I ~  = 0 may 
hold, it is sometimes claimed via a misinterpretation of the un- 
certainty principle tha t  the only simultaneous measurements per- 

I f  d r A 1 a n d  a l s o  d r A 2, t h e n  f o r  e v e r y  p,  ( d )  = T r  (pA 1) = T r  (pA 2) ; 

b u t  t h i s  i m p l i e s  A I  = A 2 .  
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mitred by quantum theory are the trivial ones, that commutativity 
is the mathematical criterion of compatibility. However, in view of 
our preceding remarks about the uncertainty principle, such a 
position is evidently illogical. 

Although the notion of trivial joint measurement is not an adequate 
basis for a genera] treatment of simultaneous measurements, it does 
provide a means for deriving the joint probabilities associated with 
several commuting observables. (The problem of joint distributions 
for noneommuting observables will be explored in Sections 8-10.) 

If d and ~ are simultaneously measurable through an auxiliary 
observable ~, then joint probabilities for the results of ~/1(d) and 
~ 1 ( ~ )  are calculable through single probabilities associated with 
Jt'l(~f). Given A, B satisfying the necessary condition [A, B] = 0, the 
problem is to find ~-, N and ~ +-+ C such that  

zr ~-~ A = ~-(C) ~-+ ~-(~) 

By a mathematical theorem generally omitted from standard 
quantum textbooks, the condition [A ,B]  = 0 is sufficient to insure 
the existence of o~, N, and ~f such that  

A = ~ ( C ) ,  B = ~(C)  

While some cases of the general theorem (von Neumann, 193~) are 
rather complicated, it is not difficult to prove the theorem for operators 
A, B which have discrete spectra. Consider, for example, the interest- 
ing ease where A and B constitute what I)irae called a complete set of 
commuting observables. This means that the set of common eigen- 
vectors (the existence of which [A,B] = 0 assures) can be labeled so 
that the eigenvalue equations take this form : 

AYnm = an 7nm 

B~,n~ = bn, ~nm 

Now, let {ckl} denote a set of distinct real numbers and define ~ ,  fr 
by the relations 

a~ = Y ( % ) ,  b,. = ~(ckm) 

This determines the desired C; its spectral expansion is 

k/ 
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kl kl 

~(C) = Z ~(%z)PT~ = Z blPw~ = B 
kl kl 

(Note that  ~ ,  ~, and C are not unique.) 
To find the joint probability W(ak, b~;p) that  J[1(5#) and J#x(~)  

will yield (ak, b~) for the state p, we simply calculate Wv(%~;p), the 
probability that  J[l(c#) will yield ck~, by  the standard quantum 
mechanical rule for single probabilities : 

W(ak, b 5 p) = Wv(c~t; p) = Tr (pP~,~) 

The non-uniqueness of i f ,  ~,  and C presents no problem since 
W(ak, bz; p) does not depend on them. (As always happens in quantum 
theory, in the continuous spectrum generalization W becomes w, a 
probability density.) I t  is easy to illustrate this theorem by  deriving 
the familiar joint co-ordinate distribution of nonrelativistic wave 
mechanics. Consider the function space whose functions (vectors) 
have the form ~(x, y). The operators corresponding to co-ordinates S 
and ~/are postulated to be multiplication by  x and y, respectively; but  
it is not necessary to postulate further that  ~* ~o is the joint probability 
density for d t ' l (~  ) and Jg/l(~). Since [x,y] = O, we may conclude that  

and ~ are jointly measurable in the trivial sense through an 
auxiliary observable ~ ~-> C; the eigenvectors of C will be 

y~y~(x, y) = ~(x - xl) ~(y - Yl) 

From the generalization of the preceding theorem to include con- 
tinuous spectra, it follows that  the joint probability density for :~ 
and ~4 in the (pure) state p = P~ is given by  

w(xx, y l ;Pv)  = wv(%~y~;Pv) = I(Y~y~, ~~ ~ 

= f f 
= ~*(xl, Yl) ~(xl, Yl) 

For this simple example it is possible to see empirically the difference 
between trivial and nontrivial joint measurements. Consider a plane 
fluorescent screen upon which a rectangular cartesian co-ordinate 
system has been established. Whenever a glowing spot appears on the 
screen, a joint measurement of s and ~/for the impinging particle may 
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be made by reading the :~r and dy/scales separately. Two numbers thus 
emerge, the :~- and @/-measurements having been performed non- 
trivially. To construct an apparatus which simultaneously measures 
:~ and ~ in the trivial sense, we require an observable (~ and the 
functions ~, ~. A suitable observable ~ may be defined operationally 
by assigning to every point on the fluorescent screen a single real 
number. When a particle strikes the screen, the single number co- 
ordinated with the glowing spot is regarded as the result of a c~_ 
measurement upon the particle. 

If the functions ~ and ~ define a mapping from the single number 
to the ordinary (x,y)-eo-ordinates of the point,~ the entire scheme 
then constitutes a trivial joint measurement of :~ and ~. 

The following basic assumption about the simultaneous measure- 
ment of commuting observables underlies the joint probability theory 
just outlined: 

(J1) If it is possible to measure 5~' and ~ simultaneously in the 
t r ivial  sense, i.e., i f  [A, B] = 0, then  the joint  probabi l i ty  W(al~ , bz; p) 
calculated using an auxi l iary  observable c~ is valid for all simul- 
taneous  ~4, q - m e a s u r e m e n t s  regardless of whether  or not  t h ey  are 
ac tual ly  per formed by  means of X-measurements .  This assumption 
apparen t ly  never  receives explicit  s t a t emen t  though m a n y  normal  
applications of  quan tum mechanics would be difficult to jus t i fy  
wi thout  it. 

As we have seen above,  even the der iva t ion  of the s t andard  inter-  
p re ta t ion  of wave funct ions depends upon (J1). Indeed  all correlations 
among qua n tum observables are u l t imate ly  based on t h a t  assumption.  

I t  is ins t ruct ive  to res ta te  the  content  of (J1) in a ma themat ica l ly  
definite manne r  which seems less ad hoe: 

(J2) The joint  p robabi l i ty  W(ae, bz;p), [A,B] = 0, is a unique func- 
t ional  of the s ta te  p. Expressed  in this way,  the assumption is quite 
reasonable;  it  mere ly  requires tha t  the state of an ensemble be suffi- 
cient to  de termine  the  distr ibution,  as would be the case in classical 
physics.  In  part icular ,  no addit ional  informat ion  regarding the  m e th o d  
of measuremen t  is needed t o  obta in  W ; thus  once a W for a given p is 
found by  the me thod  of  tr ivial  joint  measurement ,  it  is na tu ra l ly  
assumed t ha t  this W is the W associated with the given p independent ly  
of how ~r and ~ might  be measured.  

Suppose, however,  t ha t  [A, B] r 0. Then  the me thod  of  tr ivial  joint  
measurements  is of course inapplicable. Does (J2) still hold? Is the 

t It  is true that such a mapping defies ordinary geometric intuition; never- 
theless, it does exist, for the line and plane are of the same order of infinity, 
namely, that of the continuum. 
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quantum state p alone sufficient to determine W's for joint measure- 
ments of noncommuting observables~. We shall s tudy this matter  in 
Sections 8-10. 

Finally, it is perhaps of some interest to know that  the postulate 
(J1) or (J2) has the following trivial consequence: two simultaneous 
measurements of the same observable ~ must each yield the same 
result. Formally, we may choose ~ = ~/, J(~#) = y~(~) = d .  Assign- 
ment of probabilities to y(c#)_ and ~(c~)-measurements via ordinary 
quantal analysis of X-measurements obviously leads to nonzero 
probabili ty only when 'both' ~-measurements  yield identical results, 
namely, that  of the auxiliary ~(-~r 

4. Von Neumann ' s Theorem: Noncommuting Observables 
Are 'Incompatible' 

The popular belief that  the only compatible observables are the 
trivially compatible ones was reviewed in Section 2, where the un- 
certainty principle, the standard basis of this dogma, was presented 
and found irrelevant. However, there exists also a rather formidable 
logical demonstration that  if two observables are compatible they are 
trivially compatible. I t  is an elegant theorem (yon Neumann, 1955, 
pp. 255-230) due to yon Neumann which, strangely enough, appears 
to be almost universally ignored, even by  proponents of the viewpoint 
for which it is the strongest support. Indeed the main impact of the 
theorem seems to have been to influence mathematicians (Mackey, 
1963; Segal, 1947; Varadarajan, 1962) interested in modern physics 
to define the term 'simultaneously measurable' by  the commutat ivi ty 
condition for trivial joint measurability, Which is not very helpful 
in view of the fact that  both words in common physical usage 
already had other definitions, as explained in Section 1. Because 
von Neumann's  theorem is of central importance to the problem of 
compatibility, it is appropriate here to scrutinize it carefully, paying 
special attention to the hypotheses on which it is based. 

Let  A and B denote two Hermitean operators corresponding to 
observables d and ~ .  Assume that  ~ '  and ~ are compatible (jointly 
measurable). I f  ~ and ~ are simultaneously measured on a system, 
two numbers will result. Now, suppose those numbers are added 
(subtracted) and the sum (difference) is considered to be the result of 
measuring an observable 5P(~) expressed symbolically by  

5 p = d + ~  ( ~ = ~ - ~ )  
Clearly if ~ and ~ are compatible observables, 5 ~ and ~ are observ- 
ables. Therefore, in accordance with a widely accepted quantal 
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postulate (P1S) there must exist Hermitean operators S and D 
representing observables ~ and ~ .  I t  is easy to prove that  if S exists, 
S = A + B .  

To do this, recall the consistency criterion (cl) of Section 2 which 
the operator S must satisfy: 

(ci) ~ W(%, hi; p) J ( % ,  bz) = Tr (pS), for every O 
kz 

Here 

therefore 

Because of the additive form of o ~ ,  we see that  the unknown joint 
probability W(ae, bz;p) may now be replaced by the well-known 
quantally prescribed marginal probabilities: 

F~ W(%, bz; p) = W~(bz; p) = Tr (pP~) 
k 

Z W(ak, b5 P) = W~(ak; P) = Tr (pP~) 
z 

Hence, for every p, 

?E Tr (pP~) a k + Y~ Tr (PPt~,) bz = Tr (pS) 
k l 

This determines S uniquely, as follows : 

Tr (pS)= Tr(p ~ a1,P~ ) + Tr(p ~ bzP[3~) 

= Tr (pA) + Tr (pB) 

= Tr [p(A + B)], for every p. 

Therefore 

Similarly, 
S = A + B  

D = A  - B  

From the correspondence rule ~ ( d )  ~-~ ~ ( A )  of Section 2 together 
with those just derived there follows another: 

d ~  +--~ �89 + BA) 

where d ~  denotes the observable measured by  multiplying the results 
of simultaneous measurements of ~ and ~ .  The argument proceeds 
as follows. I f  ~ and ~ are compatible, ~9 ~ and ~ are also, as well as 
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~9 ~'2 and ~ .  Thus  ~ = I ( 5  f2 - ~2)  is an observable,  and b y  the just  
ment ioned  correspondences,  its opera tor  mus t  be R = ~-(S 2 - D2). To 
see the meaning of this s trange operator ,  suppose t h a t  a joint  measure-  
men t  of  d and ~ yields the numbers  a and b. P roper  manipula t ion  of  
a and b yields a number  r, which is by  definition the resul t  r of  an 
~ - m e a s u r e m e n f  : r = ~[(a § b) 2 - (a - b) 2] = ab. Hence,  the  opera tor  
for the  p roduc t  d ~  must  be 

R = ~[(A + B) 2 - (A - B) 2] = �89 + BA) 

Von Neumann ' s  s imultaneous measurabi l i ty  theorem is based on 
the  correspondence rule just  derived. I t  should be no ted  t h a t  nei ther  
this rule nor  the ones f rom which it  follows are a rb i t r a ry  postulates  ; 
t h e y  are all deduced f rom the  axioms, as demons t ra t ed  just  above 
and  in Section 2. We shall now state  yon  Neumann ' s  theorem and 
review the  p roof  since it  is no t  well known. 

Simultaneous Measurability Theorem. I f  ~r and ~ are compatible  and 
~r ~ A, ~ ~ B, t hen  

[A, B] = 0 

Proof: Since s / a n d  ~ are compatible,  it follows tha t  any  funct ion 
of  ~r and  ~ is observable (simply by  measuring d and ~ simul- 
taneous ly  and using the  results to  evaluate  the  funct ion) ;  in 
par t icular ,  consider the funct ion ~r  B y  the correspondence 
rules discussed above,  ~r A ~, and  hence 

s~2~ e_+A2B + BA2 
- r t  2 

B ut  the p roduc t  correspondence rule also implies 

~/'2~)=sg(d~)++2(AAB+BA2 -~ A B ~  B A A  

= ~(A2B + 2ABA + BA 2) - P 2  

Since qua n tum theo ry  cannot  to lera te  the ambigui ty  of having 
several operators  for a single observable (compare footnote ,  p. 230), 
we must  set P1 = P2 and accept  the  consequences. The resul tant  
equa t ion  is 

ABA = �89 + BA 2) 

Moreover,  the  same a rgument  is applicable to any  functions 
~-(~r and N(N);  thus  

~ ( A )  N(B)~- (A)  = �89 N(B) + (g(B)~-2(A)] (4.1) 
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For simplicity consider A and B having discrete spectra (the 
general case is not essentially different): A c~ k = a~ o:k, Bfiz = b~fi~. 
Define functions ~ k  and ~l as follows : 

Then 
Y e ( d )  ~ ~-k(A) = E 3anakP~n = P ~  

~z(~) ~ f~(B) = Y~ 3b,.bzP~,, = P~  
m 

Substituting these operators into condition (4.1), we have for 
each/~, l, 

1 2 2 P~ P/3~P~ = ~(P~,~Pt3, + P ~ P ~ )  
But 

Hence 
P ~ P ~ P ~  : �89  + P ~ P ~ )  (4.9) 

Multiply (4.2) on the left by P ~  : 

P~Pt3 ,P~ = �89 + P : ~ P f ~ P J  (4.3) 

Multiply (4.2) on the right by P ~  : 

P~P~,P~,, = �89 + P ~ P ~ )  (4.4) 

Subtract (4.4) from (4.3): 

P ~  PS, - P~ P ~  = 0 
Therefore 

[A, B] = Z ak b~[P~, Pf~,] = 0 
kt 

This completes the proof of von Neumann's simultaneous measur- 
ability theorem. 

