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... The law that entropy always increases-the second law 
of thermodynamics-holds, I think, the supreme position 
among the laws of Nature. If someone points out to you that 
your pet theory of the universe is in disagreement with Max
well's equations-then so much the worse for MaxweIl's 
equations. If it is found to be contradicted by observation
weIl, these experimentalists do bungle things sometimes. But 
if your theory is found to be against the second law of ther
modynamics I can give you no hope; there is nothing for it 
but to collapse in deepest humiliation .... 

-SIR ARTHUR EODlNCTON' 

Several years ago, in the course of intense diseussions with one of us eoneerning 
research problems of mutual interest, our eolleague Wolfgang Yourgrau repeatedly 
employed the eolorful term "knots" -perhaps an allusion to the story of Gordius of 
Phrygia-to denote challenging fundamental dilemmas in the eoneeptual fabrie of 
physieal theory. The galaxy of foundations problems he investigated during his 
remarkably productive life included, among many other interests, topies in quantal, 
statistieal, and thermal physies. Issues both old and new whieh arise in eftorts to unify 
these seiences surely qualify as exeellent speeimens of Professor Yourgrau's knots in 
natural philosophy. Henee, to honor his memory, we ofter an essay on the knots of 
quantum thermodynamies. In order to foeus mainly upon what Y ourgrau used to eall 
"tough seience" as opposed to historiographie or metalinguistie analysis, we shall not 
dweil on the epistemologieal aspeets but proeeed immediately to the mathematieal 
foundations of our subjeet. 

1. SOME MATHEMATICAL NOTIONS AND NOTATIONS 

To establish a mathematieal framework in whieh to expose eonfliets between 
quantum meehanies and thermodynamies, we begin by stating three postulates of 
quantum theory. The statements are essentially those given by Margenau and Park.2 
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P.l. Systems. With every physical system there is associated a complex, separa
ble, complete inner product space, a Hilbert space 'H. The Hilbert space associated 
with a composite system of two distinguishable systems A,B which are associated with 
Hilbert spaces 'HA, 'H B, respectively, is the direct product space 'HA ® 'H B' 

P.2. State Preparations. To every reproducible preparation scheme n for a phys
ical system there corresponds a non negative definite, self-adjoint, unit trace operator 
p on 'H which contains all physical predictions regarding data gathered immediately 
subsequent to that preparation (cf. P.3). The trace dass operator p, called the density 
operator or statistical operator, thus represents the state of the quantum system pre
pa red in the manner n. 

P.3. Observables, Measurements, Data, and Ensembles. Some continuous, linear, 
self-adjoint operators {A, B, ... } on 'H correspond to observables of the system. The 
arithmetic mean value A of the da ta yielded by measurements of observable A on an 
ensemble of systems prepared in the manner n with associated density operator p is 
given by the continuous linear functional of A 

(A) = Tr(pA) (1) 

All the density operators for the system, referred to in P.2., are elements of T 
('H), the real Banach space of all self-adjoint trace dass operators on 'H. Within this 
space T('H) there is a set of non negative definite ("positive") operators on 'H. This 
set is called the positive cone Y+('H) in T('H). The positive cone Y+('H) is not a 
subspace of T('H) since a positive operator multiplied by a negative real scalar does 
not yield a positive operator. 

Contained in Y+('H) is a convex set Yt('H) of positive operators with unit trace. 
The elements of this set are the density operators corresponding to all possible prep
arations of the system. 

The extreme elements of Yt('H) are called the pure states of the system. The 
pure state density operators are elementary projectors onto one-dimensional subspaces 
of 'H. Thus the pure states correspond to vectors (rays) in 'H, e.g., an eigenvector or 
any linear superposition of eigenvectors of observable A corresponds to a pure state. 
The methods used to determine the density operator associated with apreparation n 
will be considered below. 

The standard quantum mechanical observables are represented by elements of 
B('H), the space of all continuous, linear, self-adjoint operators on 'H. The phraseology 
of P.3 recognizes not only the fact that not all elements of B('H) correspond to observ
ables (an aspect of superselection rules) but also the converse proposition that there 
are observable properties of some systems which do not correspond to operators in 
B('H). Induded in the laUer category are functions of two or more noncommuting 
observables3 and, of particular interest in the present context, such thermodynamic 
properties as temperature and entropy. The space B('H) is areal Banach space with 
the operator norm 

IIAIIB = sup IIAxll, 
1·1-1 

A E B('H) (2) 
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The third postulate also emphasizes the conventional interpretation of (A) as 
the arithmetic mean of the results of measurements of A on an ensemble of identically 
prepared systems. When the link is made between quantum mechanics and certain 
features of thermodynamics, we shall find it necessary sometimes to reinterpret the 
linear functional Tr(pA) so that its referent shifts from an ensemble of quantal systems 
to a single thermodynamic system. 

For a complete physical theory, the three postulates already stated must be sup
plemented by a causal law. In conventional quantum theory there is the standard 
dynamical postulate which asserts that the time evolution of a system is given by a 
one-parameter unitary group {At} of transformations of T(7I) into T(7I). However, as 
we shall soon see, this elegant rule is inadequate to describe all phenomena contem
plated when quantum mechanics and thermodynamics are unified. 

