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a b s t r a c t

The density matrix model described in an earlier paper ‘‘Model
Dynamics for Quantum Computing’’ is applied to the case of two
qubits. The earlier paper provided a density matrix dynamics
with unitary time-dependent gates including qubit energy split-
ting, entropy constraints, external bath and noise effects. The
Lindblad formulation as extended by Beretta was adopted in
designing this model. Visualization was provided by examining
the time-evolution of the polarization vector. In this paper, the
same ideas are applied to two-qubit systems, where there are
now 15 time-dependent observables; namely, six polarization
vectors (P⃗A, P⃗B), and nine spin-correlations (

←→
T ). These time-

dependent observables provide ready visualization of two qubit
dynamics. Special emphasis is placed on the CNOT gate, which
is implemented following recent outstanding developments in
using silicon-based dots. By invoking a different splitting for each
qubit, plus a spin–spin interaction and a carefully designed Rabi
oscillation, a CNOT gate is generated. Careful analysis of the
time-dependence of these aspects provides insight into CNOT
dynamics. The model can be used to ascertain the sensitivity
and efficacy of such a CNOT gate when subject to external
environmental effects such as noise disturbances, and noise
compensation, using the single-system formulation of steepest-
entropy-ascent (SEA) non-equilibrium quantum thermodynam-
ics, suitable to model controlled-gate implementations as long
as the two qubits remain localized and effectively behave as a
single physical four-level system. The role of careful timing in
constructing an efficient CNOT gate is illustrated. The formation
of Bell states and the evolution of entanglement including noise,
bath and entropy considerations are examined. Extensions to the
two-qubit swap, and to the three-qubit Toffoli gate dynamics
are outlined. It is also shown that a simple Lindblad form can
be used to introduce weak and distinct qubit noise pulses. A
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simple scheme for noise compensation is designed to increase
purity and decrease entropy, without invocation of quantum
correction methodology. It is based on using the preexisting
entanglement of the environment with the quantum system and
carefully designed non-Hermitian Lindblad pulses.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The main goal of this paper is to examine the effect of disturbances on the stability and efficacy
f quantum gates as generated by finely-tuned electromagnetic pulses. For that purpose, a density
atrix model for a single qubit system was developed in an earlier paper [1]. That paper described

ime-dependent gates acting on a non-degenerate single qubit. Single qubit NOT and Hadamard
ates were incorporated as unitary evolution pulses, which also accounted for the non-degeneracy
f the qubit. Noise effects were incorporated using Lindblad operators [2–5] taken as random pulses.
he Lindblad form can be used to describe all environmental effects. However, special terms were
ntroduced to isolate and to gain insight into specific environmental effects, such as the bath-system
ynamics, and entropy constraints.
The influence of an external bath and entropy dynamics were incorporated by additional

indblad–Beretta terms, which preserve the Hermiticity, unit trace, and semi-positive properties
f the fundamental density matrix. For the entropy aspect, the Beretta form [6–15] is invoked
ince it includes the idea of steepest-entropy-ascent (SEA) for noiseless open or closed systems.
n [14] the dynamics for a single system is developed, which was extended to a composite system
n [13]. In this paper, only the single-system formulation is presented, based on the assumption
hat the double-quantum-dot system is effectively a single physical four-level system which from
he point of view of quantum computing may be interpreted as implementing two fully-coupled
ubits. The composite-system formulation will be considered in a subsequent study dealing with
patially-separated qubits, for which there is the need to deal with the problems of supraluminal
ommunications (signaling) and non-Hamiltonian energy exchange.
The Beretta et al. description includes definitions of entropy, work, and heat transfer for non-

quilibrium systems. Their resultant master equation has many important features, as illustrated
n [1]. Indeed, the Lindblad–Beretta master equation has been adopted here as a phenomenological
escription of quantum computer (QC) dynamics. It includes the essential feature of imposing
teepest-entropy-ascent (SEA) for the evolution of a density matrix, which has indeed been elevated
o the 4th law for non-equilibrium thermodynamics [6]. As described in Beretta et al. [7] ‘‘It is
function of ρ, log ρ and H designed so as to capture the nonlinear dynamics of an irreversible
rocess by pulling the density or state operator ρ in the direction of the projection of the gradient of
he von Neumann entropy functional ...’’. Again including supraluminal communications (signaling)
s relegated to a future study.

Here the above ideas are applied to the time-evolution of both single and double qubit gates
sing Hamiltonians that incorporate Rabi oscillations. This replaces our earlier use of a bias pulse
o counteract qubit splitting.

The one and two qubit density matrices are discussed in Section 2, where the associated 3
one qubit) and 15 (two qubit) spin observables are defined. The Hamiltonian that describes qubit
on-degeneracy, spin–spin interactions, and the Rabi oscillation is then displayed.
The single qubit case is presented in Appendix A to include generation of NOT and Hadamard

ates using Rabi oscillations for a non-degenerate qubit. The detailed dynamics is visualized via the
ime dependent polarization vector. This update lays the foundation for the extension to two qubits,

s presented in Section 3 and in Appendix B. The three-qubit Toffoli gate is presented in Appendix C.

2



F. Tabakin Annals of Physics 457 (2023) 169408

i
m
a

B
o

s
s
i
E
n

e
g

H
c
e

2

q

i

|

w

In Section 4, we present the full two qubit model master equation. Several aspects of the model,
ncluding an analysis of the Beretta terms are also in Section 4. In Section 5, properties of the full
aster equation are examined numerically. We use the Mathematica NDSolve for numerical results;
lternately, one could invoke Laplace transform and Keldysh [16,17] methods.
Emphasis is on the CNOT gate for open systems, but procedures for setting up swap gates and

ell states are also outlined in Section 5, with emphasis on the role of the CNOT gate on the onset
f entanglement.
Distinct weak noise pulses are introduced and their influence examined in Section 5.0.1. A

cheme to counter those detrimental noise effects is proposed based on the idea of a curative
equence of weak Lindblad pulses designed to decrease entropy. The initial approach presented here
s simply to invoke such pulses to restore lost efficacy. We refer to this as noise compensation (NCO).
rror correction methods and/or classical computing information can also be used to complete the
oise correction (NC), but that burden is ameliorated somewhat by the initial NCO steps.
In Section 6 conclusions and future plans are discussed.
This work provides a practical dynamic framework for examining, not only the influence of an

nvironment on the efficacy of a QC, but also the loss of reliability in the action of gates and the
eneral loss of coherence. A simple method for partial restoration of stability is proposed.
The master equation designed here incorporates the main features of a density matrix; namely,

ermiticity, unit trace and semi-positive definite character, while also including the evolution of
losed and open systems and the effects of gates, noise compensation, noise correction and of an
xternal bath.

. Density operator for one and two qubits

The density operator [18–20] is an operator in Hilbert space that represents an ensemble of
uantum systems. The two-qubit spin density operator, ρ can be understood as a classical ensemble

average over a collection of subsystems (the ensemble) which occur in a general state |α β ⟩, with
a joint probability Pα,β. By a general state, we mean a state of the subsystem that is a general
superposition of a complete orthonormal basis (such as eigenstates of a Hamiltonian). For an
ensemble of two spin 1/2 particles, |α β ⟩ = |α⟩ |β⟩ is a product of single qubit spinors of the general
form

|α⟩ = |n̂α⟩ = cos(θα/2) e−iφα/2|0⟩ + sin(θα/2)e+iφα/2|1⟩
|β⟩ = |n̂β⟩ = cos(θβ/2) e−iφβ/2|0⟩ + sin(θβ/2)e+iφβ/2|1⟩ (1)

where the computational basis |0⟩ and |1⟩ denote spin-up and spin-down states, respectively, and
α and β label the Euler angles θα, φα and θβ , φβ , which specify the general directions n̂α and n̂β

n which qubit A and qubit B are pointing. Writing the spin states in matrix form |0⟩ →
(
1
0

)
and

1⟩ →
(
0
1

)
, the above single qubit states are:

|α⟩ =

(
cos(θα/2) e−iφα/2

sin(θα/2) e+iφα/2

)
|β⟩ =

(
cos(θβ/2) e−iφβ/2

sin(θβ/2) e+iφβ/2

)
. (2)

This general two-qubit state is normalized but not necessarily orthogonal, ⟨α′|α⟩ ̸= δα′,α and
⟨β ′|β⟩ ̸= δβ ′,β . The above states are eigenstates of the tensor product operator (σ⃗ · n̂α)⊗ (σ⃗ · n̂β ) ,
here the components of σ⃗ are the Pauli operators.1