Expressed succinctly, it says that  if 5~/and ~ are compatible, they 
are trivially compatible, for their operators necessarily commute. 
Unlike the semi-classical gedankenexperiments, the vague interpreta- 
tions of the uncertainty principle, and some strange philosophizing 
about subjective wave packet reductions, the foregoing theorem offers 
an argument s~rong and clemr in behalf of the proposition that  non- 
commuting observables cannot even in principle be measured simul- 
taneously. I t  ~ffirms that  the very notion of general compatibility 
simply cannot logically be appended to the established theoretical 
structure of quantum physics, unless the latter is somehow modified. 
This possibility of nullifying the theorem by such a basic alteration 
in the quantum postulates will be considered later. 

Evidently inspired by the preceding theorem, various ~uthors 
(Birkhoff & yon Neumann, 1936; Piron, 1964; Reichenbach, 1944) 
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have suggested that  quantum mechanics should be rephrased in a new 
logical framework which would properly allow for incompatibility. 
We intend to show in subsequent sections that  von Neumann's 
mathematics in fact does not establish incompatibility as an intrinsic 
quantal property but  rather proves something else. Hence, if our 
analysis is correct, any 'quantum logic' designed to embrace incom- 
patibility is motivated by  and founded upon a mistaken interpreta- 
tion of quantum physics. Accordingly, we shall not review such a 
system in any detail; however, it is instructive to expose certain 
salient features of 'quantum logic' to establish clearly its relation to 
yon Neumann's theorem. 

Propositions, or questions, are easily introduced into quantum 
theory as functions of observables. For example, consider an observ- 
able 

~4 *-+ A = ~ ak P ~  

and the proposition ~n: '~ /1 (~)  would yield an.' The proposition ~n 
is just the observable measured as follows : measure ~ ;  if an results, 
assign to ~n the value 1 (by convention) ; if a k (5 an) results, assign to 
~n the value 0. In short, ~ = ~ ( d )  where j w  is defined by  
~ n ( a k )  = 8a,~a ~. Hence 

~n +-+ ~'~,(A) = ~ o~(a~)P~ = P~= 
k 

Similarly, a suitable projection operator may be found for any 
proposition involving commuting observables; but  because of yon 
Neumann's theorem, any compound proposition involving non- 
commuting observables must of course be regarded as undecidable, 
or absurd. For any two compatible proposi t ions,g and 2, it is possible 
to find operators corresponding to the logical relations ~ 'or' 
~. - - ~  U ~ and ~ 'and' ~ -~ ~ Cl ~ :  

~ U ~ - - - ~ P + Q - P Q  

cl ~ +-~ PQ 

The change in logic said to be necessitated by  quantum mechanics 
has to do with the classical distributive law of propositions : 

Suppose A, B are operators in a two dimensional Hilbert space. I f  
[A,B] ~ O, and ~-~P/3~, ~+-~P~,  ~ - ~ P ~ ,  then because of von 
Neumann's theorem, the distributive law cannot hold in quantum 
theory. To see this, note that  

N (2 U N ) ~ - ~ P / ~ ( P ~ + P ~ , - P ~ P ~ ) =  P~(1 - O) = P c ,  
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but  (~  N ~) U (~  N ~ )  is an absurd proposition because neither 
N ~ nor ~ N ~ is measurable since they are compounds of ~r and 
with [A, B] ~ 0. Thus, since the distributive law apparent]y cannot 

hold in quantum theory, it has been suggested that  'nondistributive' 
logic is required for modern physics. 

Contrary to this view, we shall later show that once von Neumann's 
theorem is properly interpreted, quantum theory provides no reason 
to eradicate the distributive law of logic. 

5. Counterexamples : Noncommuting Observables Are 
Not Incompatible 

Mathematically speaking, von Neumann's simultaneous measur- 
ability theorem is beyond criticism. Neither logical nor algebraic 
errors are involved; the theorem is a legitimate deduction from P1S 
and P2. If, therefore, one could find a counterexample, i.e., describe 
quantum mechanically a physical process fully certifiable as a simul- 
taneous measurement of, say, position and momentum, then the basis 
of yon Neumann's theorem would require reformulation. I t  would 
then establish not the incompatibility of physical observables but  
rather the inconsistency of the quantum mechanical axioms. In this 
section we shall construct such counterexamples. 

I t  is instructive to consider first a typical quantum theory of 
measurement for a single observable, namely, the 'time-of-flight' 
method for measuring the momentum ~ of an electron. We assume 
that the rule of correspondence for position f is an ideal one which 
might consist, for example, of the direct observation of a coincidence 
between a scale marking and a macroscopic spot appearing on a 
photographic plate in response to an electron impact. 

Suppose we have an 'electron gun' which prepares the state p = PC. 
Using nonrelativistic wave mechanics, the probability density 
w~(p; r for ~ , ( ~ )  at the time of preparation is easily calculated: 

where 

r 2 w~(p;r = I ( % , r  d x ~ e x p  - 

h a  
~+-+P- i  ~x' % = (2~rh) -112 cxp , ~ x  

P %  = p % ,  <%~, %=> = 8 ( ~  - p z )  
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This distribution is the quantum mechanical touchstone for deciding 
whether or not a proposed experiment which generates numbers via 
the established operational definition for J l ( ~ )  qualifies as a momen- 
tum measurement scheme J/2(~).  I f  the numbers in question are to 
be regarded as J~'l(~)-results, they must satisfy the theoretical 
distribution w~(p;  r 

Let t = 0 be the time when the electron is known to be in the pre- 
pared state p = P c .  The wave function r  = 0) is assumed to be of 
compact support, and it is convenient to set up the origin of the x-axis 
so that  the interval where r ~ 0 is (-x0, x0). The J/2(~)-procedure 
(Feynmann, 1965) is simple: wait a very long time (t --> ~) as the 
electron moves freely ,  then measure the observable ~ ( : ~ ) =  mgf/ t ,  
where m is the electron mass. The resultant number then counts as 
the result of J ( l ( ~ )  at t = 0. To justify this operational definition of 

quantum mechanically, we must prove that  the probability for 
~ '1(~)  to yield I9 e (Pl,P~) at t = 0 equals the probability tha t  
df l [~(s  yields m x / t  e (Pl,P2) as t -> ~. In short, it must be shown 
that  

To find r  given r  0), one must use the general quantum 
theoretical 'law of motion'. In  the present case, p = PC and the law of 
motion reduces to Ct = T(t, O)r where T is the free evolution operator 
for the electron. In function space, this transformation is given by 

= / /  m ~ i m x  2 i m  
r ~ [ ~ h t j e x p ~ -  / e x p [ - h t ( X x l - x ~ ) ] r  O)dxl 

- -  a o  

~OW~ 

[oz ] 
e r  t) 

~2t/m 
= f Ir 2dx 

~lt/m 
~2t/m ~ 2 

-- 2~rht dx  exp - - ~  x x l  -- r dx l  
plt/m 
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Changing the variable of integration by letting x = pt/m, we obtain 

W ~(x) [ 7 ~ ( P ~, P2); ~(x, t) ] 

P~ I ~ dx] 2 
2 tL exp xl 

Since ~h(Xl) = 0 for xl ~ (-x0, x0), the integral over xl is equal to 

T0 

f Jim 2 " e x p [ ~ x l  +P~]dxl 
---Xo 

and we may take the limit t --> ~ inside the integral without difficulty. 
The result is then 

[,t + + +] W~(~> - -  e (Pt, P~); r t), t 

f~ _f dx12 exp (-ipz /h) . ,  , d p  

But this equals 

P2 

f w~[p; r 0)] dp = W2[p e (P~,P2); r 0)] 
P~ 

Hence the results of 'direct' ~(s performed suffi- 
ciently long after the preparation of r 0) will be distributed just 
like the theoretical results for dt ' l (~) upon r 0). This time-of-flight 
arrangement is thus fully certified quantum mechanically as an 
operational definition o f ~  (for pure states r 0) of compact support). 
Because quantum theory can make only statistical predictions, no 
further guarantee that  this method 'really' makes ~-measurements is 
required. Indeed further quantal analysis of the question is theoretic- 
ally inconceivable. Of course it is possible to note that  a free classical 
particle initially confined to (-x0, x0) would, by Liouville's theorem, 
after time t have momentum in the range 

mx ~tx 0 
p=T =T 

and that  as t ~ ~, p -> mx/t. However, strictly speaking, this simple 
classical demonstration adds nothing to the quantal argument just 
given. A serious theory of measurement should not rely on heuristic 
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classical analogies; it should establish its consistency wholly on 
quantum mechanical grounds by matching probabilities in the manner 
illustrated. 

With this understanding, it is easy to see that  this time-of-flight 
method for obtaining the result that  Js at t = 0 would yield also 
determines the result that  ~ '~(~)  at any time t > 0 would yield. This 
follows from the fact that  momentum is conserved in the free motion 
of the electron; in quantum mechanical terms, 

W~[p e (pl,p2); r 0)] = W~[p e (p .p2) ;  r t)] 

Thus by  the same reasoning which validated the time-of-flight 
method as a rule of correspondence for ~ 1 ( ~ )  at t = 0, we can likewise 
regard the results of dt'l[~,~(s t --> 0% as d[l(~)-resul ts  for any 
t > 0. In particular, consider that  instant when the electron strikes 
the photographic plate and the result emerges. For that  instant we 
may conclude with full quantum mechanical justification that  ~t ' l (~  ) 
would have yielded ~ ( x )  where x is the result of the dt'l(:~). Hence, 
contrary to the prohibitions of von Neumann's theorem, we have an 
empirical method for the simultaneous measurement of s and ~,  two 
noneommuting observables! 

Incidentally, it should not be thought that  the physical unattain- 
ability of t --> oo vindicates the incompatibility doctrine by  preventing 
the performance of a 'perfect' t ime-of-flight~-measurement. Although 
it is true even classically that  time-of-flight ~-measurements are 
never perfect for finite t (unless s at t = 0 is known exactly), neverthe- 
less classically and quantally the error inherent in the method can be 
reduced below any arbitrary limit simply by choosing sufficiently large 
t, as shown above. Besides, the t --> oo approximation is not a special 
property of (:~r,~)-measurements in general ; for example, a magnetic 
deflection method for joint measurement o f s  r a n d ~  which does not 
require t -* oo will be outlined later (Section 10). 

There is a tendency among interpreters of quantum theory to 
dismiss simultaneous measurement schemes such as the one just 
described as if they did not in fact legitimately challenge the orthodox 
view that  :~r and ~ for example, cannot be measured simultaneously. 
The usual argument seems to have been originated by  I-Ieisenberg 
and may be summarized by  his statement (Heisenberg, 1930, p. 20) 
that  'the uncertainty relation does not refer to the past' .  In the time- 
of-flight experiment, for example, by  the time the s ~-values emerge, 
the time to which they refer-- the instant just prior to the electron's 
collision with the photographic p l a t e - i s  past;  and the electron is 
then buried in the plate. According to Heisenberg (1930) such 'know- 
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ledge of the past is of a purely speculative character, since it can 
never ... be used as an initial condition in any calculation of the 
future progress of the electron and thus cannot be subjected to experi- 
mental verification. I t  is a matter of personal belief whether such a 
calculation concerning the past history of the electron Ban be ascribed 
any physical reality or not'. 

In response to this distinctly philosophical argument, we offer the 
following comments : 

(1) Knowledge is an ambiguous word in discussions regarding quan- 
tum measurement. From a strict quantal point of view an electron 
never possesses properties 2F, ~ ,  etc., of which one can conceivably 
be knowledgeable or ignorant. There simply does not exist a pre- 
paration scheme H which produces electrons always yielding the 
same Y,~-values from 2F,~-measurements ; the relation A3Y A ~  >~ h/2 
among standard deviations is simply a quantitative expression of 
this fundamental fact. Accordingly, measurement should never be 
described as though it increased knowledge by revealing the actual, 
previously unknown, 'value' of an observable. Measurements simply 
generate numerical results associated with certain operations and 
observations upon the system of interest. The meaning of these 
numbers is provided by the theory into which they are fed; in quantum 
theory it happens that  the numbers are not be to regarded as measures 
of possessed attributes. 

(2) I t  is therefore pointless to say that  the uncertainty relations do 
not refer to the past. They refer to the standard deviations of collec- 
rives of measurement results at any time. What  the relations do not 
refer to is measurements upon a single system at a single time; 
standard deviations naturally refer only to measurements upon 
ensembles. Hence, as explained in Section 2, the emergence of simul- 
taneous 2F,~-values upon measurement in no way violates the 
uncertainty principle. 

(3) In the time-of-flight method, the 2F,~-measurement results 
refer of course to the instant just prior to the electron's impact in the 
plate. These numbers are indeed useless for predicting in classical style 
the result of a future ~r-measurement, but they arc no more 'specula- 
tive' or lacking in 'physical reality' than any other measurement 
result. Their lack of predictive power stems from the fact that  the 
'motion' of quantum systems is not governed by Newtonian laws. 
That the 2F,~-values refer to a past time is no special property of 
simultaneous measurements; it is characteristic of all quantum 
measurements. The time-of-flight measurement o f ~  alone referred to 

16 
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t = 0 although the result did not emerge until t -+ oo. Nevertheless, 
such ~-measurements play a key role in the process of empirical 
verification; for example, their statistical distribution determines 
whether or not the state prepared by the 'electron gun' is really 
r 0). Indeed, if the physical significance of ~ ,  ~-values is a matter  
of 'personal belief', then all measurement results for single observ- 
ables are likewise of solipsistic value only. 

We therefore conclude tha t  the foregoing method for simultaneous 
measurement o f t  r, ~ is as significant as any other quantum mechanical 
measurement scheme, philosophical appearances notwithstanding. 