In the canonical version of quantum statistical thermodynamics, thermal equilib
rium states are represented by density operators having the familiar form 

A exp(-ßH) 
p= 

Tr exp(-ßH) 
(3) 

where H is the energy operator. For any quantum state p, the statistical analog for 
internal energy U is given by 

U = Tr(pH) (4) 

and the entropy is expressed as 

S(p) = - kTr(p In p) (5) 

When (5) is maximized subject to constraint (4), the unique result is the canonical 
state (3), with inverse temperature ß uniquely determined by (4). 

The quantal version (5) of the famous Gibbsian entropy formula was derived 
originally by von Neumann4 using the admittedly obscure nation of semipermeable 
membranes for different pure quantum states. However, the form of S(p) given above 
can be obtained in other waysS.6; and we shall assurne, as is customary with students 
of this subject, that (5) is correct. The recent exhaustive study by Hatsopoulos and 
Gyftopoulos7- 10 of the foundations of thermodynamics and its relationship to quantum 
mechanics contains an especially cogent alternative derivation of (5). 

The mathematical form of the quantum mechanical entropy gives rise to impor
tant consequences for the entropy of composite systems. Consider two interacting 
systems A and B with associated Hilbert spaces 71 A and 71 B' The state of the com
posite system of two distinguishable systems is assumed to be an operator defined on 
71 A ® 71 B, i.e., PAB E vt(7I A ® 71 B)' The entropy calculated from this state is 

SAB = - kTr(PAB In PAß) 

The reduced density operator for system A is customarily defined by 

PA = TrB(PAB) 

(6) 

(7) 
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where Tr B denotes the trace over 71 B' Therefore PA E Vi(7i A)' The entropy calculated 
from PA is 

For system B there are of course expressions for PB and SB similar to (7) and (8). 
The interesting inequality 

is referred to as the subadditivity of entropy.ll The equality holds if and only if 

PAß = PA ® PB 

When this is the case, systems A and Bare uncorrelated. 

(8) 

(9) 

(10) 

Since the mean value of the observable A for a system described by P is given by 
the linear functional 

A = Tr(pA) (11 ) 

where P E Vi(7i) and A E B(7i), it is tempting, and indeed some authorsI2•11 do this, 
to consider entropy to be the mean value of the operator 1/ = - k In p. However, 
there are difficulties encountered in making this identification. The operator 1/ is not 
an element of B(7i) for all P E Vi(7i). To see this, note via (2) that the norm of the 
operator 1/ is 

111/IIB = sup II1/xll = sup 11- kin pxll ( 12) 
1.1-1 Ixl=1 

Consider the case where P is pure, i.e., p is an extreme element of the convex set 
Vi(7i). Then there exists an eigenvector Xo E 71, Ilxoll = 1 with eigenvalue a = O. 
The norm of the vector 1/Xo is unbounded: 

asa - 0 ( 13) 

Nevertheless the entropy is weil defined for the state Po = 1 xo)(xo 1 in the sense 
that 

lim (-ka In a) - 0 (14) 
a-O 

Hence 1/, being unbounded, is not an element of B(7i) and does not qualify under P.3 
as a quantal observable. Therefore entropy cannot rigorously be interpreted as the 
average value of a quantal observable. 

A second peculiarity of the entropy functional involves its time evolution. In con
ventional quantum mechanics the time evolution is governed by a one-parameter uni
tary group of transformations on T(7i), a typical group element of wh ich will be 
denoted by Ut. Through the correspondence u - Tr(uA) we identify B(7i) with the 
dual of T(7i). Through this duality the transformation U t induces a dual transforma
tion Ui on B(7i). The state Pt E T(7i) is related to the state PHs E T(7i) by 

Pt+s = UsPt ( 15) 
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The average value of an observable A E B(1f) at time t + s is given by 

(A}t+, = Tr(pt+.A) = Tr(U,pA) 

293 

(16) 

This gives the time evolution of the average value in the so-called Schrödinger 
picture; i.e., the states change in time and the operators, unless explicit functions of 
time, remain fixed. The duality between T(1f) and B(1f) provides the time evolution 
of the average value in the Heisenberg picture; i.e., 

(A}t+, = Tr(U,ptA) = Tr(PtU~A) 

All of this is standard and weil known. 

(17) 

The problem with the entropy functional is that in the Schrödinger picture the 
state P depends on time but in the Heisenberg picture P is independent of time. 
Therefore the rate of change of the entropy is identically zero in the Heisenberg pic
ture. When the time evolution is given by a unitary group, as in conventional quan
tum mechanics, no inconsistency arises since the entropy functional is invariant under 
unitary transformation, i.e., 

when Pt+, = U,Pt (18) 

So dS(p)j dt == 0 in the Schrödinger picture also. 
The reason for this invariance is that the value of S(p) depends on the eigenvalues 

of p, wh ich are invariant under unitary transformation. Thus we arrive at the long 
known but insufficiently appreciated result that the unitary time evolution of conven
tional quantum mechanics is incapable of predicting a change in entropy. This prop
osition leads immediately to one of the most disconcerting knots in physics. 

2. THE SECOND LA W KNOT 

The temporal invariance of S(p) under unitary evolution places mechanics and 
thermodynamics in a logical confrontation rather like the celebrated incompatibility 
of Calilean-Newtonian mechanics and Maxwellian electrodynamics from wh ich 
emerged the theory of relativity. In particular, if the Second Law of Thermodynamics 
is to be retained as a basic principle of physics, then either quantum mechanics or 
statistical thermodynamics or both must be modified. 