1 Note: σ⃗ · n̂ = sin θ cosφ σ + sin θ sinφ σ + cos θ σ .
α α α 1 α α 2 α 3

3
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For a two-qubit system, the definition of a density matrix can be generalized to a product Hilbert
pace form involving systems of type A and B2

ρAB ≡
∑
α,β

Pα,β |αβ ⟩⟨αβ |, (3)

here Pα,β is the joint probability for finding the two systems with the attributes labeled by α and
. For example, α could designate the possible directions n̂α of one spin-1/2 system, while β labels
he possible spin directions of another spin 1/2 system, n̂β . One can always ask about the state of
ust system A or B by summing over or tracing out the other system. For example, the density matrix
f system A is picked out of the general definition above by the following partial trace steps3:

ρA = TrB(ρAB)

=

∑
α,β

Pα,β |α⟩⟨α|TrB
(
|β⟩⟨β|

)
=

∑
α

(
∑
β

Pα,β ) |α⟩⟨α|

=

∑
α

Pα|α⟩⟨α|. (4)

ere the product space is denoted as |α β⟩ ↦→ |α⟩|β⟩ and the probability for finding a local state
f subsystem A α is defined by

Pα =

∑
β

Pα,β . (5)

his is a standard way to get an individual probability from a joint probability.
It is easy to show that all of the other properties of a one-qubit density matrix still hold true for

composite system case. It has unit trace, it is Hermitian with real eigenvalues and is semi-positive
efinite.
The quantum rule for the expectation value of a two qubit operator Ω is ⟨α β|Ω|α β⟩, and for

n ensemble of separate quantum subsystems one can form the classical ensemble average ⟨Ω⟩ for
he Hermitian observable Ω by taking

⟨Ω⟩ =

∑
α β⟨α β|Ω|α β⟩Pα β∑

α β Pα β

. (6)

he ensemble average is then a simple classical average where Pα β is the probability that the
articular qubit states α β appear in the ensemble. Summing over all possible states of course yields
α β Pα β = 1. The above expression is a combination of a classical ensemble average with the

uantum mechanical expectation value. It contains the idea that each member of the ensemble
nterferes only with itself quantum mechanically and that the ensemble involves a simple classical
verage over the probability distribution of the ensemble.
We now define the two qubit density operator by

ρ ≡
∑
α β

|α β⟩⟨α β|Pα β . (7)

sing closure,4 the ensemble average can now be expressed as a ratio of traces

⟨Ω⟩ =
Tr(ρΩ)
Tr(ρ)

≡ Tr(ρΩ), (8)

2 The sums over α and β can be described as integrals over the associated Euler angles.
3 The property TrB(|β⟩⟨β|) = ⟨β|β⟩ = 1 is used.
4 Closure is a statement that |n⟩ is a complete orthonormal basis and

∑
|n⟩ ⟨n| = 1.
n

4
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hich entails the properties

Tr(ρ) =
∑
mm′

⟨mm′|ρ|mm′⟩

=

∑
α β

Pα β

∑
m

⟨α|m⟩⟨m|α⟩
∑
m′

⟨β|m′⟩⟨m′|β⟩

=

∑
α β

Pα β ⟨α|α⟩ ⟨β|β⟩ =
∑
α β

Pα β = 1, (9)

here |m⟩ and |m′⟩ denote complete orthonormal bases (such as the computational basis), and

Tr(ρΩ) =
∑

mµm′µ′

⟨mµ|ρ|m′ µ′⟩⟨m′ µ′|Ω|mµ⟩

=

∑
mµm′µ′

∑
α β

Pα β⟨mµ|α β⟩⟨α β|m′ µ′⟩⟨m′ µ′|Ω|mµ⟩

=

∑
α β

Pα β ⟨α β|Ω|α β⟩, (10)

hich returns the original ensemble average expression.
The section in Ref. [1] on alternate interpretations of the density matrix can be applied to the

resent case of two qubits.

.1. Properties of the density matrix

The definition for two qubits ρ =
∑

α β |α β⟩⟨α β|Pα,β is a general one, if we interpret α and β
s labels for the locally measurable properties of each qubit. Several important general properties
f a density operator follow from this definition. The density operator:

• is Hermitian ρ†
≡ ρ , hence its four eigenvalues are real;

• has unit trace, Tr(ρ) ≡ 1, hence the sum of its four eigenvalues equals 1;
• is semi-positive definite, which means that all of its eigenvalues are greater or equal to zero.

This, together with the fact that the density matrix has unit trace, ensures that each density
matrix eigenvalue is between zero and one, and yet sum to 1;
• for a pure state, every member of the ensemble has the same quantum state and only one α0

and one β0 appear and the density operator becomes ρ = |α0 β0⟩⟨α0 β0|. If the state |α0 β0⟩ is
normalized to one then, ρ2

= ρ and one density matrix eigenvalues is 1, with all others zero;
• for a general ensemble ρ2

≤ ρ a mixture of possibilities appear as reflected in the probability
distribution Pα β with the equal sign holding for pure states.

.2. Classical correlations and entanglement

The density matrix for composite systems can take many forms depending on how the systems
re prepared. For example, if distinct systems A & B are independently produced and observed
ndependently, then the density matrix is of product form ρAB ↦→ ρA ⊗ ρB. Then for observables of
roduct form ΩAB ↦→ ΩA ⊗ΩB, the ensemble average factors

⟨ΩAB⟩ =
Tr(ρABΩAB)
Tr(ρAB)

=
Tr(ρAΩA)
Tr(ρA)

Tr(ρBΩB)
Tr(ρB)

= ⟨ΩA⟩⟨ΩB⟩, (11)

as is expected for two separate uncorrelated spin–spin experiments. For observables of additive
form, such as energy for noninteracting subsystems, the ensemble average is a sum of subsystem
energies. For such an uncorrelated case, the ensemble average entropy is also a sum of subsystem
entropies.

This case can also be expressed as having the joint probability factor Pα,β ↦→ PαPβ the usual
probability rule for uncorrelated systems.
5
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Another possibility for the two systems is that they are prepared in a coordinated manner,
ith each possible local state of each subsystem assigned a probability based on the correlated
reparation technique. For example, consider two colliding beams, A & B, made up of particles with
he same spin. Assume the particles are produced in matched pairs with common spin direction n̂.
lso assume that the preparation of that pair in that shared direction is produced by design with a
lassical probability distribution Pn̂. Each pair has a density matrix ρn̂⊗ρn̂ since they are produced
separately, but their spin directions are correlated classically. The density matrix for this case is
then

ρAB =
∑
n̂

Pn̂ ρn̂ ⊗ ρn̂. (12)

This is a ‘‘mixed state’’ which represents classically correlated preparation and hence any density
matrix that can take on the above form can be reproduced by a setup using classically correlated
preparations and does not represent the essence of Quantum Mechanics, e.g. an entangled state.

An entangled quantum state is described by a density matrix (or by its corresponding state
vectors) that is not and cannot be transformed into the two classical forms above; namely, cast
into a product or a mixed form. For example, the two-qubit Bell state 1

√
2
(|01⟩+ |10⟩) has a density

atrix

ρ =
1
2
(|01⟩⟨01| + |01⟩⟨10| + |10⟩⟨01| + |10⟩⟨10| ) (13)

that is not of simple product or mixed form. It is the prime example of an entangled state.

2.3. Observables and the density matrix

Visualization of the density matrix and understanding its significance is greatly enhanced by
defining associated real spin observables.

2.3.1. One-qubit
The one-qubit density matrix is a 2 × 2 Hermitian semi-positive definite matrix of unit trace

and is fully stipulated by three real parameters. The polarization vector P⃗(t), also called the Bloch
ector, are the three most useful parameters.
Operators or gates acting on a single qubit state are represented by 2 × 2 matrices. The

imension of the single qubit state vectors (|0⟩ and |1⟩) is N = 2nq = 2, with nq = 1. The Pauli
matrices provide an operator basis of all such matrices. The Pauli-spin matrices are:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (14)

These are all Hermitian matrices σi = σ
†
i . We use the labels (1, 2, 3) to denote the directions (x, y, z).