The time-of-flight method for ~/2(~) exhibits a curious feature 
which seems at first paradoxical. Only ~ is 'directly' measured; ~ is 
then measured by calculation of ~ ( Y ) .  Yet if ~ = ~(2~), it follows 
(compare Section 2) for the respective operators that  P = Y(X),  
hence IX,P] = 0, which is false. To see this more accurately, it is 
convenient to describe the time-of-flight method in the Heisenberg 
picture, where ~o ~ X ,  ~o ~ P, s ~ Xt, ~ t  ~-~ Pt, Xt  = T'~ X T ,  
Pt = TCPT, T being the free evolution operator. In these terms, it 
would appear that  the time-of-flight scheme is based on the relation 
P = (m/t)Xt, t -* co. But from this expression and momentum con- 
servation (P = Pt), it follows that  

Ix . xt] [X, P] = [T* X T ,  T* PT] = IT* X T ,  P] = [ t, ~ j  = O, 

which contradicts IX,P] = ili l, 
The resolution to this dilemma provides interesting information 

regarding quantum measurement. The error in the above reasoning 
inheres in the assumption that  P = mXt/t  just because ~ = m~t/ t  is 
used in the time-of-flight arrangement. Actually, the relation 

= mYt / t  holds only for initial wave functions r 0) of compact 
support tha t  develop freely until the measurement of ~r t, t -+ oo. In 
general, [X,P] # 0 and no ~ exists such t h a t ~  = ~ ( ~ ) .  Nevertheless, 
this analysis reveals two interesting points concerning quantum 
measurements: (1) Even if [A,B] # 0 so that  no general trivial joint 
measurement scheme for s / a n d  ~ can be constructed, it may still be 
possible, for certain states and measurement arrangements, to 
measure ~ as a function of ~ (or vice versa). (2) Conversely, the fact 
that  ~ = ~ ( d )  for some particular dt'2(~ ) does not imply B = ~-(A). 
However, as shown in Section 2, if ~ = .,~(~/) always, then the 
operator relation B = o~(A) is valid. 

To conclude this section, we introduce another counterexample to 
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the simultaneous measurability theorem. Consider two quantum 
systems $1, $2 with observables al l ,  ~1 and 5~'2 associated with $1 
and S.~, respectively. Suppose [A 1,B1] r 0 and denote eigenvectors 
and eigenvMues as follows : 

Let S~ § $2 be noninteracting but in a correlated state : 

k 

I f  ~/2 has an established operational definition, the correlation in T 
which relates ~ ' l (d l ) - r e su l t s  to ~/l(~2)-results  may be exploited in 
the standard way to construct an J#2(~'1). As in the time-of-flight 
./g/2(~) case, we must establish a theoretical matching between 
probabilities associated with d/~(g/,)  and d[1(~r Since 

[A1,A2] = [A1 | 1, 1 | A2] = O, 

511 and 5]2 may be jointly measured (trivially) through an auxiliary 
observable (compare Section 3). The joint probability T~z/.(1),, ~k , ~l-('~)', T) 
is therefore easily caIculated: 

W(a(k l), a~2); W) = Tr (PTP~,~, | : I ~ 

From this expression it is apparent that  when d / l ( d 2 )  yields a~ ) a 
simultaneous ~/~(~1) would yield a~ ~). Itence we have an J/~(N~) 
scheme : to measure ~ ,  simply measure ~'~ ; if a~ z) results, then a (1) 

is regarded as the result of J[~(5~'~). 
Suppose ~ ,  like z ~ ,  has an established operational definition. 

Now, since the ~///2(~) just outlined involves no interaction with $1, 
we may perform ~ ' 1 ( ~ )  simultaneously with d/e(5]l),  and thereby 
jointly measure noncommuting observables 5] 1 and ~1. Once again 
yon Neumann's theorem is contradicted. 

6. Strong Correspondence--the Axiomatic Root of 
Quantal Inconsistencies 

The necessary conclusions to l~e drawn from the last two sections 
may be summarized as follows: (1) The quantM postulates (P1S, etc.) 
rigorously imply that  noncommuting observables are incompatible. 
(2) The same postulates together with what would seem to be a normal 
scientific understanding of the term measurement may be used to 
describe empirical arrangements which must be regarded as legitimate 
schemes for the simultaneous measurement of noncommuting 
observables. (3) Hence the standard postulates of quantum theory are 
inconsistent. We must therefore re-examine the axiomatic basis of 
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yon Neumann's simultaneous measurability theorem and isolate, if 
possible, the false hypothesis which enabled the rigorous deduction of 
this false theorem. 

As explained earlier (Sections 2 and 4) in order to derive a theorem 
about simultaneous measurement of several observables from axioms 
referring only to single observable measurements J / l ( d ) ,  the notion 
of compound observable had to be introduced, subject to certain 
consistency conditions, (cl) and (%), which would have to be satisfied 
by  any operator corresponding to such a compound observable. 
Condition (c~) was in general useless because it involved unknown 
joint probability distributions. However, in the special ease of the 
sum of two observables d + ~ ,  the latter condition assumed a simple 
form and, moreover, it even sufficed to determine uniquely the corre- 
spondence 5]  + ~+-~ A + B upon which the simultaneous measur- 
ability theorem was ultimately based. In fact, once this corre- 
spondence is established, the logic of the theorem cannot be impugned, 
as careful restudy of its proof (Section 4) will demonstrate. 

We therefore direct attention to the correspondence ~ + de-+ A + B. 
As just noted, condition (cl) alone implied this rule. To be more 
explicit, P1S guaranteed the existence of an operator corresponding 
to the observable g]  + ~ ;  that  operator would necessarily satisfy (cl) 
and (c2). I t  then turned out that  (cl) for 5J § ~ could be satisfied by  
only one operator, A § B. Thus  condition (c2) was never used. This 
observation provides an important clue in our search for the false 
hypothesis which made possible the proof of yon Neumann's (evidently 
false) simultaneous measurability theorem. 

Is ~ + ~ really an observable? I f  not, P1S cannot be invoked to 
assure the existence of an operator counterpart. To establish the 
observability of ~ / +  ~ ,  we need only recall the last eounterexample 
of Section 5, which showed how two noninteraeting but  correlated 
systems $1 and $2 could be used to construct an appropriate rule of 
correspondence for simultaneous J t '~(~l )  and ~'1(~1). Since the 
experimenter is obviously free to add the two results, it is apparent 
that  sr + ~1 is indeed observable. Therefore, by P I S ,  there must exist 
an operator S such that d ~  + ~ +~+ S. 

For simplicity, let system $1 be a 'spin' whose relevant states and 
operators refer to a two-dimensional spinor space. For noncommuting 
observables ~1 ,  ~1, take x- and z-components of spin 5zx and 5P~. In 
terms of the Pauli operators, we have 

h(0 , ~ 1 =  ~ - - ~  ~ 0 - 
~ 1  = ~ x ~ - *  2 1 
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Now, simultaneous measurements of d l  and ~1 using the correlation 
scheme involving auxiliary system $2 will by Th4 always yield one of 
these eigenvalue pairs: (h/2, h/2), h/2,-h/2), (-h/2, h/2), (-h/2,-h/2) .  
(The two eigenvalues of any Pauli matrix are 1, -1.)  Hence upon 
addition to obtain ~ 1  + ~1 -measurement results, only the three 
values, h, O, -h  are possible. To use the set notation of Section 2, 

and by consistency condition (c2), if ~ x  + ~1 +~ S, quantum 
mechanics would be self-contradictory unless 

(e~) do(S) _~ ~ ( d l  + .~0 

But (cO must also be satisfied by S and, as shown in Section 4, the 
only S meeting this requirement is, for the ~/1 + ~1 of the present 
example, 

h 1 

Now, by an elementary calculation, the eigenvalues of this operator 
are h/~/2, - h / ! / 2 ;  i.e., d~ {-h/1/2,hl/2 }. Comparing the sets 
~/~(~1 + ~1) and do(S), 5]  1 + ~1 +-~ S, we find that 

Thus the only operator S capable of satisfying (cl) does not satisfy (ce). 
To summarize: ~1-C ~1 is demonstrably observable. P1S then 

insures the existence of S ~  ~'~ + ~1. If  the quantal axioms are 
consistent, that  S must satisfy both (Cl) and (c2). The unique S which 
satisfies (cO violates (ce). Hence, the quantal axioms P1S and P2 are 
inconsistent. 

This is of course the conclusion reached at the beginning of this 
section upon confrontation of von Neumann's theorem with the 
counterexamples of Section 5. This time, however, we have isolated 
the difficulty within the initial hypotheses of that  theorem and are 
now able to understand 'why' the theorem is false. The reason is 
simply that  P1S--strong correspondence--proclaims the existence of 
operator-observable correspondences which simply cannot exist in 
harmony with the remaining postulates. Thus the axiom set--P1S, 
P 2 I m u s t  be altered. 

In view of the overwhelming empirical success of quantum 
mechanics, it is immediately clear that  any proposed axiomatic 
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modification should, if possible, be a 'slight' one; i.e., it should remove 
the inconsistencies attached to the problem of compatibility, but  it 
should not affect the normal applications of the quantal algorithm 
by revising or eliminating any common theoretical procedures. As 
we have seen, the troublesome correspondences which breed incon- 
sistencies are derived essentially from two quantal propositions: (1) 
P1S, invoked to guarantee the existence of an operator to represent 
any given observable, and (2) Thl ,  which establishes the general form 
of the quantum mean value functional, namely, Tr (pA). Obviously, 
we cannot change just Thl without also altering the postulates; 
moreover, since that  theorem is the basis for the highly successful 
quantum theoretical state representations (the density operators), it 
is, practically speaking, not a reasonable candidate for deletion or 
even revision. We are left therefore only with P1S to criticize. 

In Section 2, a distinction was drawn between the usual axiom of 
strong correspondence (P1S), which claims a one-to-one relation 
between observables and Hermitean operators, and a simpler axiom 
P1, called weak correspondence, which states only that  every 
Hermitean operator represents an observable. I t  should be clear that  
P1 omits just that  part  of P1S which led to the inconsistencies dis- 
cussed above. This suggests that  P1, not P1S, should be adopted as 
the true quantal Correspondence Postulate. The question as to 
whether this truncation of P1S to P1 still permits the derivation of 
key quantal propositions such as Thl  will be deferred to the next 
section, where our advocacy of weak correspondence will be fully 
justified. 

I f  P1S is replaced by  P1, what does yon Neumann's theorem really 
prove? I t  becomes a reductio ad absurdum proof that  the correspond- 
ence ~ + ~+-+ A + B and its consequence 5 ] ~  +-~ I(AB -5 BA) are 
not valid if [A,B] • 0. To be specific, in the proof of the theorem, at 
the stage where two distinct operators emerge to represent one 
observable, one faces two logical possibilities: (1) Interpret this 
ambiguity as the failure of strong correspondence, or (2) equate the 
two operators to derive a condition on A and B for the existence of 
the compound observables involving N and ~ ,  in short, a condition 
for their simultaneous measurability. As presented in detail earlier, 
yon Neumann chose the second alternative, which enabled his 
rigorous derivation of [A,B] = 0 as the condition of simultaneous 
measurability. 

But  what of the other possibility? Is it not perhaps more reasonable 
to take alternative (1) and to regard the conclusion from (2) as an 
absurdity which shows that  no operators correspond to d § ~ or ~r 
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when [A, B] # 07 Of interest in this connection is an old but apparently 
forgotten, mathematical objection to the principle of strong corre- 
spondence, a theorem due to Temple (Temple, 1935 ; Peierls, 1935). 

The basic premise is strong correspondence. As we have seen, it 
follows that if A +~ d, B +-+ ~ then 

A + B~--, d + ~ ,  �89 + BA)~-~ xg~  

Now, when these rules together with .Y(A) +-~ J ( s g )  are applied to 
the observable d ~ c g ,  there results a threefold ambiguity: 

( d ~ )  ~ ~-~ �89189 + B A ) C  + �89 + BA)] 

= ~(AB + BA) C + ~C(AB + BA)  

( ~ d )  ~ ~ ~(CA + AC) B + ~B(CA + AC) 

( ~ )  ~ ~---~ ~(BC + CB)A + ~A(BC + CB) 

Once again, we face two alternatives : (1) Interpret the ambiguity as 
the failure of strong correspondence, or (2) use the ambiguity to derive 
a relation among A, B, C. Temporarily choosing (2), it may be readily 
shown that  equating the above operators for d ~ c g  leads to the rela- 
tion [C, [A, B]] = 0, for every A, B, C. 

Up to this point, Temple's theorem seems to be nothing but a 
variation on yon Neumann's theorem. There is a radical difference, 
however, in the final conclusion to be drawn. From the condition 
[C, [A,B]] = 0 and its permutations, it follows in several steps~ that  
A, B, C constitute a commuting set; hence, since ~ ,  ~ ,  %~ denoted 
any physical observables, any two operators which represent physical 
observables must commute! Needless to say, such a statement 
violently dashes with the most successful parts of quantum theory, 
and cannot therefore be permitted to stand. In short, it must be 

t [C, [A,B]] = 0 implies [A,B] = d(A,B) 1, d(A,B) a number, for any opera- 
tors A, B. Then, 1A[B,U] =�89 and I[B,C]A =�89 adding 
these equations gives �89 + B U A -  CBA)=d(B,C)A. Similarly, 
- -~-(BCA - BAC + (JAB - ACB) = d(A,C)B. Adding the last two equations 
yields 

d(B,C)A +d(A,C)B =d(  AB +2 BA,  c)  I 

for every A, B, C. ttenee 

d(B,C) =d(A,C)= d( AB + , C ) = 0  

for every A, B, C. 
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regarded as erroneous, and the hypotheses from which it is derived 
immediately fall into doubt. Yet the similarity of reasoning in Temple's 
and yon Neumann's theorems is striking. Indeed the yon Neumann 
conclusion--the incompatibility of non-commuting observables--  
should likewise be considered erroneous; and the common root of both 
of these perplexing theorems, namely, strong correspondence, should 
be abandoned. The benefits and liabilities of such a structural change 
in quantal foundations will be examined in the following section. 