The Second Law mathematically characterizes thermal equilibrium in a closed 
system as the state wh ich maximizes S(p) subject to subsidiary constraints. It is gen
erally understood also to entail that spontaneous processes of evolution toward ther
mal equilibrium do in fact occur, and that for closed systems the entropy never 
decreases. 

Now, if the Second Law stands in conflict with quantum mechanics, might we 
reasonably consider abandonment of that law as a fundamental axiom of physics? We 
think not; indeed we shall proceed on the premise that the Second Law, like the great 
conservation laws, deserves a rather sacrosanct position in the hierarchy of physical 
principles. Our introductory quotation from the writings of A. S. Eddington forcefully 
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conveys this viewpoint, but of course we cannot claim that Sir Arthur would have 
espoused any of the unorthodoxies advocated in the present essay. 

Unitary quantum dynamics cannot be saved by denying the existence of motions 
in wh ich closed systems gain entropy unless we are willing to deny the most elemen
tary triumphs of the Second Law. Consider for example a composite system whose 
constituents A and Bare initially uncorrelated, noninteracting, and separately in ther
mal equilibrium with distinct inverse temperatures, ßA, ßB. The total initial density 
operator is then 

(19) 

where PA> PB are each of the canonical form (3). If internal constraints are lifted, inter
action occurs, and eventually the composite system evolves to a unique state of mutual 
equilibrium, viz., 

Poo = PAß (20) 

where PAß has the canonical form (3) with one final inverse temperature ßAB. This 
familiar model, which might refer to an experience as commonplace as equiIibration 
following submergence of a piece of warm lead in a cup of cool water, is of course 
consonant with the Second Law since S(poo) is the maximum value the entropy func
tional can attain under the given circumstances. However, in general we also find in 
this situation that S(poo) > S(Po), so that the motion Po -- Poo cannot be understood 
within the framework of unitary mappings provided by conventional quantum theory. 
In other words, no conceivable Hamiltonian can generate the motion which in fact 
occurs as the lead cools and the water warms. 

Throughout the past century the literature of physics has offered a variety of 
rationalizations for this paradox, so that some physicists when exposed to the problem 
vi see rally reject it as heresy. Many others adhere to one or more of the standard expla
nations briefly described and criticized below; the literature citations given in each 
case exemplify a school of thought but are not exhaustive. 

(a) The Second Law and the entropy concept are subjective or "anthropo
morphic," the entropy increase representing essentially the growing obsolescence of 
past knowledge rather than an objective dynamical process.14- 17 

Despite our genuine appreciation of the methodology of information theory, we 
believe nevertheless that the thermodynamic entropy of a closed system rises inde
pendently of the informational state of the observer. 

(b) Thermodynamically c10sed systems are mechanically open in some sense and 
are therefore mechanical subsystems for which S(p) is not invariant. 1S- 22 

This alleged openness of thermodynamically isolated systems has been associated 
with various causes, including quantal uncertainties at the boundary, random external 
fields, and even cosmological asymmetries. In our opinion, all of these ideas share the 
same flaw, viz., that in any bounded mechanical system obeying a unitary law of 
motion the total entropy is invariant and, since the overall motion is quasiperiodic,23 
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the entropy of a subsystem calculated using (7) and (8) will also be quasiperiodic and 
hence exhibit no Second-Law unidirectionality. 

Consider for example a system A with surroundings B, prepared initially in an 
uncorrelated pure state 

PAB(O) = 111'A)(1/-'AI ® 1 1/-'B)(1/-'B 1 

When (21) is substituted into (6), (7), and (8), we find that 

SAB(O) = SA(O) = SB(O) = ° 

(21 ) 

(22) 

However, as the composite system A plus B evolves unitarily, SAB remains invariant; 
but both SA and SB may increase as interactions breed correlations between A and B. 
This peculiar result is of course consistent with the subadditivity property (9). 

Superficially, mechanical subsystem A seems to be undergoing a process of the 
kind contemplated by the Second Law. Unfortunately this is merely an illusion, for 
the motion of A plus B is ultimately periodic, so that eventually SA and SB decrease 
aga in to zero. Thus the Second-Law behavior of A is only temporary, and highly 
dependent upon the choice of an initial condition like (22) wh ich captures SA during 
an ascent phase. 

(c) Irreversible phenomena should be treated by invoking special limit proce
dures or redefinitions oi S, but without altering conventional unitary quantum 
dynamics. 24 - 27 

Included in this broad category are theories based on such notions as coarse-grain
ing or the thermodynamic limit and the abstract theories of ergodicity and mixing, 
incisive analyses of wh ich could easily fill a book. However, we do wish to record in 
particular our skepticism toward demonstrations that entropy may increase indefi
nitely but only in infinite-volume, infinite-population assemblies. Even if rigorously 
correct, such propositions can hardly be germane to the physical problem, since real
istic systems in which entropy is observed to increase are in fact finite. 

(d) Even though the Second Law is not a universal theorem oi mechanics, never
theless we tend to observe only entropy-increasing situations because by our very 
nature we encounter or create only systems with highly improbable initial 
conditions.28,29 

A particularly dramatic statement of this view was given by Landeo: 

In ordinary life and in thermodynamics we deal with finite systems wh ich 
deliberately are brought into astate of high entropy by branching them off from 
the rest of the universe. Here we have indeed, at least for a limited time span, a 
parallelism of time and entropy-which does not prove any such parallelism in 
general, .... We happen to live in a very improbable state of the world which 
develops into a more probable state. But if ours were not a very improbable 
world, there would not be any "we" to speculate about it. 