The fourth Pauli matrix σ0 is simply the 2 × 2 unit matrix. Any 2 × 2 matrix can be constructed
from these four Pauli matrices, which therefore are an operator basis. That construction applies to
the density matrix ρ(t) at any time t. Thus the general form of a one-qubit density matrix, using
the four Hermitian Pauli matrices as an operator basis is:

ρ(t) =
1
2

[
σ0 + P1(t) σ1 + P2(t) σ2 + P3(t) σ3

]
(15)

=
1
2

[
σ0 + P⃗(t) · σ⃗

]
=

1
2

(
1+ P3(t) P1(t)− iP2(t)
P1(t)+ iP2(t) 1− P3(t)

)
,

where the traceless spin operators are σ⃗ = {σ⃗1, σ⃗2, σ⃗3}, and the real polarization vector is P⃗(t) =
{P1(t), P2(t), P3(t)}. The polarization P⃗(t) is a real vector, which follows from the Hermiticity of the
density matrix ρ†(t) ≡ ρ(t) and from the ensemble average relation

P⃗(t) = Tr(σ⃗ ρ(t)) ≡ ⟨σ⃗ ⟩.
6
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he above density matrix is clearly Hermitian ρ†(t) = ρ(t) and of unit trace Tr(ρ(t)) = 1, for real
olarization. The semi-positive definite character is assured by the condition P(t) =| P⃗(t) |≤ 1,
.e. inside the Bloch ball.

Thus specifying the polarization vector (also called the Bloch vector) determines the density
atrix and it is convenient to view the polarization as a function of time to gain insight into qubit
ynamics.
The semi-positive definite condition for a single qubit follows from determining that the two

igenvalues are λ1(t) = 1+P(t)
2 , λ2 =

1−P(t)
2 , where the length of the polarization vector P(t) ≤ 1.

he unit trace condition becomes simply that the eigenvalues of ρ sum to one

Tr(ρ(t)) = 1 = Tr(Uρ(t) ρD(t)U†
ρ (t)) (16)

= Tr((U†
ρ (t)Uρ(t)) ρD(t))

= Tr(ρD(t))
= λ1(t)+ λ2(t),

here Uρ(t) is the unitary matrix that diagonalizes the density matrix at time t. The diagonal density
atrix ρD(t) has real eigenvalues along the diagonal. The semi-positive condition now asserts that
ach of these eigenvalues is greater or equal to zero and less than or equal to one: 0 ≤ λi(t) ≤ 1,
hile summing to 1. For the one qubit case the above conditions mean that λ1(t)+ λ2(t) = 1, and
ince 0 ≤ λi(t) ≤ 1, the length of the polarization vector P(t) remains between zero and one, inside
he Bloch ball.

Note that the density matrix, its eigenvalues and associated polarization vector in general depend
n time. Indeed, the dynamics of a one-qubit system is best visualized by how the polarization or
igenvalues change in time. The polarization operator is simply Ω = σ⃗ and we have the following
elations for the value and time derivative of the polarization vector:

P⃗(t) = Tr( σ⃗ ρ(t) ) = ⟨σ⃗ ⟩ (17)
dP⃗(t)
dt
= Tr( σ⃗

dρ(t)
dt

).

2.3.2. Two-qubits
Much of what is presented here applies to multi-qubit and qutrit cases. The main difference for

more qubits/qutrits is an increase in the number of polarization and spin correlation observables.
The two-qubit density matrix is a 4 × 4 Hermitian semi-positive matrix of unit trace and is

fully stipulated by 15 real parameters. Note the state vectors are of dimension N = 2nq = 4, with
q = 2 qubits; the density matrix is then a 4 × 4 matrix, The Hermiticity and trace properties
hen lead to a count of 2nq2nq − 1 ≡ 15 parameters. Six of these parameters can be selected to be
olarization vectors P⃗A(t) for qubit A and P⃗B(t) for qubit B. The remaining nine parameters are the
pin correlations (

←→
T ), written in dyadic form.

More specifically, the two qubit density matrix

ρ(t) =
1
4
(I4 + χP

A (t)+ χ
P
B (t)+ χ

T (t))

χP
A (t) =

∑
i=1,3

PA
i (t) σ

A
i ⊗ σ

B
0

χP
B (t) =

∑
i=1,3

PB
i (t) σ

A
0 ⊗ σ

B
i

χ T (t) =
∑

i,j=1,3

Ti j(t) σ A
i ⊗ σ

B
j (18)

s expressed in terms of the 16 tensor product basis operators σ A
i ⊗ σ

B
j for i, j = 0 · · · 3.

Here I4 ≡ σ A
0 ⊗σ

B
0 denotes the 4 × 4 identity matrix. The χP (t), χ T (t) terms are also given below

here the Hermitian and traceless aspects are manifest. The polarizations and spin correlations are
7
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Table 1
Density matrix, polarizations and tensor polarizations for some simple cases. The convention used for each qubit is spin
up: ρ = |0⟩⟨0|, spin down : ρ = |1⟩⟨1|.

ρ Matrix P⃗A P⃗B ←→
T AB

|0 0⟩⟨0 0|

⎛⎜⎝1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ {0, 0, 1} {0, 0, 1}

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠

|0 1⟩⟨0 1|

⎛⎜⎝0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ {0, 0, 1} {0, 0,−1}

⎛⎝0 0 0
0 0 0
0 0 −1

⎞⎠

|1 0⟩⟨1 0|

⎛⎜⎝0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎠ {0, 0,−1} {0, 0, 1}

⎛⎝0 0 0
0 0 0
0 0 −1

⎞⎠

|1 1⟩⟨1 1|

⎛⎜⎝0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎠ {0, 0,−1} {0, 0,−1}

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠

now all understood to be time dependent. We use x, y, z to label the i = 1, 2, 3 indices.

χP
A + χ

P
B =

⎛⎜⎜⎜⎝
PA
z + PB

z PB
x − iPB

y PA
x − iPA

y 0

PB
x + iPB

y PA
z − PB

z 0 PA
x − iPA

y

PA
x + iPA

y 0 −PA
z + PB

z PB
x − iPB

y

0 PA
x + iPA

y PB
x + iPB

y −PA
z − PB

z

⎞⎟⎟⎟⎠ , (19)

χ T (t) = ⎛⎜⎜⎜⎝
Tz z Tz x − iTz y Tx z − iTy z Tx x − Ty y − i(Tx y + Ty x)

Tz x + iTz y −Tz z Tx x + Ty y + i(Tx y − Ty x) −Tx z + iTy z
Tx z + iTy z Tx x + Ty y − i(Tx y − Ty x) −Tz z −Tz x + iTz y

Tx x − Ty y + i(Tx y + Ty x) −Tx z − iTy z −Tz x − iTz y Tz z

⎞⎟⎟⎟⎠ .
Other 4 × 4 basis operator sets can be invoked, such as the usual SU(4) representations or a
spherical tensor basis; those representations could be useful for displaying interesting dynamical
symmetries.5

The polarizations and spin correlations are used to monitor the density matrix dynamics. The 15
spin observables are (see Table 1):

{PA
x , P

A
y , P

A
z }; {P

B
x , P

B
y , P

B
z };

(Tx x Tx y Tx z
Ty x Ty y Ty z
Tz x Tz y Tz z

)
. (20)

Later the effect of exact single NOT and Hadamard gates and of a CNOT gate on the two-qubit
spin observables will be stipulated, which will be used to monitor the efficacy of the dynamic
pulsed gates. The associated spin observable changes for the production of a Bell state will also
be examined.

The relations between the density matrix and the 15 spin observables are:

P⃗A(t) = Tr( (σ⃗A ⊗ σ0) ρ(t) ) ≡ ⟨σ⃗A ⊗ σ0⟩

5 The nine spin correlations can be split into scalar S, axial vector V⃗ , and traceless symmetric τ parts. Here
=
∑

i=1,3 Ti,i = Tr(T ) and V⃗x = (Ty z − Tz y)/2, V⃗y = (Tz x − Tx z )/2, V⃗z = (Tx y − Ty x)/2. The traceless symmetric
art is τi,j = (Ti,j + Tj,i)/2− δi,jTr(T )/3. This is the standard decomposition into 1 + 3 + 5 terms. A decomposition into J

0,1,2 spherical tensors terms is another related option.

8
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P⃗B(t) = Tr( (σ0 ⊗ σ⃗B) ρ(t) ) ≡ ⟨σ0 ⊗ σ⃗B⟩
←→
T (t) = Tr( ( ⃗σ A ⊗ σ⃗B) ρ(t) ) ≡ ⟨ ⃗σ A ⊗ σ⃗B⟩ . (21)

The above are used to obtain explicit dynamical equations in terms of the spin observables6 using

d
dt

P⃗A(t) = Tr( (σ⃗A ⊗ σ0)
d
dt
ρ(t))

d
dt

P⃗B(t) = Tr( (σ0 ⊗ σ⃗B)
d
dt
ρ(t))

d
dt
←→
T (t) = Tr( ( ⃗σ A ⊗ σ⃗B)

d
dt
ρ(t)) . (22)

Note that the partial trace of the above two qubit density matrix yields:

TrB(ρ(t)) = ρA(t) =
1
2

[
σ0 + P⃗A(t) · σ⃗

]
(23)

TrA(ρ(t)) = ρB(t) =
1
2

[
σ0 + P⃗B(t) · σ⃗

]
.