7. The Consequences of Weak Correspondence 

The suggestion that  strong correspondence be abandoned is not 
altogether welcome, primarily because quantum theory would suffer a 
certain loss of universality. No longer would every physical observable 
be automatically considered a quantal observable; there would be 
conceptual room for nonquantal observables, to which some might even 
attach the controversial adjective 'hidden'. Moreover, the pillar of 
faith upon which the search for rigorous mappings from classical to 
quantal observables is based would be gone; but  acceptance of con- 
sequences such as these is not really an insurmountable task. On 
reflection, it is just as easy to imagine that  strong correspondence is 
probably false as to presume for the sake of completeness that  it is 
probably true. For example, one might speculate half-seriously that  
the power of the infinity (in Cantor's sense) of physical observables 
probably exceeds that  of all Hcrmitean operators. 

More significant for the physicist is the nonspeeulative question: 
what effect does the replacement of strong correspondence by  weak 
correspondence as a quantum axiom have on the principal quantum 
theorems? Consider, for example, Thl,  which states (in part) that  
every real linear functional re(A) on the Hermitean operators may be 
expressed in the form Tr (pA). Such a mathematical theorem is quite 
independent of the physical problem as to whether operators can be 
found to represent all observables; all that  matters is that  the 
operators which are involved do represent observables. Within the 
mathematical framework--which is of course the context wherein 
theorems are proved--operational  definitions are irrelevant, and 
quantum mechanics is just a set of mathematical objects subject to 
given rules. (Among these are tacit rules concerning the construct 
~ ' 1 ( ~ )  which give meaning to the primitive term observable as it 
appears in P 1.) Thus none of the developments in linear algebra which 
form the theoretical structure of quantum theory will be affected by  
the elimination of strong correspondence. In fact a carefifl search 
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through quantum theory by  the present writers for a proposition 
dependent upon strong correspondence revealed that  no basic theorem 
involving the analysis of ensembles, statistics of measurement results, 
etc. requires P1S rather than P1 in its proof. (For example, compare 
Theorems 1-5 in Section 2.) 

As mathematical intuition suggests, the only type of theorem which 
would require strong correspondence is of this general form: 'the 
operator corresponding to the observable ~ measured by  ... is F.' 
Here strong correspondence is effectively standing in the background 
and commanding the operator algebra to produce an F satisfying that  
set of requirements which comprises the definition of J ,  but  leaving 
no way to save the integrity of the theory in the event that  no such F 
exists. 

On the other hand, if only weak correspondence is adopted, no 
theorem of the foregoing kind is ever contemplated. Given an observ- 
able ~ ,  the operator a]gebra is not expected to produce an F ;  instead, 
it is simply asked whether or not F does exist such that  ~-*-+ F.  In 
short, what were formerly regarded as 'correspondence theorems' are 
now interpreted as tests of validity for proposed correspondences. 
Here is a summary of the correct interpretation of the theorems of 
this kind which were presented in previous sections : 

(1) ~] + de-+ A + B: (Cl) uniquely determines the operator A + B 
but  (c2) is often violated. The correspondence is therefore not generally 
valid. 

(2) d 2  +~ I ( A B  + B A )  : Von Neumann's 'simultaneous measur- 
ability' theorem is merely a demonstration that  this correspondence 
can apply only to commuting operators (in which case it takes the 
simple form ~ .-+ A B  = BA) .  

(3) d ~ - 4  ?: Temple's theorem is further proof of the incon- 
sistency of the correspondence (2). 

Incidentally, for [A,B] # O, rules (1) and (2) are just special cases 
of the postulated correspondence ~-(~) .-+ ~(C) .  To see this, recall 
that  [A, B] = 0 implies the existence of C, ~ ,  ~ such that A = -~(C), 
B = ~(C). Hence ~a' + ~ = ~(~7) + ~(~)  e-~ ~-(C) + ~(C) = A + B 
and d ~  = G:(g)~(~)  +-+ Y(C)fr = A B  = BA .  In this connection 
it is instructive to consider a simple example which illustrates why 
consistency condition (cs) required only e~(F) c J K [ ~ ( ~ , ~ ) ]  rather 
than ~(F) = JK[~(~Y, ~)].  Let d = ~a~ 2, ~ = hACk, where ~9o is the 
z-component of orbital momentum, ~ - +  L~ = (h/i)(~/aq~). Suppose 
~4 and ~ are measured simultaneously and the results added together. 
Mz(~4 + ~) ,  the set of all a priori conceivable results of this procedure 
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is given by ~ ( ~ z  e + h~f~) = (m2h 2 + nh2}, since #(L~) = (mh}. Now, 
the eigenvalues o f L  z ~ + hLz comprise the set #(L~ 2 § hL~) = {k(k § 1) h 2} 
which is only a subset of ~ ( d  + ~) ,  i.e., 

#(L~ 2 + hL~) c ~ ( ~ 2  + h ~ )  

The reason this set inequality appears is easily understood if postu- 
late (J1) or (J2) of Section 3 is recalled. Any measurement of the 
observables ~ 2  and h ~  z must yield results correlated in the same 
manner as would be the results of a trivial joint measurement of these 
observables. One such trivial joint measurement would involve simply 
measuring ~ and evaluating ~ 2  + h ~ .  Obviously, this procedure 
could yield only numbers in the set {k(k + ])h 2} = #(Lz 2 + hLk). This 
demonstration merely affirms the consistency of (J~) or (J2) with the 
postulated correspondence ~ ( ~ )  +-+ ~(C) .  

Unfortunately, elementary treatments of quantum mechanics 
occasionally employ correspondences (1) and (2) as if they represented 
a universal method of 'deriving' quantum operators from classical 
functions. Since (1) and (2) are, for most 5#, ~ ,  false, it is evident that  
so-called 'quantization' schemes based upon (1) and (2) are in fact 
nothing but  memory aids which presuppose familiarity with classical 
mechanics. 

For example, consider a classical harmonic oscillator, i.e., a system 
whose energy is given by the function 

pZ 
r162 = ~ + �89 2, ]~ > o 

Supposedly, the oscillator is 'quantized' by using the established 
correspondences s +_+ X, ~ +-+ P plus rules (1) and (2) to find operator 
H such that  :gF +-+ H. This procedure yields immediately 

H = ~ p 2  § ~Xk 2 

the energy operator which then serves to define the quantum harmonic 
oscillator. To see that  this scheme is merely mnemotechnical and has 
no significant logical value, it is sufficient to note that  the classical 
,function r contributed nothing to the operator H except its functional 
form. I f  the definition of the quantum energy operator were based 
in a physical sense upon the classical energy function, then the opera- 
tional definition of energy which ~ ( x , p )  entails would also be valid 
for the quantum energy operator: quantum energy would like 
classical energy be measurable by  first measuring observables s ~ ,  
then using the results, x, p to evaluate ~gF(x,p). Thus the quantum 
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energy operator H would be defined such that r +-~ H, i.e., H 
would have to satisfy consistency conditions (el) and (c2). 

Now it turns out that  

H ~ I P  2 k 2 
= 2m §  

does not meet these requirements. The logical situation is therefore the 
following: the quantum system called 'simple harmonic oscillator' is 
by definition one whose energy observable ~%f corresponds to the 
operator above, the form of which can be remembered by classical 
analogy. ~ f  has its own rules of correspondence, but  among these the 
classical prescription--measure S and ~ ,  evaluate r does not 
appear. I t  is quite possible to measure s and ~ simultaneously and 
obtain thereby a value for ~(x,p)  which is not an eigenvalue of H. 
For example, assume the oscillator is system S1 in the joint measure- 
ment scheme outlined at the end of Section 5. Let the correlation be- 
tween Si and $2 (which are noninteracting) be such that  a momentum 
measurement upon Se determines the potential result of a concurrent 
~ / l ( ~ )  on Si. Consider the Sl-subensemble defined by the property 
that  such ~ / l (~ ) ' s  would have yielded p = P i ;  this subensemble is 
therefore characterized by  the eigenfunction zr~ = (27rh) -1 exp (@1 x/h) 
(~-function normalized), which obviously assigns equal relative pro- 
bability to all results of ~'1(:~). Hence this kind of simultaneous 
~',-~-measurements upon the oscillator will often lead to values of 
$/f(x,p) which are not in the set #(H) = {(n § �89 Hence by  
Th4 the classical energy function r has in a sense nothing to do 
with the quantum energy observable 5~f +-+ H. 

Let w(x,p) be the joint probability density associated with the 
simultaneous measurements of s and ~ .  Our analysis of the relation 
between r and H indicates clearly that  we should not expect 
w(x, p) to satisfy the following equation: 

f dx f dpw(x,p)Cf~(x,p)= Tr (pH) 

This observation is of special importance in connection with the 
problem of joint probability in quantum theory (Section 8). 

With the replacement of PIS  by P1, the theoretical structure of 
quantum mechanics is freed of the various inconsistencies exposed in 
earlier sections. Fortunately,  this simple axiomatic change has no 

t A n o t h e r  exam p l e  to i l l u s t r a t e  th i s  po in t  m a y  be  c o n s t r u c t e d  b y  c o n t r a s t i n g  
m e a s u r e m e n t s  of t h e  obse rvab le  ~ + 12~2 to  those  of  t he  obse rvab le  whose  
ope ra to r  is H -{- �89 2. T he  fo rmer  can  lead to  a n y  resul t ,  t h e  l a t t e r  on ly  to 
n u m b e r s  in  t he  se t  {(n + �89 § ])/m]}. Thus  t h e  ope ra to r  H § �89 2 a n d  t he  
o b s e r v a b l e  5/f § �89 do n o t  refer  to  t h e  same  phys ica l  s i tua t ion .  
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effect whatsoever on the normal applications of the theory to experi- 
ment, such as the calculation of scattering cross sections, spectral 
intensities, etc. But this revision does have considerable theoretical 
and philosophical significance. Indeed, the elimination of these logical 
inconsistencies from quantum theory automatically removes the only 
sound theoretical foundation the concept of incompatibility ever had. 
Von Neumann's simultaneous measurability theorem is now recog- 
nized as a correct mathematical theorem physically misinterpreted as 
a restriction on measurability; as we have seen, it is in fact a reductio 
ad absurdum proof tha t  the correspondence ~ + - ,  �89 + BA) is 
false unless [A, B] = 0, or in other words, a proof that  [A, B] = 0 is a 
necessary condition for the validity of ~ e-, �89 + BA). 

Hence any physical or metaphysical idea motivated by or founded 
upon the concept of incompatibility now requires careful re-examina- 
tion. Three common propositions based on incompatibility are the 
following: (1) Because noncommuting observables are in principle not 
simultaneously measurable, it is meaningless to contemplate joint 
probability distributions of quantal measurement results; (2) Since 
any proposition about the results of simultaneous measurements of 
noncommuting observables is meaningless, a new system of logic is 
required for quantum physics; and (3) The operators corresponding 
to two local observables separated by a space-like interval must 
commute ('mieroeausMity'). These inferences from the false hypothesis 
will now be discussed in sequence. 

(1) The incompatibility doctrine having been discarded, there 
remains no a priori restraint against the study of joint distributions. 
Accordingly, in the remaining sections of this work, quantum joint 
probabilities will be studied systematically. 

(2) At the end of Section 4, we indicated how incompatibility led 
to the notion that  quantum mechanics requires a new, 'nondistribu- 
tive' logic, i.e., a system which does not involve the law, 

,~ n (Z u ,.~) = (,~ n ,2) u (,~ (7 ,~) 

which merely expresses an idea most physicists--including quantum 
theorists--regard as 'common sense.' The problem was that  proposi- 
tions ~ ,  ~, and ~ can be given for which there does exist an Hermitean 
operator corresponding to the left member but there is not one for the 
right member. Apart from the esoteric context in which it is east, this 
problem is not different from the difficulty encountered with the 
correspondence 5] + ~+-~ S. Just  as an appropriate S exists only 
when [A, B] = 0 similarly a D exists such that  0~ A ~ ~ D only when 
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[P, Q] = 0. When [P, Q] r 0, it simply means that  the compound 
proposition ~ (? ~ has no operator representative D. Naturally it is 
then impossible to write down an operator counterpart to the distribu- 
tive law; but  this does not make the law wrong! Thus when P1S is 
replaced by P1, it becomes apparent that  the search for 'quantum 
logics' receives no legitimate motivation or endorsement from 
qnantum physics. 

(3) The 'microeausality' principle (Mandl, 1959; Streater & 
Wightman, 1964) of relativistic quantum field theory is often intro- 
duced as though it somehow combined in one grand statement the 
principles of relativity and complementarity. Actually the super- 
ficial argument involved is nothing but  a pun on the term 'inter- 
ference'. Consider two local observables s~'(xl), ~(x2), i.e., observables 
associated with space-time points xl, x2. According to the theory of 
relativity, no signal can connect x 1 and x2 if they are separated by  a 
space-like interval in Minkowski space. Hence no operation at x 1 
could possibly 'interfere' with an operation at x2. On the other hand, 
if [A(x~),B(x2)] r O, then the orthodox version of qnantum theory 
insists that  ~ ( x l )  and ~(x2) are not simultaneously measurable, or as 
this is often colorfully phrased, any at tempt to measure noncommut- 
ing observables simultaneously will be obstructed by mutual 'inter- 
ference' of the measurement procedures employed. Therefore, if xl 
and x~ have a space-like separation, relativity precludes any 'inter- 
ference' between the measurement operations ; hence [A (xl), B(x2)] = 0 
necessarily. Clearly this argument is grounded in the canonical mis- 
interpretation of commutativi ty as an index of measurability. The 
argument is therefore untenable; it should be understood, however, 
that  no pretense is here made of disproving the 'microcausality' 
principle itself. Its generalization to quantum field operators plays a 
major role in proofs of the TCP and spin-statistics theorems, and the 
mathematical property of commutators which the term 'micro- 
causality' represents may indeed be a necessary physical postulate. 
What  we have established is that  'microcausality' should be regarded 
as a new postulate, devoid of elementary quantum physical motiva- 
tion and rather undeserving of its suggestive name. 

Much of the argument here criticized would hold if the term 
measurement were replaced by preparation of state. 