This approach incorporates features of both (a) and (b), as weil as a philosophical 
perspective which, though intriguing, is scientifically infertile, since it confers upon 
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the Second Law knot a rather dogmatic mantle of inevitability. We prefer to believe 
that the knot will eventually be untied by the development of a more comprehensive 
dynamics in which entropy-increasing processes occur as natural motions. The ques
tion of man's relation to the universe would play no role in such a theory. 

(e) The entropy 01 thermodynamic systems rises due to repeated measurements, 
each lollowed by a discontinuous state change in accordance with the projection pos
tulate 01 quantum mechanics.1Jl,28 

This idea, a variant of (b) in wh ich the randomizing environment is imagined in 
some sense to perform measurements, is based upon a popular but discredited quan
tum theory of measurement in which wave packet reduction is a key concept. 

It was first shown by von Neumann4 that the entropy of a system cannot decrease 
under the projection postulate transformation, and thereafter various authors have 
attempted to explain irreversibility using the projection postulate. While it is true that 
the entropy can increase and the energy can be conserved under the projection pos
tulate transformation, it is not true that the transformation drives the system to the 
canonical state. 

According to the projection postulate, an energy measurement results in the 
transformation of the density operator, 

(23) 
n 

where P n is the projection operator onto the eigenspace corresponding to energy 
eigenvalue En. lf the energy spectrum is nondegenerate, the elementary projectors are 

where Hin) = Enln). 
The energy is conserved under this transformation if 

u = Tr(pH) = Tr (~PnPPnH ) 

To show that (25) holds, we note that [Pn>Hj = 0 so that 

(24) 

(25) 

Tr ( ~ PnPHPn) = Tr ( ~ P!PH) = Tr(pH) = U (26) 

The matrix for p' is diagonal in the energy representation and its diagonal ele
ments are the same as those of p, i.e., 

It is possible to change the diagonal elements of p' if another observable A is measured 
which does not commute with H, but then energy would not be conserved in general. 
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Let Pn be the projector onto the subspace associated with the eigenvalue an of A, [A,H) 
~ 0, 

Pn = lan)(anl (28) 

where AI an) = an 1 an)' The projection postulate transformation is 

p' -- pli = L Pnp'Pn (29) 

The energy in the state pli is 

U" = Tr(p"H) = Tr ( ~ Pnp'PnH) (30) 

In general U" ~ U. 
In the approach to equilibrium of a closed thermodynamic system, the energy is 

conserved as the entropy increases. The projection postulate can lead to a stationary 
state with the energy conserved, but unless the diagonal elements of the initial state 
happen to be al ready those of the final maximum-entropy canonical state, the pro
jected state will not be canonical. Therefore this theory cannot explain the general 
validity of the Second Law of thermodynamics. 

Having rejected all of the foregoing attempts to reconcile the contradiction 
between the Second Law and the invariance of S(p) under unitary evolution, we now 
explore an alternative interpretation of that dilemma. Rather than clinging to the tra
dition of Hamiltonian mechanics from wh ich the unitary dynamical postulate of ortho
dox quantum theory evolved, let us suppose the latter is simply incomplete. It must 
therefore be replaced with a new principle of motion encompassing not only the famil
iar unitary evolutions of conventional quantum theory but also the nonunitary evo
lutions required to describe thermodynamical processes. 

This possibility has been suggested by several authors/I- 34 but the most persua
sive arguments are to be found in the work of Hatsopoulos and Cyftopoulos,1-10 who 
argue quite conclusively that some as yet unknown, nonunitary principle of quantal 
motion must be devised in order to achieve a satisfactory unification of thermodynam
ics and quantum mechanics into one uncontradictory science. 

Motivated either by these thermodynamic considerations or by the desire to 
obtain phenomenological descriptions of the evolution of subsystems, various 
authorsI8.19.35-38 have considered mathematical generalizations of quantum dynamics in 
wh ich the laws of motion do not conserve S. These ettorts have generally featured 
nonunitary mappings which are elements of linear semigroups, thus assuring the 
applicability of a substantial body of standard mathematical structures. This approach 
has yielded several interesting contributions to the quantum dynamics of subsystems, 
where entropy may rise or fall but energy need not be conserved. Moreover, Band 
and Park32- 34 found that for 2-level quantum systems there exist linear maps-inde
pendent of the initial density operator-wh ich describe energy-conserving, entropy-
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increasing processes. The latter would be an essential feature of a unified theory of 
quantum thermodynamics. 

Unfortunately, the present authors39 have discovered that for N-level systems 
with N > 2, there are no linear maps describing energy-conserving, entropy-increas
ing motion. Consequently the search for a new principle of motion can expect no 
assistance from the mathematical theory of linear semigroups. 