Thus these polarization vectors are subject to the same conditions as for the single qubit case.
Several other quantities are used to monitor the changing state of a quantum system. Later

energy, power, heat transfer and temperature concepts will be discussed. First purity, fidelity, and
entropy attributes will be examined.

2.3.3. Purity
The purity P(t) is defined as

P(t) = ⟨ρ(t)⟩ = Tr( ρ(t) ρ(t) ) ≡
∑
i=1,4

λ2i . (24)

It is called purity since for a pure state density matrix ρ = |ψ⟩⟨ψ |, ρ2
= ρ and Tr( ρ2 ) = Tr( ρ) = 1,

but in general Tr( ρ2 ) ≤ 1. For a pure state, we see that ρ2
= ρ, implies that each eigenvalue

satisfies λi(λi − 1) = 0, so λi = 0 or 1. Since the eigenvalues sum to 1, a pure state has one
eigenvalue equal to one, all others are zero. A mixed or impure state has

∑
i=1,2nq λ

2
i < 1 , which

ndicates that the nonzero eigenvalues are less than 1.
For a two-qubit system, the purity is simply related to the polarizations and spin correlations

P(t) = Tr(ρ2(t)) =
1+ P2

A (t)+ P2
B (t)+ Tr[

←→
T t←→T ]

4
, (25)

P
.
(t) = 2 Tr( ρ(t) ρ.(t) ) = 1

2

[
P⃗A(t) ·

d
dt

P⃗A(t)+ P⃗B(t) ·
d
dt

P⃗B(t)

+ Tr[
←→
T t d

dt
←→
T ]

]
,

where PA(t), PB(t) are the lengths of the polarization vectors for qubits A and B. Here Tt is the
transpose of the real 3 × 3 time-dependent spin correlation matrix:

←→
T =

(T1 1 T1 2 T1 3
T2 1 T2 2 T2 3
T3 1 T3 2 T3 3

)
.

A one-qubit pure state has a polarization vector that is on the unit Bloch ball, whereas its
polarization vector is inside the Bloch ball for the impure case. For a two-qubit system, we have
P2
A (t)+ P2

B (t)+ Tr[Tt T] ≤ 3.

6 The left arrowheads stress the dyadic aspect of the tensor correlations.
9
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m

For two uncorrelated qubits ρ → ρA ⊗ ρB and
←→
T →

←−
PA
−→
PB , the purity becomes

P(t) = PA(t) PB(t) =
1+ P2

A (t)
2

1+ P2
B (t)

2
.

Later we will see how dissipation and entropy dynamics can bring the polarizations inside the Bloch
ball and decrease the spin correlations and hence generate impurity.

2.3.4. Fidelity
Fidelity measures the closeness of two states. In its simplest form, this quantity can be defined

as F=
√
Tr( ρ1 ρ2 ). For the special case that ρ1 = |ψ1⟩⟨ψ1| and ρ2 = |ψ2⟩⟨ψ2|, this yields F ≡

⟨ψ1|ψ2⟩|, which is clearly the magnitude of the overlap probability amplitude.
To align the quantum definition of fidelity with classical probability theory, a more general

efinition is invoked; namely,

F (ρ1, ρ2) ≡ Tr
(√
√
ρ1 ρ2

√
ρ1

)
. (26)

When ρ1 and ρ2 commute, they can both be diagonalized by the same unitary matrix, but with
different eigenvalues. In that limit, we have ρ1 =

∑
i λ1 i|i⟩⟨i| and ρ2 =

∑
j λ2 j|j⟩⟨j| and

F (ρ1, ρ2) ≡ Tr
(
√
ρ1 ρ2

)
≡

∑
i

√
λ1 i λ2 i , (27)

which is the classical limit result.
There are additional measures7 for the closeness of two states. One of these is the trace distance8

DT [ρ1, ρ2] =
1
2

Tr
(√

(ρ2 − ρ1)2
)
,

another is the Hilbert–Schmidt distance

DHS[ρ1, ρ2] =

√
Tr
(
(ρ2 − ρ1)2

)
.

In addition to using the fidelity to monitor the reliability of a CNOT gate, it is convenient to use the
Hilbert–Schmidt distance. Comparing a pair of two-qubit density matrices ρ1 and ρ2, the Hilbert–
Schmidt distance can be expressed in terms of the differences between the two sets of 15 spin
observables as:

D2
HS[ρ1, ρ2] = D2

HS:P + D2
HS:T (28)

D2
HS:P =

∑
i=1,3

(PA
1 i − PA

2 i)
2
+

∑
i=1,3

(PB
1 i − PB

2 i)
2

D2
HS:T =

j=1,3∑
i=1,3

(T1,i j − T2,i j)2

for qubits A and B. Here we see that two density matrices are identical when they have equal spin
observables. The above expression for the Hilbert–Schmidt distance squared consists of separate
contributions from the qubit A and qubit B polarization vector differences and a last term from the
spin correlation differences. The separate terms allows one to identify the main source of density
matrix differences.9

The fidelity and Hilbert–Schmidt distance will be used to monitor the efficacy or stability of any
QC process, where ρ1(t) is taken as the exact result and ρ2(t) is the dynamically computed density
atrix including Rabi driven gates and decoherence, gate friction, and dissipation effects.

7 See [21] for alternate measures of distances between states.
8 These measures are equal to zero, rather than one, for equal density matrices.
9 The Hilbert–Schmidt distance squared satisfies the relation: D2

[ρ , ρ ] = Tr (ρ2)+ Tr (ρ2)− 2 Tr (ρ ρ ).
HS 1 2 1 2 1 2

10
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.3.5. Entropy
An important property of a quantum state is the entropy. The von Neumann [18] entropy at time

is defined by

S(t) = −Tr(ρ(t) log2 ρ(t)). (29)

he Hermitian density matrix can be diagonalized by a unitary matrix Uρ(t) at time t,

ρ(t) = Uρ(t) ρD(t) U†
ρ (t),

where ρD(t) is diagonal matrix ρD(t)i,j = δi,jλi of the eigenvalues. Then for 2 qubits

S(t) = −(λ1 log2 λ1 + λ2 log2 λ2 + λ3 log2 λ3 + λ4 log2 λ4). (30)

With a base 2 logarithm, the maximum entropy for two qubits is Smax ≡ 2 = nq which occurs when
he four eigenvalues are all equal to 1/4. That case is the most chaotic, or of least information. This
ccurs when both the polarizations and the spin correlations are zero ρ = 1

4 I4.
The minimum entropy of zero obtains when one eigenvalue is one, all others being zero; that is

the most organized, maximum information state.
For later use, consider the time derivative of the entropy

dS
dt
= −

∑
i=1,4

(
dλi
dt

log2(λi)+
dλi
dt

) (31)

= −Tr(
dρ
dt

log2(ρ(t))).

ince Tr(ρ) =
∑

i=1,4 λi ≡ 1, the second rhs term above vanishes.

. Unitary evolution

A master equation model for the time evolution of a one-qubit density matrix was developed in
ef. [1]. The model included the dynamical evolution under the action of gates and the role of both
losed system dynamics and of open system decoherence, dissipation and the system’s approach to
quilibrium. These aspects are here extended to two-qubits. From the two-qubit density matrix a
ariety of observables, such as the 15 polarizations and spin correlations, the purity, fidelity, and
ntropy can be examined as a function of time.

.1. Unitary evolution

Here we deal with a time-dependent Hamiltonian H0 + V (t), where the Rabi term is the
ain source of that time-dependence, but the use of pulses to turn on/off interactions is another.

t is well known that time-dependent Hamiltonians yield a unitary time-development operator
(t, t0). Separating off the static H0 contribution leads to the Interaction or Dirac picture. The time-
ependent term is given by a nested set of multiple time integrals (the Dyson series) with different
ntegration ranges that can be recast as a multiple dimensional set of time integrals with a common
0, t range, where the series can then be expressed as

U(t, t0) = T (e−i
∫ t
t0

H(τ ) dτ ).

ere T denotes time-ordered. The Magnus method maps this Dyson series into a set of functions
hat are put into an exponential form which preserves the unitary nature of U(t, t0) at every level
of approximation.