8. Joint Probability in Quantum Theory 

Research concerning joint probability distributions of noncommut- 
ing quantum observables has been reported by various authors 
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(Dirac, 1945; Moyal, 1949; Suppes, 1949, 1966; Wigner, 1932; 
Margenau & Hill, 1961; Margenau, 1963; Cohen, ]966; Cohen and 
Margenau, 1967). Interestingly, their motivations seem to rest upon 
rather diverse problems--hidden variables, operator-observable cor- 
respondence, reduction of diagonal matrix elements to phase space 
integrals, etc. However, the common feature of all these at tempts to 
derive joint distributions has been their failure to meet all the mathe- 
matical conditions to be imposed on distribution functions. In general, 
the procedure is to set up equations which any proper joint distribution 
must satisfy and then a t tempt  to solve these equations for the distri- 
bution. A natural starting point for such an investigation is the 
consistency condition (cl): 

I f  ~ ( ~ / ,  2 )  +-+ F and W(ak, hi; p) is the (unknown) joint probability 
that  ~#1(~/), ~//1(~) would yield ak, bz, respectively, then 

Y~ W(ak, bl; p) ~(a/~, bz) = Tr (pF) 
kl 

I t  is also natural to assume, as we have already done implicitly in 
previous sections, that  the marginal distribution associated with 
W(ak, bsp ) should equal the quantum mechanical distributions 
associated with single measurements ; i.e., 

~_, W(a~, bz; p) = Tr (pP=~) 

Y~ W(ak, b~; p) = Tr (pP~,) 
k 

Strictly speaking these equations are special cases of (cl). 
In ordinary classical statistics, where it is always possible to 

conceive of the measurements as revelations of possessed values, the 
possibility that  this latter condition might be denied is almost un- 
thinkable. However, in quantum theory where the bond linking 
observable and operator is far more subtle, where measurement results 
must be interpreted in the minimal way simply as numbers which 
emerge in response to measurement acts, it is not so unreasonable to 
suggest that  the distribution and/or the values of 5~r 
results might depend on whether or not the ~r is per- 
formed 'alone' or in conjunction with other kinds of measurements. 
However, it is not difficult to see that  such a dependence would raise 
serious conceptual problems which would greatly complicate the idea 
of measurement. Suppose, for example, that  Th4 had to be narrowed 
to the statement that  ~ # l ( d )  yields elements of #(A), provided no 
physical operation except the d -measurement  itself is performed upon 
the system of interest. The empirical vagueness of such a proviso is 
immediately evident; supplementation of the quantal axioms by  
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restrictions of this kind would require the elucidation of criteria which 
distinguish physically between an ~-measurement 'by itself' and an 
5]-measurement 'in conjunction with other operations'. Accordingly, 
for the sake of simplicity we assume, as is always done, that 'an 
~-measurement is an ~-measurement' regardless of what else 
happens concurrently and that marginal distributions are therefore 
always equal to those given by the quantum mechanical trace formula 
(Thl). Incidentally, as a consequence of this assumption, the un- 
certainty principle will apply to the results of simultaneous d,~- 
measurements upon the members of a single ensemble (compare 
Section 2) ; this follows from the fact that the uncertainty theorem is 
derived from the ordinary quantal distributions for single observables 
which have just been assumed equal to the marginal distributions 
associated with simultaneous measurements. 

There is a fair amount of literature dealing with the special case of 
(el) where ~Y' = :T (position) and ~ = ~  (momentum), [X,P] = ihl.  
Because the spectra of X and P are continuous, an integral of a pro- 
bability density w(x,p; r replaces the summation on probability W; 
for pure p, i.e., p = PC, (Cl) then becomes 

cO 

i ~ f dpw(x,p;+).(x,p)=<+,iv+> 
- - c o  - - c O  

Now, i f  there were a general rule which provided iv given ~ (x ,p )  it 
should then be possible to extract w(x,p;r from this equation by 
some inversion method. However, since we have found in previous 
sections that compound observables may have no operator counterpart at 
all, it would not be surprising i f  the w(x,p;r which satisfies (cl)for a 
proposed correspondence ~ +-+ iv turned out to be unsatisfactory. Previous 
publications show this to be the case. 

Suppes (1961) has argued along these lines that  quantum mechanics 
cannot admit a proper distribution w(x,p; r and that  simultaneous 
measurement of/~" and ~ must therefore be impossible. Although both 
conclusions are false, it is instructive to examine his argument. The 
idea is to use (el) to obtain the characteristic function ~(0,~-) for 
w(x,p; r and hence by Fourier inversion w(x,p; r itself. The charac- 
teristic function ~(0, T) is defined as the mean value of 

~ ( x , p )  = exp (iOx + irp) 

Suppes assumes without special comment that  i f ~  r X , ~  ~-+ P, then 

~ ( s  = exp (i0s r + i~'~) +-+ exp (iOX § i-rP) =iv 
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This suffices to determine w(x,p; r uniquely as the Fourier transform 
of (~h, exp (iOX + irP) r : 

1 " w(x ,p ;r  j r )exp(-iup)~b(x +U--h2 )du 
- - 0 9  

Because this w is not positive semidefinite t yet  is unique, Suppes 
concludes that  :~ and ~ are incompatible observables. 

Having seen the same erroneous conclusion drawn from (cl) before 
(compare Section 4), it is not so difficult this time to reinterpret the 
mathematics. Suppes has not proved the sweeping assertion that  s 
and ~ cannot be measured simultaneously; he has shown only that  
the correspondence 

exp (iO~ + i r~)  +-~ exp (iOX + irP) 
is not valid. We have seen earlier how yon Neumann's incompatibility 
argument motivated the s tudy of 'quantum logics'. Similarly, in a 
recent paper Suppes (1966) deduces from several premises that  'the 
functional or working logic of quantum mechanics is not classical'. 
Among these premises is his (false) assumption, motivated as above, 
that  joint distributions in general do not exist in quantum theory. 
Hence this call for a quantum logic, like that  discussed in previous 
sections, is inspired by  the misinterpretation of a mathematical 
theorem. 

The use of (cl) on characteristic functions is not the only conceivable 
way to generate joint probabilities. Another scheme, developed by  
Margenau and Hill (1961), begins with the concept of covariance : 

Coy (~' ,  2 )  = ( ~ }  - ( d ) ( 2 )  

= E W(ak, b5 r akbt -- (5~/)(~) 
kl 

The first problem is to find an Hermitean operator F ~-~ d ~  which 
leads to desirable properties for Coy ( ~ , ~ ) .  Once F is selected, the 
two covariance expressions above are equated to obtain what will be 
recognized as the (cl) condition for g ( d ,  ~ )  = ~ / ~ :  

W(ak, b5 ~h) ak bl = (~b, Fr  
kl 

Because it gives the covariance reasonable properties, Margenau and 
Hill chose 

F = �89 § BA) 

t This  w, k n o w n  as t h e  W i g n e r  d i s t r i b u t i o n  (Wigner ,  1932), is a useful  
c o m p u t a t i o n a l  tool  in  s t a t i s t i ca l  mechan ics .  I t  is no t  t he  on ly  func t i on  serv ing  
th i s  purpose ,  as will be  n o t e d  p resen t ly .  



SIMULTANEOUS MEASURABILITY IN QUANTUS~ THEORY 259 

Unfortunately, the W's to which this leads may take on negative 
values, as in the other instances. 

~u our reinterpretation of yon Neumann's 'simultaneous 
measurability'  theorem (compare Section 7), perhaps it is possible to 
understand why this covariance method was unsuccessful. Since that  
theorem, correctly interpreted, proves that  the correspondence 
~ - > � 8 9 2 4 7  is generMly consistent only for commuting 
observables, it is inevitable that  any theory built upon this corre- 
spondence will at  some point break down. From this perspective, the 
conclusions of Margenau and Hill may be regarded as further evidence 
against strong correspondence. 

Although the elimination of strong correspondence does save 
quantum theory from self-contradiction, we now see that  the con- 
sequent absence of operator-observable correspondences effectively 
leaves (ci) useless for finding joint probabilities. I t  is therefore reason- 
able to shift the base of research from (el) to the marginal distribution 
requirements, for which no operators representing compound observ- 
ables are needed. This 
(Margenau & Hill, 1961 
we have 

E 
l 

E 

was already done in earlier investigations 
; Margenau, 1963). For a pure state p = P c ,  

w ( ~ ,  be; r = I <~'~, r 

w(~, b~; r = 1<~, r 
k 

There is at least one satisfactory solution to these equations 
namely W'(ak, bz; r = ]@k, r 2 [(fiz, r 2. As shown by Margenau ( 19 6 3), 
this stochastically independent form of W' in no way violates the spirit 
of quantum theory. (The uncertainty principle, for example, is deriv- 
able from W', a fact which shows again how improper it is to interpret 
that  principle in terms of mutual  'interference' of measurements.) 
Nevertheless, it must be asked: are there other positive semidefinite 
W's which also satisfy the marginal distribution equations? Is W' 
unique? 

For the special ease where A = X, B = P,  IX,P] = ihl, Cohen (1966) 
has laid the ground-work for answering this question by  providing a 
canonical form for w(x,p; ~) : 

17 

f clef duf d~exp(-iOx-i~-p+iOu) 
x f(o, ~) r (u ~-tA. / ~-h', 
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any choice of f(O,~-) such that  f ( 0 , 0 )= f (O , ' r )=  1 will generate a w 
satisfying the marginal requirements. The f for any given w is found 
by  Fourier inversion. No way has been found to isolate those f ' s  which 
generate positive semidefinite w's. 

Nevertheless there exist semidefinite joint probability distributions 
for every state r as we shall indicate by way of examples. Apparently 
they cannot be specified by  the axioms of quantum mechanics, nor by  
any elegant general rule we have discovered. The reason for this, it 
seems, is the fact that  compound operations do have results which 
often depend upon physical circumstances, on the nature of states as 
well as the manner of observation. Hence one would not expect a 
general set of axioms to control their mathematical representations. 
In an earlier paper (Margenau, 1963), note was taken of these vagaries 
concerning joint measurements by  introducing the concept of a 
cgmpound measurement, which avoids the need for defining joint 
probabilities altogether. Our present pursuit is parallel, but  along 
more traditional lines. 

I f  we restrict ourselves to operators with discrete spectra, the 
problem of finding all admissible W(a~, bz; r becomes more tractable. 
Consider the special case ~ = (2/h)5;Pz, ~ = (2/h)$fx, where 5Px, 5Pz 
are spin components for a spin -1 system. The operators which corre- 
spond to 5]  and ~ are represented by  the Pauli matrices : 

I f  

(o) 
G:I = ' 0~2 = ' / 31  = 1 ' 

a l  = b l  = 1, a2  = b2 = - 1  

these eigenvalue equations hold: 

Ao:k = ak ~k, Bfiz = bzfiz 

/32=  _ , 

We seek all functions W(ak, b5r - Wkz(~b) satisfying the following 
conditions : 

l k 

For the present simple case, it is in fact possible to find all W's con- 
sistent with any given r Consider, for example, 



SIMULTANEOUS MEASURABILITY IN QUAI~TUlV[ THEORY 

The marginal  conditions are then  

Wll  + W12 = 0"9 

W21 + W2e = 0"1 

W n  + W21 = 0.8 

W12 + W2~ = 0.2 

261 

Subst i tu t ing  W22 = 0.2 - W12 into the second equat ion,  we obtain 
three  equat ions  in three  unknowns  Wll,  WI> W21 : 

W l l  -~- W12 = 0-9 

--  W12-~  W21 = - 0 - 1  

Wll  + W21 = 0.8 

An examina t ion  of  the  appropr ia te  de te rminants  reveals t h a t  these 
equat ions  have an infinity of solutions. However ,  it  is easy to find b y  
using solid analyt ic  geomet ry  the s t ra ight  line in (Wll,  W12, W2l)- 
space which represents  the set of real solutions. Then  the condit ion 
0 < W~l < 1 is used to  delineate the segment of t ha t  line which 
represents  all admissible sets (Wll, W12, W21) and W22 (via 
We2 = 0.2 - W12). When  this is done, there  results a one pa rame te r  
(r) family  of  positive semidefinite W's satisfying the marginal  condi- 
t ions : 

W=(ak, b 5 r = mkt r + nkl , r e [0, 1] 

-0"1 =(~ ~ 
(Although this was worked  out  in detail  for a specific r the same 
general procedure  is of course applieable to any  s ta te  vec tor  in spinor 
space.) 

One member  of this family  is the  uncorre la ted  dis tr ibut ion 

b,; r = r r 
to find the corresponding pa rame te r  r '  consider the form 

W~,(ak, bz) = f~ gl 
F r o m  the equations,  

f ig1  = 0" l r  + 0"7, f2g l  = - 0 ' l r  + 0-1 

f l  92 = - -O ' l ' r  -~ 0"2, f2 g2 = O ' l r  

two expressions for gl/g2 may be der ived:  

g l _  O'lr  + 0"7 --O'lr  + 0.1 
g2 --O'lr  + 0"2 0"lr  
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Solving for r, we obtain r '  = 0.2. All other r-values in the interval 
[0, 1] lead to correlated joint probability functions. 

The purpose of this simple spinor space example has been to show 
that the marginal distribution requirements alone are not sufficient 
to determine a unique functional of ~b, W(ak, b5 ~). In general, given 
any state p, we therefore anticipate the existence of many distribution 
functions marginally consistent with that state. Again, we are 
reminded of the ingression of physical circumstances into our formal 
scheme. 

Nevertheless, it is difficult to evaluate fully the significance of this 
apparent multiplicity of W's. There are in principle two possibilitie~ : 
(1) For every state there exists a unique W(ak, bsp ) governing the 
statistics of ~/,~-measurement results for real physical systems; or 
(2) The quantum mechanical state p does not determine the joint 
distribution of ~,~-measurement results. 