Although the correct equation of motion for p is not known at this point, we can 
give a list of necessary conditions that such an equation must satisfy. Consider a closed 
system with energy operator Hand density operator p. Let p(s) be related to p(s + t) 
by a nonlinear mapping rt> 

p(s + t) = rtp(s) (31 ) 

It is desirable to assurne r t is an element of a one-parameter semigroup Gof nonlinear 
transformations. The usual semigroup property 

(32) 

is required if it is assumed that time is homogeneous. Then any time s can be taken 
as the initial time s = 0, so that (31) becomes 

p(t) = rtp(O) (33) 

Being nonlinear, this transformation cannot be written in matrix form, but it is still 
mathematically possible'lO to obtain an equation of motion for p(t) in terms of a non
linear infinitesimal generator F of the semigroup: 

dp(t) = Fp(t) 
dt 

(34) 

The conditions to be satisfied by the generalized evolution are that it (i) maintain 
positivity, (ii) maintain self-adjointness, (iii) preserve the trace, 

d (dp ) - [Tr(p)] = Tr - = Tr(Fp) = 0 
dt dt (35) 

(iv) conserve the energy, 

dU (dP ) -=Tr -H =Tr(FpH)=O 
dt dt 

(36) 

and (v) increase the entropy, 

dS (dP ) - = -kTr -ln p = -kTr(Fp In p) > 0 
dt dt 

(37) 

with equality if and only if p = p, the canonical state. 
These five conditions are not independent; (ii), (iii), and (v) together imply (i). To 
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see that this is plausible, note that the entropy functional (5) may be expressed in 
terms of the eigenvalues {Ti} of p as 

(38) 

a non negative definite form for all density operators, i.e., for each p E vt('Jf). More

over, for a self-adjoint, unit trace p f/. vt('Jf), at least one Ti would be negative and (38) 
would then be complex. Thus if an equation of motion satisfies (ii), (iii), and (v) for all 
t and the initial state p(to) is an element of vt('Jf), then p(t) E vt('Jf) for all t; i.e., 
condition (i) is automatically fulfilled. Of course, there are positive evolutions for 
which (37) is not satisfied so (i), (ii), and (iii) together do not imply (v). 

The equation of motion 

dp 
-= 
dt 

1 
-i[H,p] + \ (p - p) (39) 

with A > 0 provides an example satisfying all conditions. In (39) p, the canonical state, 
is determined uniquely by 

Tr(pH) = Tr(pH) (40) 

It is easy to show that (39) satisfies conditions (ii) and (iii) and (40) can be used to 
show that (iv) is satisfied. That (39) satisfies (v) is a bit more difficult to show, but once 
this is established we know from the preceding discussion that (i) is satisfied. 

Substituting (39) into (37) gives 

- kTr ( d: In p ) = - kTr( - i[H,p] In p) 
(41 ) 

-k + T Tr[(p - p) In p] :> 0 

Since the trace is invariant under cyclic permutations and since [In p,p] = 0, the first 
term on the right-hand side of the equality vanishes. Since k, A > 0, the second term 
will be greater than zero if 

[-Tr(p In p)] - [-Tr(p In p)] < 0 

To show that (42) holds, we recall that for all p satisfying (40), 

-Tr(p In p) :> -Tr(p In p) 

with equality if and only if p = p. It follows that 

(42) 

(43) 

[-Tr(p In p)] - [-Tr(p In p)] < [-Tr(p In p)] - [-Tr(p In p)] (44) 

Using Klein's inequality in the form 

[-Tr(alna")]- [-Tr(a In a')] < 0 (45) 
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for (1, u' E vt('H), with (1 = p and u' = P we obtain from (44) 

[-Tr(p In p)] - [-Tr(p In p)] -< ° (46) 

which is precisely (42) and therefore (v) is satisfied by (39). 
Although there is no physical justification for the specific equation of motion (39), 

it does have some attractive properties. We can express (39) in terms of the infinites
imal generator F of a semigroup of nonlinear transformations, 

d: = -i[H,p] + ~ [p(p) - p] = Fp (47) 

The equivalence relation in vt('H) wh ich partitions vt('H) into equivalence classes 
[pU] of states p with the same energy U induces a partitioning of the semigroup G. 
The generator F depends on the state of the system through (40). Since F thus 
depends on the energy of the system there is a unique generator F for each equiva
lence class [pU]. 

An equation of the form (47) would be applicable not only to closed systems but 
would also be useful for describing at least approximately an open thermodynamic 
system exchanging energy with so me other system, in which case F would have an 
implicit dependence on time through U(t). If the energy of the system changes slowly 
with respect to the characteristic relaxation time A of the system, then the system 
would be very nearly in a canonical state at all times, fulfilling the classic definition of 
a reversible quasistatic process. The dependence of F on U is therefore desirable since 
it allows one to account, within the framework provided by the equation of motion, 
for the rapid or slow removal of constraints on the system. 

All of this detail regarding possible generalized evolutions is of course conjec
tural; the correct principle of motion with sufficient structure to complete the theory 
of quantum thermodynamics and thereby to untie the Second Law knot remains to 
be discovered. 

3. KNOTS IN THE STATE CONCEPT 

For a quantum mechanical system the state corresponds to a density operator p 

E vt('H). For every reproducible preparation n of the system there is a density oper
ator p. The state of a system at any time t can be obtained by measuring the average 
values at time t of a quorum41,42 of observables for the system. However, it would not 
be necessary to measure the average values of a quorum if one knew the state, PAß, of 
the composite system consisting of system A plus preparation device B, since the state 
PA could then be obtained from the composite state PAB using (7). 