Thus the non-commutativity of H(t) at different times can be incorporated using the Magnus
method. When the Magnus method is used for a fine time-grid with infinitesimal time increments
dt , the commutator [H(t),H(t + dt)] vanishes and Magnus reduces to only one term. This allows
one to simply apply standard nonlinear solution methods, such as the Mathematica code NDSolve
11
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ith a fine grid. The fact that NDSolve-based solutions, such as we adopt here, includes the non-
ommutativity of Hamiltonians at different times has been verified by our numerical studies and
oted by Y. Beltukov10; see [22] for more on this issue. This feature remains true for the Rabi driving
erms, the gate pulses and the non-unitary terms as well. For infinitesimal time increments, we then
ave the unitary evolution or commutator term:

dρ
dt
= −

i
h̄

[
H(t), ρ(t)

]
. (32)

This term specifies the reversible motion of a closed system. To include dissipation, an additional
operator L will be added

ρ
.
= −

i
h̄

[
H(t), ρ(t)

]
+ L (33)

which can describe irreversible open or closed systems.

3.2. Hamiltonian

Our Hamiltonian H(t) = H0+V (t) is a Hermitian operator in qubit state space; for two qubits it
is a 4 × 4 Hermitian matrix. It consists of a time-independent part H0+VSS , plus a time-dependent
part VR(t) (see later) .

3.2.1. Level splitting
For nq = 2, a typical Hamiltonian H0 is

H0 ≡ −
1
2

h̄ωA
L σ

A
z ⊗ σ

B
0 −

1
2

h̄ωB
L σ

A
0 ⊗ σ

B
z , (34)

which describes a 4 level system shown in Fig. 1 with eigenvalues − 1
2 h̄ (ωA

L + ω
B
L ) for state |00⟩,

−
1
2 h̄ (ωA

L −ω
B
L ) for state |01⟩, +

1
2 h̄ (ωA

L −ω
B
L ) for state |10⟩ and +

1
2 h̄ (ωA

L +ω
B
L ) for state |11⟩. We

ave assumed a common z-direction at this stage for both qubits; the associated magnetic fields are
n the same direction but of different magnitudes as reflected in two distinct Larmor frequencies
A
L and ωB

L . This difference can be produced by a magnetic field gradient in the x–y plane.
The polarization vectors for just Hamiltonian H0 precess about their common ẑ direction with

he angular frequencies ωA
L , ω

B
L . This follows from the unitary evolution term

d
dt

P⃗A(t) = Tr
(
(σ⃗A ⊗ σ0)

d
dt
ρ(t)

)
= −

i
h̄

Tr
(
(σ⃗A ⊗ σ0)

[
H0(t), ρ(t)

])
= −

i
h̄

Tr
( [
σ⃗A ⊗ σ0 ,H0(t)

]
ρ(t)

)
= +

i
2
ωA

L TrA
( [
σ⃗A , σ

A
z

]
ρA(t)

)
= Ω⃗A

L × P⃗A(t) (35)

where Ω⃗A
L = ωA

L ẑ. The same steps11 hold for qubit B. Thus, the polarization vectors P⃗A and
P⃗B precess with their respective Larmor frequencies about the same direction ẑ. The polarization
vectors then have fixed values of PA

z and PB
z and their x and y components vary as

PA
x (t) = PA

x (0) cos(ω
A
L t)+ PA

y (0) sin(ω
A
L t) (36)

PA
y (t) = PA

y (0) cos(ω
A
L t)− PA

x (0) sin(ω
A
L t)

PB
x (t) = PB

x (0) cos(ω
B
L t)+ PB

y (0) sin(ω
B
L t) (37)

10 https://mathematica.stackexchange.com/a/58947/14199.
11 One step used above is Tr

(
A [B, ρ]

)
= Tr

(
[A, B] ρ

)
.
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Fig. 1. The two-qubit levels with splittings ± h̄
2 (ωA

L +ω
B
L ),±

h̄
2 (ωA

L −ω
B
L ). We take ωA

L ≥ ω
B
L . The 6 transitions are indicated

by up/down arrows, with the notation ∆cd
ab for the |a b⟩ ↔ |c d⟩ transition. At this stage we have ∆01

00 ≡ ∆11
10 ≡ ωB

L ,
10
00 ≡ ∆

11
01 ≡ ω

A
L , ∆

11
00 ≡ ω

A
L + ω

B
L . and ∆

10
01 ≡ ω

A
L − ω

B
L . This level scheme will be altered by the spin–spin interaction.

PB
y (t) = PB

y (0) cos(ω
B
L t)− PB

x (0) sin(ω
B
L t)

Thus the level splitting h̄ωL produces a precessing polarization with a fixed z-axis value and circular
motion in the x–y plane. Next we add a spin–spin interaction to alter the degeneracy of the
transition frequencies. This will allow a Rabi oscillation to distinguish between |0 0⟩ ↔ |0 1⟩ versus
|1 0⟩ ↔ |1 1⟩ transitions, which is an essential part of obtaining a CNOT gate.

Concerning units, we set h̄ to one and use ωL to set the frequency and energy scales. For
example, using GHz for frequency and µeV = 10−6 eV for energy, h̄ = 0.658212 µeV/GHz;
and we take the energy unit eu = 0.658212 µeV. Then ωL =100 GHz yields E = 100 eu, which
is equivalent to using h̄ = 1. The time scale of nanoseconds (ns) is associated with GHz = 1/ns. For
the Boltzmann constant we have kB

h̄ = 130.92 GHz/K , independent of energy unit choice. Therefore,
kBT
h̄ = 130.92 T (GHz) ≡ τ (GHz) = 1

β
, is used in defining both the SEA β3 and the βG in the Gibbs

density matrix. Other choices based on for example h̄ = 0.658212 neV/MHz can be adopted.

.2.2. Spin–spin interaction
From Fig. 1, we see that for H0 alone ∆01

00 ≡ ∆
11
10 ≡ ω

B
L , which means that the same frequency

ccurs for both transitions. This is not the case for a CNOT gate where the spin B flips only when
pin A is 1. Thus it is necessary to produce distinct transition frequencies. Such a difference allows a
abi spin flip resonance to occur for |1 0⟩ ↔ |1 1⟩ only. To lift the transition degeneracy, we follow
ef. [23–25] and introduce a spin–spin interaction

VSS(t) =
J(t)(

σ⃗A · σ⃗B − I4
)

(38)

4

13
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σ⃗A · σ⃗B =
∑
i=1,3

σ A
i ⊗ σ

B
i

I4 = σ A
0 ⊗ σ

B
0 ,

here the I4 term is just an overall shift down in the spectrum. This spin–spin interaction is turned
n by reducing the potential barrier between the two silicon dots in an experimental tour de
orce Ref. [23–26]. For degenerate qubits (ωA

L ≡ ωB
L ) this shifted spin–spin interaction splits the

egenerate |0 1⟩ and |1 0⟩ states into a lower singlet state (by an energy −h̄J), and an unshifted
riplet state. For the non-degenerate case, the splitting is a bit more complicated. That case is
escribed by the combinations:

|0 1⟩c = a+|0 1⟩ + b+|1 0⟩ , (39)
|1 0⟩c = a−|0 1⟩ + b−|1 0⟩ ,

a± = −
∆±

√
J2 +∆2

√
2
√
J2 +∆ (∆±

√
J2 +∆2)

;

b± =
J

√
2
√
J2 +∆ (∆±

√
J2 +∆2)

.

ith ∆ = ωA
L − ωB

L ≥ 0. The eigenvalue of |0 1⟩c is − 1
2 (J +

√
J2 +∆2); and of |1 0⟩c is

1
2 (J −

√
J2 +∆2). In the degenerate limit ∆ → 0, these eigenvalues reduce to −J for |0 1⟩c →

inglet state and 0 for |1 0⟩c → Triplet state. In the no spin–spin limit J → 0, these eigenvalues
educe to−(ωA

L−ω
B
L )/2 for |0 1⟩c → |0 1⟩ and+(ωA

L−ω
B
L )/2 for |1, 0⟩c → |1 0⟩, as seen in Fig. 1. The

evised spectrum is illustrated for a fixed value of J > 0 in Fig. 2. The new transition frequencies
re for example:

δ1110 =
ωA

L + ω
B
L

2
+

1
2

(J −
√
J2 +∆2) (40)

= ωB
L +

J
2
−

J2

4∆
· · ·

δ0100 =
ωA

L + ω
B
L

2
−

1
2

(J +
√
J2 +∆2)

= ωB
L −

J
2
−

J2

4∆
· · · .

δ1101 =
ωA

L + ω
B
L

2
+

1
2

(J +
√
J2 +∆2)

= ωA
L +

J
2
+

J2

4∆
· · ·

δ1000 =
ωA

L + ω
B
L

2
−

1
2

(J −
√
J2 +∆2)

= ωA
L −

J
2
+

J2

4∆
· · ·

ith ∆ > 0 , J > 0 , and J < ∆, the series expansion above shows that the magnitude of the
11
10 transition frequency is increased, whereas the magnitude of the δ0100 transition frequency is
ecreased from the original ωB

L value, which provides the required distinction. The need for both
pin–spin splitting and level non-degeneracy is apparent here. Note the first two entries above are
or the case qubit A is the control qubit and the last two are for when qubit B is the control qubit.