Alternative (I) has always been assumed implicitly throughout 
most discussions of quantal joint probability. It is deeply rooted in 
the fundamental quantum belief that the density operator p embodies 
all that can conceivably be said about the measurement statistics 
from the ensemble to which p refers. Moreover, since only p obeys a 
causal law, it is the quantal construct 'closest' to the classical ideal of 
physical state. The natural assumption to make therefore is that p 
determines W(ak, bl) just as it determines W~(ak) and We(bz). I f  so, we 
should a t tempt  to formulate some physical criterion which, when 
required in conjunction with the marginal rules, extracts the one true 
distribution from the set of marginally satisfactory ones. 

There is in fact some precedent to support this plan. In the case of 
commuting observables, it also turns out that  the marginal require- 
ments alone do not determine the joint distribution. Consider, for 
example, two commuting spinor space observables 

0o ) 
whose common eigenvectors are 

For the state 

(o) 

= \V �88 
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we obtain these marginal distributions : 

Wl1+ W12 = Wll + W21 = 

W21 + W22 = W12 + W~2 = 

These equations are satisfied by the following one parameter family 
of W's: 

where 
Wl~z = mktr + nkz, ~- e [0, 1] 

(mkz) = , (n/r = 

Nevertheless, we are able to select from among these, by invoking 
further criteria, the single correct joint distribution. By working with 
an auxiliary observable ~ through which ~r and ~ may be jointly 
measured in the trivial sense, we find that  

W11 : 3, W22 = 1, W12 = W21 = 0 

I.e., T = I gives the correct Wkt; the others are physically meaningless. 
(The general derivation of joint distributions for commuting observ- 
ables was discussed fully in Section 3.) But this example hardly 
suggests a general procedure. 

I f  alternative (2) is correct, then for the case of noncommuting 
observables there can be no similar criterion to distill a 'true' distribu- 
tion from the set of marginally satisfactory ones, for the density 
operator alone would not determine W. This is not the same as denying 
the existence of W; since noncommuting observables are simul- 
taneously measurable, of course W exists. What alternative (2) 
suggests is that  W does not exist as a functional of state, that  simul- 
taneous measurements are in some sense theoretical anomalies not 
tractable by any comprehensive, universal theory resembling the 
ordinary quantum theory of single measuremeats. 

At this stage there is no firm basis for choosing between these 
alternate interpretations of the fact that  many proper W's satisfy all 
valid conditions placed upon them. Shortly we shall return to this 
problem; but first it will be advantageous to roam in the relatively 
unexplored (due to aforementioned taboos) realm of simultaneous 
measurement theory. 

9. A Search for 'Simple' Simultaneous Measurements 

As we have seen, attempts to approach the study of quantum joint 
probabilities via more or less natural random variable techniques 
seem invariably to be thwarted at some stage by ignorance of, or 
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perhaps even the nonexistence of, operators corresponding to com- 
pound observables. I t  seems desirable therefore to develop a method 
for examining simultaneous measurements which does not depend on 
unknown operator-observable correspondence rules. To do this, we 
return to the general ideas concerning quantum measurement which 
were reviewed in Section 1. As explained there, quantum mechanics 
is essentially a theory about systems which do not possess attributes 
(i.e., values of observables). Instead quantum observables are related 
to physical systems only in the dispositional sense conveyed by the 
philosophical doctrine of physical observables of latency (Margenau, 
1950). The primitive classical notion of possession ('System S has 
d -va lue  %') is superseded by the primitive quantal measurement 
construct ~t't ( 'If ~ ' 1 ( ~ )  is performed on system S, the value a k 
will result with probability ...'). Accordingly, just as a theoretical 
explanation of measurement processes in classical physics involved 
relations among possessed attributes, a quantum theory of measure- 
ment  at best describes connections among the unanalyzable ~ ' l ' s .  
On the other hand, statements of such connections and associated 
empirical procedures constitute the usual scientific concept of measure- 
ment, or measurement scheme [operational definition, the epistemic 
correspondence rule introduced by one of the authors (Margenau, 
1950)]. To signalize the logical distinction we designa+oe the latter class 
of constructs, which form part  of the theoretical structure of our prob- 
lem, by ~'2- These constructs were exemplified in Section 5 by a 
discussion of the time-of-flight dd2(~) for momentum measurement; 
typically, the theory of dt'2(~ ) established a connection between 
J t ' t (~)  already operationally defined, and ~ ' t (~ ) ,  which thereby 
acquired a theoretically validated definition itself. 

In previous discussions of the joint-measurement problem empirical 
examples, incompletely analyzed, have borne the brunt of the argu- 
ments in favor of the thesis we are here advancing. There are pro- 
cedures, it was pointed out, which permit an assignment of values to 
pairs of noneommuting observables. Our present aim goes beyond 
such indications; it is to show within the context of measurement 
theory, as presented in the foregoing pages, how such empirical 
operations function as parts of complete mathematical structures. We 
shall see that  certain kinds of d/2 are free from theoretical difficulties, 
while others seem to generate internal contradictions. 

Because every physical process--hence any measurement scheme, 
single or joint--has a quantum theoretical description, it seems 
reasonable that  whatever the correct joint probabilities are, they 
should be derivable within the framework of a quantum theory of Jr 
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That is, if a given procedure d/2(W,~ ) is to be regarded as a method 
for simultaneous measurement of ~ and ~ ,  the scheme must be 
certified by a theory establishing relations between d/1 (~), ~/1(~) and 
whatever 'direct meter readings' are used as the basis for inference of 
simultaneous J / l ( ~  r) and ~ ' l (~)-resul ts  ; from this analysis it should 
be possible in principle to find the probability for the occurrence of 
those 'meter readings' which imply any given pair of ~ -  andS-values.  
This measurement-theoretical approach to the joint probability 
problem bypasses the difficulty associated with the operator-observ- 
able correspondence which obstructed the methods reviewed earlier. 
All this will be clarified below by explicit examples. 

To develop these ideas further we next distinguish two kinds of 
J/2-concepts: (1) simple or type A and (2) historical or type B. This 
distinction will later turn  out to have considerable bcaring on the 
problem of compatibility. (1) A simple ~g2 begins with system S in 
an arbitrary~ state Pro at some specified time to and demonstrates how 
some single operation upon S eventually leads to numbers from which 
may be inferred Jgl-results to be associated with S in state Pro. I t  is 
to be especially noted that  the state of S before to is completely irrele- 
vant. We shall also refer to this class of measurement belonging to 
type A. (2) An historical Jg2-theory also seeks to certify some operation 
as a bona fide supplier of numbers which can be meaningfully inter- 
preted as ~gl-results for S in state Pto. However, unlike the simple 
type A, the historical d/~-theory cannot be worked without detailed 
information concerning the structure of Pto. Such information might 
be deduced from facts about the past history of the system, e.g., its 
state at some earlier time tl < to plus its physical environment 
between t 1 and t 0. An example of each type appeared in Section 5: 
the simple time-of-flight ~g2(~) and the historical time-of-flight 
~'2(:Y,~) of type B. 

Physically, the ~g2-theories of type A have been of greatest in- 
terest because they represent the idea of measurement in its most 
primitive form as a process applicable to a system at any instant 
independently of its past. An auto speedometer registers the speed of 
the ear at any time regardless of the past wanderings of the vehicle; 
meteorological instruments record today's weather conditions with 
indifference toward yesterday's. Similarly, in quantum mechanics 
the language of Jgl 's  usually presupposes that  measurements are 
performed upon systems in states which are simply given without 

I.e., practically arbitrary, geeall, e.g., ~hat the time-of-flight Jge(~) did 
require r to have compact support, but  no specific functional form was 
demanded. 
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details as to the actual method of preparation. Accordingly, J{2- 
schemes for single observables (or commuting sets of observables) 
have been of type A. I t  is therefore natural to seek a simple d/2-theory 
covering the simultaneous measurement of several noncommuting 
observables. However, in view of the fact that  both examples of 
simultaneous measurement given in Section 5-- the  time-of-flight 
.~2(:~,~) and the use of two systems already correlated at the time 
of interest--were of type B, there is perhaps no reason to be optimistic 
about finding any simple theory for simultaneous measurement. 

We shall now outline two fairly general procedures which, at the 
outset, seem to be altogether plausible methods for achieving simul- 
taneous type A measurements of two noncommuting observables. In 
both cases theoretical obstacles will eventually arise, and this will be 
interpreted as evidence that  quantum theory does probably forbid  
simultaneous type A measurements. Deeper reasons to anticipate 
such a theoretic prohibition will then be explored. 

Let S be the system upon which ~ 2 ( ~ , ~ )  is to be performed. 
Suppose a second system M with an observable ~ ,  UOl = UlOl interacts 
with S in such a way that  the following correlations result : 

T~,~(r | X0) = E %~(r | 0l 
k 

with marginal conditions 

Z and Z I%,(r 
l k 

where To~,~ is the evolution operator for this Jde(~/, ~)-scheme and r 
and s are the initial state vectors of S and M. Since these equations 
imply that  post-interaction ~ ( d ) - r e s u l t s  occur with the same 
probability as they would have before interaction and that a post- 
interaction d [ l ( ~ )  would yield u~ with the same probability that  a 
lore-interaction J / l ( ~ )  would have yielded b~, a simple J/fe(~r 
procedure yielding ~1 (9 / ) -  and ~ l ( ~ ) - r e s u l t s  for the instant before 
interaction may  be defined as follows: after interaction, measure 
on S, ~//on M; if the resulting number pair is (ak, u~), the pair (a~, b~) 
is declared the result of simultaneous Js and ~ 1 ( ~ )  for S in the 
state r i.e., just before interaction with M. I f a  Td,~ exists which can 
accomplish these correlations, the derivation of the associated joint 
probability distribution is immediate : 

b,; r Td, ) = [%,(r 

We have indicated a possible dependence of W upon T~,~, i.e., upon 
the method of measurement, since in the case of joint measurements 
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there is no a priori  assurance that  the distribution would be indepen- 
dent of this factor. (For single measurements, we know axiomatically 
that  probabilities depend only on the state.) The important point here 
is that  if such a Td, ~ exists, we have an example of a type A theory 
of J//2(~/,~), complete with joint probability distribution. Unfor- 
tunately, no such T~,2 exists. 

To see why, consider first ~ = a n. In this case 

1 

Since [ck~[ 2 > O, this implies that  c1~z(a~) = O,/c r n; thus ckz(%~) has the 
form Ckl(a~) = ~k.ngl(an) and accordingly 

Hence 

z Ig (a )l 
k 

T~,,~(a~ | Xo) = E ~l~,~gz(a~) al: | O~ 
kl 

Now, by superposition we can derive the transformation associated 
with any r subjected to this type of measurement. I f  

i . e .  

r = 5; (a, .  r %~ 
% 

nkl 

= E (~, r gl(al~) ak | O~ 
kl 

c~l(r = gz(a~)(ak, r  

Checking this form against the two required marginal conditions, 
we find that  one of them is not in general satisfied; to be sure, 

but 

Hence the simple ~ ' 2 ( ~ ,  ~ )  here envisaged is theoretically impossible. 
The same conclusion is obtained if we at tempt to construct a type A 

~ ' 2 ( ~ ' , ~ )  based upon interaction of the primary system S with two 
measuring devices, M ( ~ )  and M(~),  which we might call ~4- and 
G-'meters'. I f  X0, ~0 are the initial states for the meters, ~ ,  :f~ are 
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observables belonging to M(~/), M(~2), respectively, UO m = u,~O~, 
V% = v~8~, and {5ol} is an orthonormal set of vectors in the Hilbert 
space of S, the following correlation scheme would describe an 
dt'2(s], 2 ) :  

with marginal conditions 

5: 1<  ,r 
In 

and 

Im 

~'2(sJ,  N) would consist simply of 'reading' the two meters (measur- 
ing ~ and ~f~) after the interaction; if (u~,v~) results, (am, b~) is 
declared the result of simultaneous ~ ' 1 ( ~ )  and J t ' l ( ~  ) upon S in 
state ~b, i.e., just before the interaction. Once again the joint distribu- 
tion would be easily derived : 

W(a~,bd ~b;T~e,e) = ~ 

Like the previous example, this ~ ' 2 (o / ,~ )  is impossible; thus 
noncommuting observables cannot be simultaneously measured 
merely by letting S interact with two meters and reading the two 
separate results. To prove this, note first that  for r = ak, 

l m n  

= E gM.k)~ | Ok | r l .  
In 

lm  

tn 

Now consider the superposition 

I t  leads to 

r = E {~k, r  
k 

i . e . ,  

Td, Mr | xo | ~o) = E {-k, r  gM-/3 ~ | 0/~ | V:~ 
kl n 
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But this Slk~ does not satisfy the second marginal condition: 

The foregoing examples were presented as evidence for this pro- 
position: (O) Simultaneous type  A measurements of noncommuting 
observables are theoretically impossible. 

Of course merely citing two unsuccessful a t tempts  to develop a 
simple d / /2(d  , ~ )  does not prove the proposition, but  for the first time 
in the present study, we have found good reason to suspect that  
quantum theory may indeed place some restriction upon joint 
measurability. However, if so, the qualification will not be a sweeping 
mandate to the effect that  ~ ' 2 ( ~ ' , ~ )  is generally impossible, since 
that  common version was refuted in Section 5 by counterexamples. 
Rather (O) would mean only this: given at time t o a system S of 
unknown history, it is impossible to devise an operation ~ ' 2 ( d , ~ )  
which leads to numbers (~k, bz) interpretable as ~g/l(sJ)- and ddl(N )- 
results for time t o . 

Let us a t tempt  to prove (0) by  assuming it to be false and then 
trying to deduce a contradiction with quantum theory. That is, we 
now hypothesize that  a theoretically certified, simple ~ '2(~ ' ,  ~ )  does 
exist in spite of our preceding difficulties in formulating one. This 
means that  given a system S in state ps(to) at to, ,//2(o2',~) may be 
performed and will yield (ak, bz), the results of simultaneous ~ '1(s / ) ,  
~ '~(~)  at to. Now, suppose that  S and another system C with which 
S is not interacting are regarded as one composite system and that  the 
state of the latter at t o is ps+c(to). The density operators ps+e(to) and 
ps(to) will then be related by Trcps+c(t0) = ps(to), where Tro denotes 
the trace over C's Hilbert space. 