To apply this in practice would require information about the interactions 
between the preparation device and the system and the states PA(O), PB(O) when A and 
Bare initially brought together. If A and Bare initially uncorrelated and the evolution 
of the composite system is given by the mapping rt> then the state of A at time t is 

(48) 
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The concept of measuring a quorum of observables was introduced to avoid the 
above assumption and therefore circumvent the problem of knowing the entire his
tory of the system of interest. However, the definition of the state of A as a partial 
trace is useful if one agrees never to ask questions concerning the joint observables 
defined on '}fA ® '}f B. The average va lues of joint observables depend on correlations 
between A and Band this information is lost in the operation of taking the partial 
trace. 

Conventional quantum mechanics requires only that apreparation II be repro
ducible to have associated with it astate PA of the prepared system. For quantum 
thermodynamics, however, it was discovered recently that an additional restriction 
must be placed on the preparation. Hatsopoulos and Cyftopoulos7- 10 were the first 
authors to point out the need for a distinction between two types of reproducible 
preparations, referred to as ambiguous and unambiguous. The original definitions of 
these new concepts are expressed in terms of time correlations of average values. 
Instead of quoting those definitions, we may readily illustrate this newest quantal knot 
by contrasting two reproducible preparations which are both acceptable in ordinary 
quantum mechanics but only one of wh ich is acceptable in quantum thermodynamics. 

We consider in particular preparations {Il i li = 1,2, ... } each of wh ich when 
repeated generates an ensemble characterized by canonical density operator 

, exp(-ß;H) 
p. = 

I Tr[exp(-ß;H)] 
(49) 

where ßi is determined by the mean energy U i through 

Ui = Tr(p;H) (50) 

Since Pi is the thermodynamic equilibrium state, the corresponding preparation 
scheme II i may essentially entail waiting until the closed system with internal energy 
Ui spontaneously attains stable thermal equilibrium. An alternate procedure would be 
to couple the system to a thermostat with temperature Ti = l/kßi until mutual equi
librium is achieved, then isolate the system. 

Consider next apreparation IIo which combines II1 and II2 by some operational 
rule. For example, if the flip of a coin results in heads, a system is generated by II1 

and if tails results, a system is prepared in the manner II2• We choose II1 and II2 such 
that the mean energy associated with IIo is 

(51 ) 

but Po =1= P2 so that ß1 =1= ß2· 
Let the preparation II3 be such that 

U3 = Tr(p3H ) = Uo (52) 

In general ß3 =1= ßb ß3 =1= ß2· 
The preparation IIo is ambiguous where II3 is unambiguous. If some thermody

namic property, e.g., temperature or adiabatic availability, is measured on systems 
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prepared by IIo one will find two results, sometimes Tl> sometimes Tz for the temper
ature. Any system prepared by lI3 will, upon measurement, yield the temperature T 3• 

On the other hand, if the quantum mechanical energy observable H is measured on 
systems prepared by IIo and by lI3 no distinction is possible since the result of each 
measurement is an eigenvalue of Hand the arithmetic means of these results are the 
same for IIo and lI3• 

This distinction between ambiguous and unambiguous preparations is an 
attempt to iIlustrate the difference between quantum observables and thermodynamic 
properties. There are measurable properties of systems, such as temperature and 
entropy, which are not the mean values of some quantum mechanical operators. This 
difference is present even in Cibbs' original approach where the temperature is 
related to the modulus of the distribution and is not the average value of a function 
of phase. 

The temperature of a single thermodynamic system is, however, related to the 
average value of a quantum mechanical operator H. In conventional quantum 
mechanics the average value of H refers to the arithmetic mean of the results of mea
surements of H on an ensemble of identically prepared systems. In quantum statistical 
thermodynamics, Tr(pH) is interpreted as the internal energy of a single system pre
pared in the manner II with the associated density operator p. An ensemble is nec
essary to determine the p associated with preparation lI, but once p is known it applies 
to each system prepared by II as far as thermodynamic properties are concerned. The 
density operator p will predict with certainty the entropy of a single system prepared 
in the manner lI, but it cannot predict with certainty the result of a measurement of 
the quantum mechanical energy of a single system prepared in the manner II. It is 
this difference in the predictive power of p which necessitates the distinction between 
ambiguous and unambiguous preparations. Systems prepared by an unambiguous 
preparation all share the same values for thermodynamic quantities; thus, such an 
ensemble is thermodynamically "homogeneous" even though its density operator may 
have the form traditionally associated with inhomogeneous quantal ensembles 
(mixtures). 

Requiring that preparations be unambiguous has important implications con
cerning the interpretation of the canonical state. Consider an ensemble of identical 
N-Ievel systems prepared by the ambiguous preparation lIm • We take lIm such that 
each system in the ensemble is prepared in an energy eigenstate associated with 
energy eigenvalue Ei and such that the relative frequency of occurrence Pi of systems 
in state Ei is 

exp(-ßEi) 
Pi = Tr[exp( -ßH)] 

The density operator representing the preparation lIm is the incoherent mixture 
N 

L exp(-ßEi) I Ei)(Ed 
p = .o..i-....:..l-----.N;--_____ = exp( - ßH) 

L exp( -ßEi) Tr[exp( -ßH)] 
i-I 

(53) 

(54) 
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Now consider a second ensemble prepared by an unambiguous preparation fic of 
the kind described under (50) which prepares identical N-Ievel systems in the ca non
ical equilibrium state 

~ exp(-ßH) 
p= 

Tr[exp( -ßH)] 
(55) 

By construction, any system from the ensemble prepared by firn has come from 
an identifiable pure subensemble and hence the entropy is zero for each system. On 
the other hand, any system taken from the ensemble prepared by fic is in thermal 
equilibrium with nonzero entropy. 