.2.3. Rabi oscillation
The spectrum in Fig. 2 picks out the essential transition for a dynamical CNOT gate, which is

roduced using a magnetic field gradient and a spin–spin interaction when the two qubits are
14
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Fig. 2. The two-qubit levels with spin–spin shifts. The transitions are indicated by up/down arrows. The J = 0 transitions
re denoted by ∆cd

ab , and the non-zero J transitions by δcdab . The transitions are: |a b⟩ ↔ |c d⟩. The major difference from the
prior level scheme is that δ0100 and δ1110 are now unequal, which allows a Rabi driving term to cause one type of transition,
while having the other minimized as being off-resonance. That is the basic dynamics of a control gate. That example
applies for qubit A as the control qubit. For qubit B as the control qubit, δ1000 and δ1101 are now unequal, which again allows
Rabi driving term to cause one type of transition, while having the other minimized as being off-resonance.

ubjected to a Rabi driving interaction in the x–y plane

VR(t) = V A
R (t)+ V B

R (t)

V A
R (t) =

h̄ωA
R

2

(
σ A
x ⊗ σ

B
0 cos(ωt)− σ A

y ⊗ σ
B
0 sin(ωt)

)
V B
R (t) =

h̄ωB
R

2

(
σ A
0 ⊗ σ

B
x cos(ωt)− σ A

0 ⊗ σ
B
y sin(ωt)

)
. (41)

ere ωA
R and ωB

R specify the respective strengths of the driving terms and ω denotes the common
riving frequency. The two strengths are typically set to a common value ωA

R = ω
B
R = ω2. The above

orm describes the effect of an x–y plane rotating B-field, which is selected to yield a NOT gate (σx)
n the first rotating frame. The Rabi resonance is described in detail in Appendix A , to illustrate its
mplementation for a simple one-qubit system in preparation for the present two-qubit case.

.2.4. Two-qubits in first rotating frame
As described in Appendix B, the full two-qubit laboratory frame Hamiltonian H(t) = H0 + VSS +

R(t) can now be viewed from a rotating frame using a unitary operator with a common driving
frequency ω and strength ω2. The new Hamiltonian H2 is obtained using the procedures described
in Appendices A and B. The two-qubit Hamiltonian in the first rotation frame is:

H2 = HA
2 ⊗ σ0 + σ0 ⊗ HB

2 + VSS (42)
HA

2 = Ω⃗
A
· σ⃗ /2 & HB

2 = Ω⃗
B
· σ⃗ /2

Ω⃗A
≡ (ω − ωA) ẑ + ωA x̂
L 2

15
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Ω⃗B
≡ (ω − ωB

L ) ẑ + ω
B
2 x̂ .

y moving to a rotating frame, the Rabi driving term is here reduced to a simple NOT operator
or each qubit, and a shifted z-component strength as incorporated into the vectors Ω⃗A, Ω⃗B.
ince the same rotation is applied to both qubits the spin–spin interaction is the same as in the
aboratory frame. The dynamic coupled equations for the 6 polarizations P⃗A(t), P⃗B(t) and the 9 tensor
olarizations are presented in Eq. (B.3) of Appendix B.

.3. Single and control gates

In summary of where we are in setting up two-qubit gates, we have several ingredients as
eveloped in brilliant silicon dot experiments [23,25]. One ingredient is: (1) two distinct non-
egenerate qubits, as provided by a z-directed magnetic field with a x–y plane gradient. A second
ngredient is: (2) a spin–spin interaction between the qubits, generated by lowering the potential
arrier between quantum dots. The third essential ingredient is: (3) a Rabi driving field that is
ommon to both qubits in frequency and strength, as provided by a uniform rotating magnetic field
n the x–y plane for a NOT gate and tilted as discussed in Appendix A.2 for a Hadamard gate. How
o we combine these ingredients to generate a NOT gate on both qubits or a NOT gate on just one
f the qubits? The possible single qubit gates ΩA ⊗ΩB, are itemized by selecting the Ω operators
s σ0, σx or as a Hadamard: (σz + σx)/

√
2.

.3.1. Single gates two qubits
First how do we produce the above one and two qubit gates? To produce a NOT gate on qubit

, one should turn off the spin–spin interaction and pick the Rabi frequency ω as ωA
L . Then qubit B

ill be off-resonance provided there is a sufficient difference ωA
L − ω

B
L , and a suitable strength ω2.

he result
X

σ0

is shown later in Fig. 4. This procedure can be repeated for a NOT gate on

ubit B. For a single qubit Hadamard, a tilted rotated field is used, as discussed in Appendix A.
To get single qubit gates on A and on B, the above steps can be done for A first, then followed

y the gate B steps. Alternately, the spin–spin can be zeroed and the two Larmor frequencies set
qual and then pairs of single-qubit operators will be established on each of the two qubits.

.3.2. Control gates
For controlled gates, the spin–spin interaction is essential. It alters the spectrum so that one can

elect the Rabi frequency ω to pick out ω = δ1110 (using qubit A as the control) , or ω = δ0111

using qubit B as the control) . For suitable non-degeneracies, and splittings, the Rabi driving

ill have minimal effect on the other transitions. So with all ingredients (1), (2) and (3) on and that
hoice of ω, we can design the control gate we need. The choice of CNOT or CHAD gate is made by
different orientation of the rotating magnetic field.

.4. Unitary evolution results

We have clearly followed the lead of the silicon dot community in setting up this case study. It is
ow necessary to use that setup for the main goal of this paper. That goal is to imbed this dynamics
nto a Lindblad–Beretta formulation, to test the stability under the demands of entropy, noise and
ath effects and to use that dynamics to develop schemes to stabilize the process. Perhaps a set of
tabilizing counter pulses can be invoked to ward off evil effects.
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Table 2
Typical Parameters for 2 and 3 qubits. For example, CNOTB denotes the target is B and control
qubit is A and ToffoliB denotes the target is B and control qubits are A & B. The δab symbols are
the Rabi resonance frequencies selected for the associated transitions. The Rabi strength is ω2
and the spin–spin strength is J.
Name Symbol Value

Larmor A
Larmor B
Larmor C

ωA
L

ωB
L

ωC
L

120

100

80

Spin-Spin
Rabi

J
ω2

0.42517
0.22

CNOTB
CNOTA

δ1110

δ1101

100.21

120.215

ToffoliA
ToffoliB
ToffoliC

δ111011

δ111101

δ111110

120.425

100.425

80.425

Table 3
Basic Parameters for L. Typical strengths for each of the Lindblad functions. The fixed value of
(SEA) drives the open system along a path of steepest entropy ascent.
Name Symbol Value Role

L1 γ1 .0 Noise
L2 γ2 .018 Closed
L3 γ3 .018 Open
Ṡ/Q̇ βQ

1
120 SEA

Table 4
Initial Density Matrix. These define typical single qubit density matrices for qubits A and B. The
initial density matrix is then a tensor product ρA ⊗ ρB .
Name Value Name Value

pAx −.01 pBx .01
pAy .00 pBy .00
pAx −.99995 pBx −.99995

Table 5
Basic pulse parameters.
Name Value Role

ton 6.283 Gate pulse on-time
toff 20.563 Gate pulse off-time
tf 4π/γ3 Equilibrium-time SEA
tf 2π/ω2 Equilibrium final-time
τ1 .2 Width of gate pulse
τ2 .2 Width of N pulses
τ3 .2 Width of NC pulses

3.4.1. Parameters
In Table 2, typical values of ωA

L , ω
B
L , ω2, J , used in our test cases are shown; these parameters are

selected to focus on the role of each term. In Tables 3–5, the typical parameters for L, for the initial
ensity matrix, and for the pulses are given. Realistic values can be invoked for various experimental
onditions.
17
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i

B

A
f

Fig. 3. The 15 spin observables for unitary evolution without gates and no spin–spin interaction. In this case we use the
initial values: PA = {−0.4, 0.,−0.916}, PB = {0.3, 0.,−0.954}. The top spin-correlations graph is for t = 0 and the bottom
s for a final time of 2 2π

ωA
L
= 0.1047. That result differs from the initial value since the final polarization vector for qubit

differs from its initial value.

Fig. 4. A single NOT gate acts on qubit A, where the Rabi term is turned on at 12.97 nsec and off at 25.79 s For qubit
, z-polarization changes from 1 to −1, the x-polarization remains unchanged and the y-polarization flips, as expected
or a NOT gate on qubit A. The case here is NOTA|0, 0⟩ → |1, 0⟩. Qubit A is on-resonance with J = 0 and Rabi resonance
= ωA

L = 120. In contrast, the polarizations for qubit B are off-resonance and are essentially unchanged. Before 12.97 nsec,
the figure shows the rapid Larmor precession of the x and y polarizations of qubit A.