Since S is not in interaction with C, the efficacy of Jt'2(sJ, ~ )  cannot 
be affected by any statistical correlations which may inhere in the 
composite state ps+c(to). In particular, it may be that  ps+e(t0) involves 
double correlations of the kind employed in the famous Einstein- 
Podolski-I~osen (Einstein et al., 1935) (E.P.I~.) discussion concerning 
the completeness of quantum mechanics. I f  5J, ~ are the S-observables 
to be measured and ~/, ~f~ are noncommuting C-observables with 
respective eigenveetor sets {0m} , {~n}, such double correlation may be 
expressed~ as follows: 

k l 

t F o r  specific examples,  see Eins te in  et  a l .  (1935) or P a r k  (1968). 



270 JAMES L. PAI~K AND I-I]~NRY lgARGENAU 

The first form of T implies that  from an J[l(~/)-result  one may 
conclude what result a concurrent ~ / l ( q )  would have yielded; 
similarly the second form shows that  if ~ 1 ( ~ )  is performed the result 
that  a simultaneous ~ ' 1 ( ~ )  would yield may be inferred. Hence if the 
procedure d [ 2 ( ~ , ~  ) is applied to S, the results (a~, bz) lead to the 
prediction with certainty that  simultaneous J [ l ( ~ )  and ~/1($/) would 
have yielded (uk, vz) at to. But system C is not disturbed by this process; 
during ~ ' 2 ( d ,  ~),  C evolves from its state at to just as it would have 
if ~ ' 2 (5 / ,~ )  had not been performed on S. However, ~ ' 2 (~ / ,~ )  has 
provided a means for dividing the C-ensemble into identifiable sub- 
ensembles. In particular, consider the subensemble comprised of 
those members of the C-ensemble for which ~ '~(~)  was certain to 
yield UK and ~'1(r F) was certain to yield % at to. This (UK, VL)-sub- 
ensemble must have a density operator pKL(to) since P2 and Thl  
assure the existence of a p for every preparable ensemble. From the 
definition of the (UK,%)-subensemble, it is clear that  DK~(to) must 
satisfy these conditions : 

W~[uK; pK~(to)] = Tr [pKs(to) Pox] = 1 

Wf[VL; pK~(t0)] = Tr [pxL(to)Ps~] = 1 

and by Th3, Tr [pKL(to)] -- 1. By using the matrix representation of 
these equations, it is easy to see that  the only possible solution is 

pK~,(to) = Pox = P ~  

But since [~,~/F] # 0, the sets {Ok} and {~z} cannot be identical; it is 
therefore always possible to choose uK, v L such that  O K # ~L. This 
means that  pKZ,(to) does not exist, hence that  the proposed preparation 
scheme for the (Ux, vL)-subensemble is impossible. Thus some assump- 
tion upon which that  scheme was based must be false. 

To be specific, we must examine two key assumptions: (a) there 
exists an ~ ' 2 ( d , ~ )  performable upon any arbitrary ps(to), i.e., an 
J t ' 2 ( d , ~ )  of type A; (b) for every ps(to), it is possible to find ps+c(to) 
which incorporates the EPR-type double correlation. I t  turns out 
tha t  (b) is false; double correlations cannot be generated from arbitrary 
ps(to). For example, consider the common ease ps = PC and seek a 
vector Tsuch  that  T r c P  ~ = PC. From yon Neumann's theorems about 
states of composite systems, it follows that  Pc has the form Pc = Px 
and hence W = r | X, a form which cannot embrace double correla- 
tions. That this is the ease may be seen by expanding r | X in terms 
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of {~k | 0,,} and of {fit| Vn} and seeking conditions under which both 
expansions exhibit correlations: 

km In 

Consider only the first expansion; it will correlate d -  and ~ -  
measurements if 

a condition which can only be fulfilled by  the trivial cases, X = 0 or 
r = 0, and by  the conditions X = 0~, r = ~ .  But  similarly it follows 
from the second expansion that  X = W, r = tim. Hence the very 
common case pz=Pr counters the assumption (b) that  doubly 
correlated states are always available. Thus our EPl%-inspired demon- 
stration does not prove (O) conclusively. 

I t  does, however, prove this: (O') if a system is in any doubly 
correlated state pz(to), then a simultaneous type A measurement of 
the noncommuting observables involved in the correlation is im- 
possible. In other words, if assumption (a) were true at all, it would 
have to be modified to read as follows: (a') there exists an J/2(sJ,~) 
performable upon any p~(to) except those which are doubly correlated in 
~/and ~ - - a  rather strange statement. 

Although the foregoing considerations do not rigorously prove that 
type A J(2(~/,  ~ )  are generally impossible, it is difficult to allay the 
suspicion that  (O) may indeed be correct. The above reported failure 
of reasonable at tempts to develop simple ~/2-theories together with 
the proof just given of (O') certainly point in the direction of (0). 
Moreover, the fact that  we have been unable to find even specific cases 
of simple ~/2(5~', ~) ' s  provides inductive support for (O). 

Finally, it is instructive to summarize in a concise way the theoreti- 
cal basis of our 'partial proof'  of (0), i.e., our proof of (O'). As we 
have seen, a consistent quantum axiom set does not forbid simul- 
taneous measurement in general; it does, however, entail important 
prohibitions regarding 'simultaneous preparation'. For example, it is 
strictly impossible to devise a method for preparing systems certain to 
yield given S -  and ~-values upon measurement; such a procedure 
would, among other things, violate the uncertainty principle. In short, 
certain 'simultaneous preparations' are inconceivable in quantum 
mechanics. 

Any proposed operation which leads to a contradiction with these 
basic restrictions on 'simultaneous preparation' must be regarded as 
physically impossible. In the double correlation argument above, the 
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operation in question happened to be a certain kind of measurement. 
However, this does not refute our earlier admonition (Section 1) that  
measurement and preparation must not be equated as is customary 
among proponents of wave packet reduction. Measurement and 
preparation are generally distinct, but, being constructs within the 
same theory, they can of course be related through propositions such 
as ( 0 ) .  

10. Some Examples of Quantal Joint Distributions 

As we have just seen, it may be that  type A measurements cannot 
be extended to include simultaneous measurement of noncommuting 
observables. Thus it is plausible that  the orthodox principle of in- 
compatibility, though incorrect as a general proposition, might be a 
valid assertion about type A measurement schemes. Since the latter 
have customarily been emphasized in scientific practice, (0), if correct, 
would explain to some extent why it is that  the standard doctrine of 
incompatibility, which is not only erroneous itself but  is also often 
'derived' from false premises such as the projection postulate, has been 
able to survive and indeed flourish in the physical and philosophical 
literature. Because of its practical, and perhaps general, validity for 
type A measurements, the orthodox principle of incompatibility has 
become a quantum platitude, a creed whose words are occasionally 
repeated but  whose content is essentially ignored. 

However, even if it turned out that  such simple joint d/2's were 
nonexistent, this would not eliminate all simultaneous measurement 
schemes. There would still be interesting type B procedures to study. 
Accordingly, the remainder of this section will be devoted to deriva- 
tions of the joint distributions associated with several joint dz'2's of 
this historical type. Perhaps another suitable adjective to describe 
this class of d[2's would be accidental, for as close scrutiny will reveal, 
each of these simultaneous measurement methods requires the 
quantum state involved to exhibit rather extraordinary properties. 
However, even though they are 'historical, accidental, and extra- 
ordinary', these schemes do represent valid simultaneous measurements 
of noncommuting observables, and they do therefore legitimately refute 
the claims that  (a) such measurements are impossible, and (b) tha t  the 
associated joint distributions do not exist. 

(1) Time-of-flight ~ '2(s  The theory behind this method was 
presented in Section 5, where is was shown that,  under certain condi- 
tions, an s yielding x implied that  a simultaneous 
~-measurement  would have yielded p = mx/t with theoretical error 
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which can be made arbitrarily small in contradiction to the standard 
misinterpretation of the uncertainty theorem. Obviously, the joint 
distribution associated with this J l 2 ( f , ~ )  is given by the following 
probability density : 

w(x x) 

(2) Electric field J[2(s Consider an electron (charge e) in a 
uniform external electric field E. I f  r 0) is the initial electron state, 
the state r t) at time t is given by the following unitary transforma- 
tion: 

r t) = exp [ - ~ -  + l f t x  - 

_ i [ mxxl  rex1 2 
• d x l e x P h [ - - - ~ -  + 2t- + ~ ] r  0) 

- - o 0  

where f = eE. 
From this transformation follow two probability 'matchings' on 

which an ~'2 (:~,~) may be based: 

(a) W~[p e (p~,p~); r = W~[p e (p~ +.ft,p~ +/t; ~)] 

(b) W~[p e (pl,p2); r = W~'[x e (P--~ + ft22m'p2t+ f~-m)'r 

&s t ---~ ~ 

provided ~h(x, 0) is nonzero only in some finite interval (-x0, x0). 
Equation (a) means that  ~ '~(~)  at t = 0 yields p with the same 

probability that  ~#1(~) at t > 0 yields p +ft .  Equation (b) provides 
this ~ '2(~) :  to determine what ~ '1(~)  at t = 0 would have yielded, 
measure ~ at sufficiently large t and use the result x to evaluate 
p = (rex~t) - (fl/2), which then counts as the result of d [ l ( ~  ) at t = 0. 
By analogy to the time-of-flight method, we have only to combine 
(a) and (b) to obtain an ~#2(~,~) : given an electron (with initial state 
r 0) of compact support) in a uniform electric field, wait a very long 
time and then measure ~ ;  if the result is x, it is inferred through (a) 
and (b) that  a simultaneous J [ l ( ~ )  would have yielded 

P =  J ~ = U -  
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The joint probability density associated with this method is accord- 
ingly 

( w(x,p;@t) = ]r p t 

To prove (a), it is sufficient to show that  the evolution operator for 
the electron in the electric field transforms an eigenvector belonging 
to eigenvalne p into an eigenvector belonging to eigenvalue p § ft. 
Thus, let r 0) = (27rh)-1 exp (ipx/h) and determine the corresponding 
r 

1 m i [rex 2 f2ts]l 

• dXl exp ~ - ~ - -  + ~ -  + �89 + p x l  
- - C O  

- - c O  

_ { I  /[2~riht, r it /1 ~*TbX~_~O)2 ] 
y 

which will be recognized as the desired eigenveetor (the second bracket 
is just a phase factor independent of x). 

To prove (b) let r O) denote any wave function which is nonzero 
only within an interval (-Xo, Xo) and consider the following prob- 
ability function: 

2m' m 2m] ; Ct 
b = ( 2 ) 2 t [ m ) + ( f t ~ / 2 m )  

= f ]r 2dx 
a = ( p  1 t / m ) + ( f t 2 ] 2 m )  

b cO 

I d x  

Under the substitution x = (pt/m) + (ft2/2m), this becomes 

1 exp -- r O) exp \ - ~ F ]  i 
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which, by  the same argument given in Section 5 in the time-of-flight 
case, for sufficiently large t becomes arbitrarily close to 

~ I ~ O) d x l  2 ~/(2~h) exp - ~  r 1, dp = W ~ [ p  e (Pl,P2); r 
- I 

(3) Correlated systems J~2(2]1,~1): This general method was 
discussed at the end of Section 5. Since the state of $1 + $2 is PT, 
where 

T = E % ~(k ~) | ~(~) 
k 

the state of S 1 alone is 

k 

Now, the J / / l (d~)  which determines the desired Jg/l(~41)-result also 
provides a method for resolving the Sl-ensemble into its pure sub- 
ensembles P~(~). (As a matter  of fact, this is a case where even the 
naive version of the projection postulate could be used without error.) 
Thus the Sl-subensemble to which the ~ ' l ( d l ) - r e su l t  a~ ) is assigned 
has state P~(~), and ~#1(~1) on that  subensemble would yield b~ 1) with 
probability Tr (P~c~P/~.I))= \~/~(1), ~(1)\,2k / I �9 Since the fraction [ckf 2 of 
the Sl-ensemble would be in the subensemble P~( .  it follows that  the 
joint probability associated with this Js is 

(1) (1). 2 T r  (plPa~:(1)) T r  (P=~(I)P3.~)) 

T o  
these 

summarize, the foregoing joint measurement schemes led to 
probability functions : 

(2) p t - 

(3) W(a(k 1), b(1)'z ,FlJ~ ~ = Tr (plPa~(i))  T r  (P~(I)Pf3,(~)) 

l ~ o t e  
dent. 

that  in each case the two observables are stochastically depen- 

(4) Magnetic field Js  Since in a magnetic field the 
canonical momentum is gauge dependent, we here consider the 
problem of measuring the y-component of position and velocity, ~' and 

18 
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~ .  I f  an  electron in a un i form magne t ic  field B = Bk is ini t ial ly in 
the  s ta te  T(x,  y, z; 0), the  s ta te  a t  t ime  t is g iven b y  (Einstein et al., 1935) 

• dx~ dy~ dz~ exp ~ 1 + ~ cot 
- -  o 0  - - o 0  - -  r  

x [(x - x~) s + (y - y~)S] + ~(x~ y - xy~)} T(x,  Y, z; 0) 

where  ~o _= eB/mc and  the  gauge is so chosen t h a t  the  vec tor  po ten t i a l  
is A = B/2(-y f  + xj). F r o m  this t r a n s f o r m a t i o n  the  following ]prob- 
abi l i ty  equat ions  m a y  be der ived:  

(a) W~.[v~ e ( v .  v~); ~u0] = W ~ [ v .  e (-v~, - vD; T~] 

where ~ = rr/w. 

(b) I f  

T(x,  y, z; 0) = 8(x)r 
t hen  

Proceeding as in previous  examples ,  we m a y  define an J / 2 ( ~ ,  ~ u )  
as follows : to measure  ~ / a n d  $/~ a t  t ime  r for an electron ini t ia l ly  in 
the  s t a te  $(x) @(y) ~(z), measure  4" a t  r and  use the  resul t  x to eva lua te  
vy = -(~ox/2) ; also measure  ~ a t  r to get  resul t  y. F r o m  (a) and  (b) i t  
follows t h a t  the  pa i r  (y, vy) m a y  be regarded  as the  resul t  of  simul- 
t aneous  J / l ( ~ )  and  d/ l($/ 'u)  a t  ~. The joint  d is t r ibut ion  of  y and  vy 
will depend  on t h a t  of  y and  x since vy is de te rmined  f rom x. 