The two density operators p and p have the same form, but the interpretation of 
each is fundamentally different. Requiring all preparations in quantum thermodynam
ics to be unambiguous e1iminates preparations of the type firn. The state of a system 
prepared in thermodynamic equilibrium is not some unknown energy eigenstate but 
is simply the entire mixture p, the canonical state. By the state of a system we mean 
all the information concerning the average values of all observable properties of the 
system at the present time and all the information necessary to predict the average 
values in the future. Since papplies only to the ensemble it cannot be used to predict 
the thermodynamic behavior of one system taken from the ensemble. 

Another important consequence resulting horn the elimination of preparations 
firn from the theory of quantum thermodynamics is that the popular use of transition 
probabilities to describe the approach to equilibrium is fallacious. A transition prob
ability is a concept taken from perturbation theory and gives the total probability that 
a system in one energy eigenstate of the unperturbed Hamiltonian will make a tran
sition to another energy eigenstate. The transition is induced or caused by the per
turbation. If the system is not in an energy eigenstate, as is the case when the state is 
p, then there are no transition probabilities defined. 

An example of the use of transition probabilities in describing the approach to 
equilibrium is found in the theory of paramagnetic relaxation. It is imagined that there 
is some number N + of the spin systems in the eigenstate spin up (magnetic moment 
parallel to the applied field) and some number N - N + = N _ in the eigenstate spin 
down. The interaction of the spins with the lattice is treated as a perturbation. An 
equation for the rate of change of N + is then written as 

(56) 

where W( - - +) is the probability of a transition horn spin down to spin up, W( + 
- -) is the probability of a transition from spin up to spin down. If VSL is the per
turbation Hamiltonian describing the spin-Iattice interaction, then to first order, 

W(- - +) = W(+ - -) oe: 1 (upl VsLldown) 12 (57) 

The rate equation above predicts the equilibrium numbers, 

(58) 
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If the sam pie is at some finite temperature T, then N + =I- N /2 and the rate equation 
fails in its prediction. We attribute this failure to the fact that each spin system in the 
sampie is not in some energy eigenstate but is in a mixed state. 

If N + is interpreted as N times the average value of the projection operator onto 
the eigenspace of spin up, then the rate equation applies to the entire ensemble as if 
it were a single system, i.e., as if a single system were prepared by some unambiguous 
preparation. In this case the transition probabilities are not defined since the system 
is not in some unknown energy eigenstate. 

We therefore conclude that the use of rate equations to describe relaxation to 
equilibrium cannot provide a fundamental understanding of the process. The falla
cious character of the approach becomes dear when we realize it is necessary to rein
terpret W( - -+ +) and W( + -+ -) in order to predict the correct equilibrium state. 
It is customarily assumed that these probabilities are related by a Boltzmann factor, 

W(- -+ +) 
--'~---'- = exp(2ß~) 
W(+ -+-) 

(59) 

where ß = 1/ kT and ~ is given by H I up} = - ~ I up}. This assumption is of course 
without justification and is in fact not compatible with the condition 

W(+ -+ -) = W(- -+ +) <X l(upIVsddown}1 2 (60) 

4. KNOTS ASSOCIATED WITH ZEROTH AND FIRST LAWS 

The traditional aim of quantum statistical thermodynamics has been to account 
for the behavior of thermodynamic systems in terms of the laws of quantum mechan
ics; yet even the Zeroth and First Laws of thermodynamics when interpreted mechan
ically give rise to troublesome knots. 

To demonstrate this we will briefty discuss an application of thermodynamics, 
i.e., a question to which thermodynamics is capable of yielding an answer, and then 
show the approximations necessary in mechanics to yield the same answer. 

One of the fundamental problems of thermodynamics is to predict from the ini
tial conditions the final conditions of two interacting systems. For example, if a piece 
of warm lead is placed in a cup of cool water, we may inquire as to the final (equilib
rium) temperatures of the lead and the water. To solve the problem we rely on the 
Zeroth and First Laws of thermodynamics. The Zeroth Law states that two systems 
in equilibrium have equal temperatures, and furthermore that a third system at the 
same temperature is in equilibrium with the first two systems. Therefore in our exam
pIe the final state is attained when the temperature of the lead is the same as the 
temperature of the water. We could also argue that the final equality of temperatures 
is a consequence of the Second Law since the total entropy of the two systems is 
maximum when the temperatures are equal. 
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The value of this final, common temperature can be predicted using the First 
Law, wh ich states that the total energy of the composite system lead plus water is 
constant. The energy lost by the lead is gained by the water. If the energy of each as 
a function of temperature is known, it is then easy to calculate the final, common 
temperature. In order to verify that the final temperatures are indeed equal, one must 
separate the two systems, i.e., terminate the interaction. It is routinely assumed in 
thermodynamics that separating the systems affects neither the energies nor the tem
peratures of the two systems. Moreover, as commonly applied to composite systems, 
the First Law is a statement concerning the sum of the private energies and as such 
does not include the interaction energy. As is the case with the energy, in equilibrium 
the entropy is also regarded as an extensive thermodynamic quantity; thus the total 
entropy of the composite system is the sum of the private entropies of the constituent 
subsystems. 