3.4.2. No gates
With no gates and zero spin–spin interaction, that is without the Rabi driving term, the system

involves simple precession with the two Larmor frequencies ωA
L , ω

B
L . The six polarization vectors and

the nine spin-correlations (tensor polarizations) are shown in Fig. 3. This case is calculated using
a pulse to produce the ωA

L > ωB
L degeneracy. Introducing a spin–spin interaction introduces level

splittings as discussed earlier.

3.4.3. NOT gate on qubit A
As discussed earlier, the numerical results for a NOT gate is shown here: Fig. 4.
18



F. Tabakin Annals of Physics 457 (2023) 169408

c
a
g

3

a

a

r

3

t

f
f
a

3

g

c
o
i
i

Fig. 5. CNOT gate spin observables for unitary evolution; e.g., no L nor noise or noise compensation terms. Initial state
ase shown is very close to |11⟩ and final state is very close to |10⟩ (LHS) or |01⟩ (RHS). The ‘‘very close’’ aspect is
chieved by setting the x and y polarizations to be very small. The red dots indicate the on and off times of the CNOT
ate.

.4.4. CNOT gate
During the CNOT gate pulse the level-splitting, full spin–spin interaction, and Rabi driving are

ll on with frequency set as δ1110 , qubit A control , and δ1101 , qubit B control . The results

re shown in Figs. 5 and 6. A spherical display of this evolution is shown in Fig. 7.
The fidelity values for all cases12 are at the 99.9 range computationally, which indicates the

eliability of using the Rabi and spin–spin method.

.4.5. Swap gate
A two-qubit swap gate (SW) simply swaps the qubits SW |qa qb⟩ = |qb qb⟩. It is generated by

hree sequential CNOT gates SW = CNOTB CNOTA CNOTB: . Thus, with both the

ull degeneracy and the spin–spin terms on, we use a Rabi pulse with ω = δ1110 for a time τ = π
ω2

ollowed by ω = δ1101 for the same duration time τ and finally by ω = δ1110 for time τ . The SW results
re shown in Fig. 8. This can be used to track swap gate sensitivity to noise.

.4.6. Bell state formation
To generate the four Bell states, we need to act on qubit A with a Hadamard and then a CNOTB

ate, with control on qubit A and target on qubit B H . We keep the Larmor splitting on. To

arry out that sequence we use two different pulse setups. For the Hadamard, we keep the spin–spin
ff, and set the Rabi frequency ω = ωL

A, and use the Hadamard rotating magnetic field, as discussed
n Appendix A.2. Once that is finished, the spin–spin strength is turned on and the Rabi frequency
s selected to be ω = δ1110 which generates the CNOT gate. This can be used to track entanglement
evolution with noise. One Bell result is shown in Fig. 9

In all of the above cases with unitary evolution, the precision as determined by fidelity calcu-
lations are in the 99.9% range. Of course, Hermiticity of ρ and unit trace Tr ρ ≡ 1 are maintained.

12 CN |00⟩ = |00⟩, CN |01⟩ = |01⟩, CN |10⟩ = |11⟩; CN |00⟩ = |00⟩, CN |10⟩ = |10⟩, CN |01⟩ = |11⟩.
AB AB AB BA BA BA
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Fig. 6. The nine tensor spin correlations for unitary evolution; e.g., no L nor noise or noise compensation terms. Initial
tate case shown is |11⟩ and final state is |10⟩. Top is initial time and bottom is final time. Nonzero values of T13 and
23 reflect the accuracy of the procedure.

ow we turn on the non-unitary Lindblad terms, including noise which can upset the dynamics and
hen see how to invoke noise compensation.

. The model master equation

.1. Lindblad-Beretta SEA dynamics

The Lindblad–Beretta dynamics discussed in Ref. [1] applies here, except that now the den-
ity matrix is of higher dimension 4 × 4 and there are 15 not just three spin observables.
s before the model consists of defining the Lindblad L(t) operators and how we treat them.
20
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Fig. 7. The polarization vectors for unitary evolution for a CNOTB gate. The left hand side shows the essentially unchanged
olarization vector for qubit A. On the right hand side the dotted path shows how the polarization for qubit B changes
ts direction, with the x–y polarizations projected to the orange x–y plane.

ote that the no-signaling conditions on L(t) that are required to avoid unphysical supraluminal
communications [12–14] have not been included here, but will be in the future.

To the unitary evolution, we now we add a term L(t) which is required to be Hermitian and
traceless so that the density matrix ρ(t) maintains its Hermiticity and trace one properties. In
addition, L(t) has to keep ρ(t) semi-positive definite. To identify explicit physical effects, we
separate L(t) into three terms. Defining ‘‘fluctuation’’ operators by Ĥ = H−⟨H⟩I4 and Ŝ = S̃−⟨S̃⟩I4,
L2 and L3 equations simplify for closed systems to:

L2 =
1
2

{
ρ(t),

(
Ŝ − β2(t)Ĥ(t)

)}
+

, (43)

and for open systems to:

L3 =
1
2

{
ρ(t),

(
Ŝ − β3(t)Ĥ(t)

)}
+

, (44)

with {A, B}+ ≡ AB + BA an anti-commutator. Note that ⟨Ĥ⟩ = 0 and ⟨Ŝ⟩ = 0, where ⟨H⟩ =
r
(
ρ(t)H(t)

)
and ⟨S̃⟩ = Tr

(
ρ(t)S̃

)
. The operator S̃ ≡ − loge ρ(t), involves a base e logarithm to

ssure that a Gibbs density matrix is obtained in equilibrium.13
The level splitting, Rabi and spin–spin interactions and pulses are included in H(t). The state and

ence time-dependent functions β2(t), β3(t) will be defined in Eqs. (53) and (58).
The L1 is of simplified Lindblad [3] form,

L1 =

{
L(t)ρ(t)L†(t)−

1
2
(L†(t)L(t)ρ(t)+ ρ(t)L†(t)L(t))

}
, (45)

where the L(t) are time-dependent Lindblad qubit-space operators, which we will represent later as
distinct pulses. The most important properties of the L1 · · ·L3 operators are that they are Hermitian
and traceless, which means that as the density matrix evolves in time, it remains Hermitian and

13 The QC entropy is defined with a base 2 operator S = − log2 ρ(t) with entropy equal to ⟨S⟩ = −Tr
(
ρ(t) log2 ρ(t)

)
.

The conversion factor to base-e is S̃ ≡ log (2) S and ⟨S̃⟩ ≡ log (2) ⟨S⟩, with log (2) = 0.693147.
e e e
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o
d

Fig. 8. SW gate spin observables for unitary evolution; e.g., no L and no noise or noise compensation terms. The red
dots indicate the on and off times of each CNOT gate. Initial state is |01⟩ and final state is |10⟩.

f unit trace. They also have the property of maintaining the semi-positive definite property of the
ensity matrix, as proved for L2,L3 by Beretta [8].
The non-unitary terms in the Lindblad–Beretta equation14 appear as:

L = γ1 L1 + γ2 L2 + γ3 L3, (46)

where γ1, γ2, γ3 set the rate of each Lindblad term in inverse time units.
In our heuristic master equation, we use the Lindblad form L1 to describe the impact of external

noise on the system, where we represent the noise as random pulses. In addition, we also use the
same Lindblad form to describe dissipative/friction effects on the quantum gates, by having the
Lindblad pulses coincide with the action time of the gate pulses. Later this form will be used to
introduce noise and also to introduce noise compensation pulses. A strong Lindblad pulse can also
represent a quantum measurement.

14 These definitions will be altered in a future study which will include corrections for unphysical supraluminal effects.
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Fig. 9. All 15 Bell gate spin observables for unitary evolution; e.g., no L nor noise or noise compensation terms. Initial
tate is |01⟩ and final state is 1

√
2
(|01⟩ + |10⟩).

The L2 term is the Beretta [8] closed system contribution. The closed system involves no heat
ransfer to an external system, with motion along a path of increasing entropy, as occurs for example
ith a non-ideal gas in an insulated container. This is accomplished by a state dependent β2(t) that

s presented later. Note γ2, sets the strength of the Beretta contribution L2, in inverse time units as
fraction of the angular frequency.
A more general L3 Bath contribution, based on a general theory [10] of thermodynamics, defines

state dependent β3(t) by using a fixed temperature TQ to specify a fixed Q
.
(t)/S
.
(t) ratio (see later).

ote γ3 sets the strength of the L3 contribution in inverse time units as a fraction of the angular
requency. This term controls the rate at which an open system achieves equilibrium.