To p rove  (a) and  (b) and  to find the  desired joint  dis t r ibut ion,  i t  will 
be necessary  first to ob ta in  the  T(x,  y, z; ~-) corresponding to  

T (x, y, z; O) = 8(x) r ~(z)~ 

I t  is convenien t  to work  wi th  the  expans ion  

, , exp  (ipy/h) . . . .  
T(x,  y,z; O) = 8(x) riP) ~ ( 2 ~  ap r 

- -  e~o 

t 4s(Y) and ~(z) are assumed normalized. However, since ~rS(x,y,z; 0) contains 
also a Dirac 8, it is only ~-ftmetion normalized; thus ~S(x,y,z;~-) is also 
8-function normalized. As a result, probabilities computed from these wave 
functions will involve meaningless $(0) factors which will be replaced by unity 
at the end of such caIculations. (This replacement will be indicated by using 
the symbol '= '  instead of =.) 
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where CO 

V(P) ~/(2~h) exp -- r dy 
- - C O  

is the canonical momen tum space wave function corresponding to 
~b(y). 

[:( )( (~ o.  ~=w 
= 2 ~  ~ _ e x p ~ ( z - - z l )  2C(zl )dzl 

x dxl f dyl im exp ~ [o~(xl y - xyl)] 3(xl) 
- - C O  - - c O  

. , , e x p ( - i p y l / h )  

" i I (~ i "`'> =,~ox, ~ro.x 
= ~gi-i [I(~,T)] gP V(u .h )  - i L ~ -  + p y~ 

- - C O  - - C O  

( ~  ~ ~(,/ r l l . .x  )] = ~ ~(z,T) ~ p ~ 2 . ~ [ ~ ( ~ - + p  
- - C O  

- [2 (~)~ (v ) ]  (,/[~])~-,~, ,, 
(The factor in brackets is normalized.) 

F rom this expression we next  obtain 

2vl/w 

V2 

= f {v(~v)l=~d~[~(o)]o) 
V l  

V2 

'=' f I~(mv)12~v  
V l  

which must  be compared to Wf~[v ~ (vl, v2); ~0], where 

~ ( x ,  y, z; 0 / =  ~(x) r C(z) 
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The operator  Vy such tha t  Vy +-~ ~/~y is 

_ e A h 3 ~ -x  
Vy = Py  mc ~' - i m  Oy 

its eigenfunctions are 

~7~o~o~o = 3(x , exp [(i/h) yp~o] ~,, xo) ~ o~-  So) 

The V~-eigenvalue corresponding to ~xo~y0zo is 

PYo (.O 
m 2 Xo 

W ~  is then  calculated as follows : 

W~o[v ~ (Vl, v2); To] 
V2 o0 O0 (~  S xo  x0)] 

V l  - - o O  - - o 0  - - c O  

= f dv dxo dP~o dzo dx  dy  z 
] , J  J 

Vl --o0 --o0 --o0 i--oo --o0 -- 

12 
, exp [-( iy/h)p~o] ~, ~(z) 

x ~(x - Xo) ~ 2 ~ )  o(z - Zo) 3(x) r 

: f  ~v f ~ o  v~o~ v o 
V$ --(3O --GO 

• 8(x0) ~/(27rh) - ~  exp ( -  r dy 2 

= dv dxo dp~o~ v -  - ~ X o  ~(Xo)~(Xo)l~(p~o)l ~ 
V l  - - o 0  - - o 0  

V2 oO 

V l  
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Comparison with the expression for 

W~r[x ~ (2vi, 2v2.oj ' T') l  

shows that (b) is true. 
We next prove (a) for the specific W0 involved in (b), since only that 

special case is required for the dr'2 under consideration. 

W~[v~ e (-v2,-v~); T,] 
- - V l  oo cO co 

- - ? ) 2  - - 0 0  - - o 0  - - 0 0  

- - V l  OO CO O0 

: f ~v f~o f ~o f ~ o ~ [ v ~ o -  w~ ~1 i~ 2 ~0]j 
--~2 --00 --o0 --o0 

oo oo oo 

• f dx f dy f dz~(x-xo) exp(-ipu~ 
,- . . . .  V ( 2 ~ )  

- - V l  oo  oo  

- - V 2  - - o 0  - - o 0  

( ) [ ] f ~rF& O) ~nogx o 2 ~0 
= dv d x o ~ - ~  ~ ~(0)~ v + ~ x o  

- - V 2  - - 0 0  

- - V I  

= f [v(-~~176 
- - V 2  

- - V l  

- - V 2  

V2 

= f Iv(~v)l ~m~v 
V l  

This equals W~[vy E (vl, v2); W0]; hence (a) is valid. 
The joint probability density w(y, vy; T,) for this ~'2(~,Yfy) is 

easily obtained. Since ~[l(,~y)-results depend on d[l(2~)-results , 
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w(y, vs; T~) is simply related to wx,~(x,y; T~), which is calculable in 
the standard way: 

wx,~/(x, y; T~-) = 
- - C O  

Since vy = -(wx/2) at r, the density w(y, vu; T~) is given by 

w(y, vy; T~.) 2 ( ~ ) (m~o) =( wx,~ - , y; T~. = ~ mlv(-mvy)] 2 

The fact (counterintuitive for some physicists) that  simultaneous 
measurements of noncommuting observables could be stochastically 
independent and be in harmony with the basic structure of quantum 
mechanics has previously been emphasized by one of us (Margenau, 
1963). The above expression for w(y, vy;TT) shows that  such in- 
dependence of ~1(~/)  and ~/1($/'y) actually obtains for this particular 
J[2(~/, $/~y). To see this more clearly, note that  

w(y, v~; T~.) = w~(y) w~,(vy) 

where w~ and w ~  are computed in the usual quantum mechanical 
manner : 

CO 

w~(y)= dx f dzlT(x,y,z;-r)] 2 
- - 0 9  - - C O  

(] ]( ) ._),)(/]= )( ) -= tx  ~ qo - ~ -  dz i l(z)] = moo 

~ n 6 o  

4~h 
O9 CO CO 

- - C O  - - C O  - - C O  

= ml (-mvy) l 2 '= '  2 

Thus we have a eounterexamlole to the idea that  noncommuting 
observables must somehow 'interfere' with each other during measure- 
ment. Although [ r ,  Vy] @ 0, simultaneous ~4/1(~) and ~I(Y/~) per- 
formed via the present ~/~ yield ~tochastically independent results. 
But of course the uncertainty principle still holds; indeed here 
A~/A~/Fy-~ ~o, provided the A's are standard deviations related to 
collectives of simultaneous ~r, ~v_measurements" 
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In  conclusion, we summarize  the  salient results obta ined:  

(1) I f  qua n tum theo ry  had  to be based upon the common assertion 
t h a t  to eve ry  physical  observable there  corresponds an Hermi t ean  
operator ,  t hen  the t heo ry  would be self-contradictory,  for t ha t  axiom 
proclaims the  existence of  cer ta in  operator-observable  correspond- 
enees which, as a consequence of the remaining axioms, cannot  exist. 

(2) A byp r oduc t  of these contradict ions is yon  Neumann ' s  theorem 
on s imultaneous measurabi l i ty ,  which seems to  be the only logical 
foundat ion  for the o r thodox  principle of incompat ibi l i ty  of non- 
commut ing  observables.  

(3) Once the concept  of measurement  is proper ly  unders tood,  it  is 
possible to give explici t  examples of quan tum theoret ical  schemes for 
the exact  s imultaneous measurement  of noncommut ing  observables.~ 

(4) The contradic t ion between yon  Neumann ' s  theorem (2) and the  
eounterexamples  (3) is s imply a reflection of  the contradict ions no ted  
under  (1). 

(5) I f  qua n tum theo ry  entails only  a weal~ correspondence between 
operators  and  observables,  i.e. if  it  is assumed only t h a t  Hermi tean  
operators  represent  observables bu t  not  t h a t  all observables have 
opera tor  representat ives ,  then  the contradict ions disappear;  in 
part icular ,  yon  Neumann ' s  theorem no longer follows from the axioms. 

(6) Moreover,  none of the  basic theorems which form the substant ia l  
core of q u a n t u m  physics  is affected by  this axiomat ic  shift  f rom s t rong 
to  weak correspondence.  

(7) The s t ruc ture  of  quan tum theo ry  does seem to resist the  
formula t ion  of a certain simple ( type A) theory  of  measurement  to 
describe s imultaneous measurement  processes; nevertheless,  q u a n t u m  
mechanical ly  certified s imultaneous measurement  schemes of  the  
historical k ind (here called type  B) can be developed.  

(8) Der iva t ion  and comparison of the joint  probabi l i ty  distribu- 

t It  is important to realize that we have used the term measurement ex- 
clusively to refer to theoretically ideal processes which yield sharply defined 
numbers. (In a full treatment of the general nature of measurement (Margonau, 
I950, pp. 369-375), such procedures have been called 'successful' measure- 
ments.) Oeeasionally one sees discussion of so-called imperfect 'measurements' 
which presumably yield both a number x and an interval of 'uncertainty' Ax 
covering that number, a concept invariably used without any clear definition. 
Recently several authors (Arthurs & Kelly, 1965; She & Heffner, 1966; 
Prugove~ki, to be published) who tacitly accept the projection postulate and 
therefore believe that noneommuting observables cannot he simultaneously 
measured with exactitude have advanced simultaneous 'measurement' theories 
wherein the term measurement refers to these (in our opinion ill-defined) 
imperfect 'measurements ', 
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tions associated with several methods of simultaneous measurement 
reveal that  quantal joint probabilities may be either correlated (e.g., 
the time-of-flight case) or uncorrelated (e.g., the magnetic deflection 
type). Indeed the diversity of form among the specific distributions 
studied indicates that  quantal joint probabilities for noncommuting 
observables are probably not functionals of state alone but depend as 
well on 'historical' factors concerning particular d/2's. 

References 
Arthurs,  E. and Kelly,  J. L., Jr .  (1965). Bell System Technical Journal, 44, 725. 
Birkhoff, G. and yon Neumann, J. (1936). Ann. Math. 37, 823. 
Bohr, ~q. (1949). In :  Albert Einstsein: Philosopher-Scientist, ed. Schilpp, P., 

pp. 201-241. Tudor. 
Cohen, L. and Margenau, H. (1967). In :  Quantum Theory and Reality (Ch. 4). 

Springer-Ver]ag, 1967. 
Cohen, L. (1966). Journal of Mathematics and Physics, 7, 781. 
Dirac, P. A. M. (1945). Review of Modern Physics, 17, 195. 
Einstein, A., Podolsky, B. and Rosen, •. (1935). Physical Review, 47, 777. 
Feynman,  1~. P. (1965). Quantum Mechanics and Path Integrals, pp. 96-98. 

McGraw-Hill.  
Gleason, A. M. (1957). Journal of Mathematics and Mechanics, 6, 885. 
Groenewold, H. J. (1946). Physica's Gravenhage, 12, 405. 
t teisenberg, W. (1930). The Physical Principles of Quantum Theory. Chicago. 
Jammer ,  M. (1966). The Conceptual Development of Quantum Mechanics, 

McGraw-tti]l .  
Mackey, G. W. (1963). Mathematical Foundations of Quantum ~V-[echanies, p. 70. 

Benjamin. 
Mandl, F.  (1957). Quantum Mechanics. Academic Press. 
Mandl, F.  (1959). Introduction to Quantum Field Theory. Interscience. 
Margenau, H. (1937). Philosophy of Science, 4, 352-356. 
Margenau, H. (1950). The Nature of Physical Reality, pp. 171-177. McGraw- 

Hill. 
Margenau, I-I. (1954). Physics To-day, 7, 6. 
Margenau, H. and Hill, R. N. (1961). Progress of Theoretical Physics, 26, 727. 
Margenau, H. (1963a). Annals of Physics (U.S.A.), 23, 469. 
Margenau, H. (1963b). Philosophy of Science, 30, 6. 
Moya], J .  E. (1949). Proceedings of the Cambridge Philosophical Society, 45, 99. 
yon Neumann, J.  (1931). Annals of Mathematics, 32. 
von ~Teumann, J.  (1955). Mathematical Foundations of Quantum Mechanics. 

English t ranslat ion by  R. T. Beyer, p. 351. Princeton. 
Park,  J. L. (1968a). American Journal of Physics, 36, 211. 
Park,  J .  L. (1968b). 'Quantum Theoretical Concepts of Measurement. '  Philos- 

ophy of Science (to be published). 
Peierls, R. (1935). Nature, London, 135, 957. 
Piton, C. (1964). Helvetica physica acta, 37, 439. 
PrugoveSki, E. 'On a Theory of Measurement of Incompat ible  Observables in 

Quantum Mechanics' (to be published). 



SIMULTANEOUS MEASURABILITY IN QUANTUM TI-IEORu 283 

t~eichcnbach, H. (1944). Philosophic Foundations of Quantum Mechanics, 
Universi ty of California. 

Roman,  P. (1965). Advanced Quantum Theory, Addison-Wesley. 
Segal, I.  E. (1947). Annals of Mathematics, 48, 930-948. 
She, C. Y. and t~effner, H. (1966). Physical Review, 152, 1103. 
SheweI1, J. R. (1959). American Journal of Physics, 27, 16. 
Streater,  R. F. and Wightman,  A. S. (1964). PUT, Spin and Statistics and All 

That, p. 100. Benjamin.  
Suppes, P. (1961). Philosophy of Science, 28, 378; and in Philosophy of Science: 

The Delaware Seminar, v. 2. 
Suppes, P. (1966). Philosophy of Science, 33, 14-21. 
Temple, G. (1935). Nature, London, 135, 957. 
Varadarajan,  V. S. (1962). Communications on Pure and Applied Mathematics, 

15, 189-217. 
Wick, G. C., Wightman,  A. S. and Wigner, E. P. (1952). Physical Review, 88, 

101. 