Now let us analyze the same type of problem-two systems interacting-with 
quantum statistical thermodynamics. Take two systems A and B with associated Hil
bert spaces 7f A and 7f B, respectively. The energy operator Hand density operator PAß 

for the composite system are defined on the tensor product space 7f A ® 7f ß. The 
initial state is assumed to have the uncorrelated form 

(61 ) 

We can, as discussed earlier, define the state of, say, system A at any time t as the 
reduced density operator PA obtained by taking the trace over 7f B of PAB. In some cases 
H can be written as a sum of private energies plus an interaction term, 

H = HA ® JB + JA ® H B + VAB 

= HA + H B + VAß 

(62) 

(The second equality gives the standard abbreviated form where identities and ® 
symbols are suppressed.) Under these circumstances, we may define the private 
energy of A as 

(63) 

Quantum statistical thermodynamics predicts that the equilibrium state PAB for 
the composite system is the canonical state 

A exp[ -ß(HA + H B + VAB)] 
PAB = Tr{exp[ -ß(HA + H B + VAB)]} 

(64) 

with Tr(PABH) = Tr{(PA(O) ® PB(O)H}. 
The density operator PAß cannot in general be factored into the tensor product of 

two canonical states. Further, we cannot at this point logically claim that the two 
systems A and Bare at the same temperature because there is only a single (compos
ite) system; but if the interaction energy is neglected compared to the private energies 
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of the two systems A and B then the canonical operator can be factored into the tensor 
product of two canonical density operators with the same temperature parameter: 

A _ exp( -ßHA) ® exp( -ßHB) 

PAB - Tr[exp( -ßHA )] Tr[exp( -ßHB)] = PA ® PB 
(65) 

Two independent systems can now be identified and the temperatures are indeed 
equal. Nevertheless, the statement of the equality of temperatures in equilibrium is 
only approximately true inasmuch as two temperatures can be defined and compared 
only if the interaction is neglected. 

The First Law of Thermodynamics, viewed as conservation of the sum of private 
energies, is also an approximation. In thermodynamics, the entropy is maximized sub
ject to the constraint that U A + . U B = const. In quantum statistical mechanics the 
constraint is that the total energy is constant, i.e., U A + U B + (V AB) = const. If ( V AB) 

« U A + U B, then we recover the First Law of thermodynamics from quantum sta
tistical thermodynamics. 

That the entropy in equilibrium is additive over subsystems is also seen to be an 
approximation. The entropy of the composite system is calculated using (64); but from 
the subadditivity of entropy (9) we have 

(66) 

with equality if and only if (65) were strictly true. Therefore the extensive property 
of entropy is an approximation. Evidently some familiar thermodynamical procedures 
are best interpreted as approximations; the art of thermodynamics is to know how to 
partition a system into subsystems so that these approximations are valid and the laws 
of thermodynamics apply. 

As an example, consider two very thin sheets A and B. If we assurne the inter
action energy is proportional to the surface area in contact between two systems, then 
the thermodynamics of the composite system where the area of contact is the edges 
of the sheets will be different from the case where the contact is the faces of the sheets. 
In the first case (V AB) « U A + U B, but in the latter case (V AB) need not be negligible 
compared to U A and U B' Simply stating that the sheets are brought into contact is not 
sufficient to determine if the normal methods of thermodynamics apply to the two 
sheets separately or only to the composite system viewed as one sheet. 

Finally, we discuss an interesting knot connected with the concept of interaction 
as it is customarily interpreted in statistical thermodynamics. As we have seen, the 
interaction part of H needs to be present and large enough to provide a channel for 
nie transfer of an appreciable amount of energy between the systems but at the same 
time must be, in some sense, small compared to the private energies of the interacting 
systems. It is not always clear what this criterion means. There are systems for which 
the H is not simply a sum of private energy operators onto which a small interaction 
term is added. If this is the case, then the interaction may not possess the properties 
described above. To illustrate this, consider the interaction of an N-particle gas G in 
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a box compressed by a weight W in a gravitational field. The energy operator for W 
has the standard form 

p2 
H w = 2m + mgZ (67) 

and the energy operator for G 

N 

He = Hh + LViboX (68) 
i=l 

In this expression, Hh contains all kinetic energies of the particles of the gas plus all 
interparticle potential energies Vii' i.e., 

N 2 N 

Hh = L~+ LVii 
i=1 2mi i.i=1 

(69) 

The term V ibox is the potential energy of the ith particle due to the walls of the box: 

where e is the Heaviside unit step function. 
This potential energy contains both the position operators for the gas particle 

and the position operator of the weight, and is therefore an operator defined in the 
tensor product space 'He ® 'H w, where 'H e, 'H ware the Hilbert spaces associated 
with G, W respectively. 

The total energy operator for the system is 

where 

H = Hh ® Iw + Ie ® H w + Vew 

N 

V ew = L Vibox(Xi>Yi>Zi,Z) 
i-I 

(71 ) 

(72) 

Clearly we cannot regard Vew as being "small" in any sense. Indeed to neglect 
Vew is to disregard the walls of the box, thereby making the system of gas plus weight 
fundamentally different. The point of this illustration is that we cannot give a general 
rule concerning the ignorability of the interaction between two systems. Whether V AB 

can be neglected so that A and B may be regarded as separable in applying the laws 
of thermodynamics must be decided ca se by case. 
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