Later, pulsed gates are incorporated into the Hamiltonian H(t) and need to occur well before the
L3 term becomes important. That is required to avoid the detrimental effects of L3 on the gates.
n the next section, corrections to certain L terms due to objectionable supraluminal effects will be
ddressed, but are not included in this paper.
We seek a simple model that incorporates the main features of qubit dynamics for a quantum

omputer. These main features include seeing how the dynamics evolve under the action of gates
nd the role of both closed system dynamics and of open system decoherence, dissipation and the
ystem’s approach to equilibrium. From the density matrix we now turn to a variety of observables,
ll as a function of time.

.2. SEA and supraluminal effects

The use of the single-system formulation of the Beretta terms L2 and L3 adopted in the present
tudy is justified when the two-qubit system to be modeled can be assumed to be effectively a
ingle localized physical four-level system. The case of double quantum dots tightly packed in a
agnetic field gradient to implement a controlled gate seems to comply with this assumption.
But we emphasize that due to their nonlinearities the single-system Beretta terms are not

uitable to model physical implementations in which the experimental setup involves spatially
eparating and isolating the two qubits from one another. In such cases, the nonlinearities of
he single-system SEA terms (and possibly also those of the nonlinear Lindblad terms) would
23
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roduce unphysical effects such as energy exchange and correlation buildup even when the two
ubits are separated and non-interacting. Such awkward non-local effects include supraluminal
ommunication and are definitely unwanted in proper modeling of composite-system dynamics,
ut are well-known stumbling blocks to nonlinear extensions of quantum dynamics [27].
When such cases need to be modeled with a proper account of physically acceptable non-

ocal effects, the terms L2 and L3 should be substituted with the composite-system formulation of
steepest-entropy-ascent (SEA) non-equilibrium quantum thermodynamics as already proposed by
the original authors [9,10,13] . The author is only at an early stage of examining such formulation,
that will be incorporated in future works, also to identify how the Lindblad terms need to be
modified to avoid awkward non-local effects.

4.3. Power and heat evolution

The various terms in the master equation play different roles in the dynamics. To examine those
differing roles consider the energy of the system and its rate of change. With our Hamiltonian H(t)
nd a density matrix ρ(t), we form the ensemble average

E(t) = ⟨H(t)⟩ ≡ Tr
(
H(t)ρ(t)

)
.

Taking the time derivative, we obtain
dE(t)
dt
= Tr

(
ρ(t)

d
dt

H(t)
)
+ Tr

(
H(t)

d
dt
ρ(t)

)
(47)

=
d
dt

W (t) +
d
dt

Q (t)

W
.
(t) =

d
dt

W (t) = Tr
(
ρ(t)H
.
(t)
)

Q
.
(t) =

d
dt

Q (t) = Tr
(
H(t)ρ
.
(t)
)
= Tr

(
Ĥ(t)ρ
.
(t)
)
,

using Tr(ρ
.
(t)) = 0.

We identify the term Q
.
(t) as the heat energy transfer rate and W

.
(t) as the work per time or

ower transfer, with the convention that Q (t) > 0 indicates heat transferred into the system, and
(t) > 0 indicates work done on the system. The time dependence of the density matrix is given

by the unitary evolution plus the L terms of Eq. (43).
Now consider just the power term. Since dH(t)

dt is nonzero when gate pulses are active, power
s invoked in the system only via the time derivatives of the gate pulses (and by any undesirable
emporal changes in the level splitting).

The energy transfer rate Q
.
(t) can now be examined using the dynamic evolution15

Tr
(
Ĥ(t)

dρ(t)
dt

)
= Tr

[
Ĥ(t){−

i
h̄
[ρ(t),H(t)] + L}

]
(48)

= Tr
(
Ĥ(t)L

)
.

Using the permutation invariance of the trace, the unitary evolution part does not contribute to
heat energy transfer. Heat arises from the L terms. We will now see: (1) how the closed system L2
does not generate energy transfer between the overall four level system and its environment, but
it does generate energy transfer between the two component qubit subsystems; it does increase
entropy; and (2) the open system L3 does involve heat. We defer all discussion of the L1 Lindblad
term until we introduce noise effects.

The heat transfer equation for the closed case is:

Q
.
(t) = γ2

(
⟨Ĥ(t)Ŝ⟩ − β2(t)⟨Ĥ(t)Ĥ(t)⟩

)
(49)

15 Here the earlier version without correction for signaling is used.
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nd for the open case is:

Q
.
(t) = γ3

(
⟨Ĥ(t)Ŝ⟩ − β3(t)⟨Ĥ(t)Ĥ(t)⟩

)
, (50)

with S̃ ≡ − loge ρ(t).
We have:

⟨H(t)⟩ ≡ Tr
(
ρ(t)H(t)

)
⟨H(t)H(t)⟩ ≡ Tr

(
ρ(t)H(t)H(t)

)
⟨S̃⟩ ≡ Tr

(
ρ(t)S̃

)
⟨S̃S̃⟩ ≡ Tr

(
ρ(t)S̃S̃

)
⟨H(t)S̃⟩ ≡ Tr

(
ρ(t)H(t)S̃

)
(51)

and

⟨ĤĤ⟩ ≡ ⟨H(t)H(t)⟩ − ⟨H(t)⟩2

⟨ĤŜ⟩ ≡ ⟨H(t)S̃⟩ − ⟨H(t)⟩⟨S̃⟩
⟨ŜŜ⟩ ≡ ⟨S̃S̃⟩ − ⟨S̃⟩⟨S̃⟩, (52)

where the dependence of ⟨S̃⟩ on time is implicit.16 In the closed case no heat is transferred by fiat
and we use Q

.
(t) ≡ 0 to define β2(t). The major feature of Beretta’s L2 closed system contribution

is a state and hence time-dependent β2(t)

βc(t) = β2(t) =
⟨Ĥ(t)Ŝ(t)⟩

⟨Ĥ(t)Ĥ(t)⟩
, (53)

defined so that the system is closed and heat is not transferred to or from the system, Q
.
(t) = 0. This

choice also makes the closed system follow a path of increasing entropy. That increase of entropy
for a closed system signifies that the closed system is dynamically constrained to reorder itself to
maximize its entropy. This is Beretta’s steepest-entropy-ascent (SEA) quantum thermodynamics,
which he recently stipulates as a 4th law of thermodynamics related to general nonequilibrium
modeling [6]. Here β2(t) has a highly nonlinear dependence on the density matrix.

In contrast, the above open or Beretta/Bath term L3 does involve heat transfer, that is, both
nergy and entropy exchange between the system and the bath. A better choice for β3(t) involves
he following specific entropy evolution.

.4. Entropy evolution

Let us now consider the time evolution of the base-e entropy Eq. (29). Eq. (31) gives the time
erivative of the entropy as dS̃

dt = −Tr
(
ρ
.
(t) loge ρ(t)

)
. Inserting the time derivative ρ

.
(t) from

q. (33), we again get no change from the unitary term, just from the dissipative L terms:

S
.
(t) ≡ Tr

(
ρ
.
(t)S̃

)
= Tr

(
ρ
.
(t)Ŝ

)
(54)

= Tr
(
LŜ
)
.

his is a general result for nq qubits.
For the Beretta closed L2 term, entropy changes according to:

S
.
= γ2Tr

(
Ŝρ(t)

{
Ŝ − β2(t)Ĥ(t)

})
16 Beretta et al. use ⟨ĤĤ⟩ → ⟨∆E∆E⟩, ⟨ĤŜ⟩ → ⟨∆E∆S⟩ and ⟨ŜŜ⟩ → ⟨∆S∆S⟩.
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t

S
.
= γ2

{
⟨ŜŜ⟩ − β2(t)⟨Ĥ(t)Ŝ⟩

}
S
.
= γ2

{
⟨ŜŜ⟩ −

⟨Ĥ(t)Ŝ⟩2

⟨Ĥ(t)Ĥ(t)⟩

}
. (55)

Entropy cannot decrease for the Beretta closed term because the Cauchy–Schwarz inequality implies
that

⟨ŜŜ⟩ ≥
⟨Ĥ(t)Ŝ⟩2

⟨Ĥ(t)Ĥ(t)⟩
.

For the open L3 term

S
.
= γ3

{
⟨ŜŜ⟩ − β3(t)⟨Ĥ(t)Ŝ⟩

}
. (56)

Setting the entropy-rate to energy-rate ratio to a fixed quantity βQ , we obtain the condition

βQ = S̃
.
/Q
.
= dS̃/dQ .17

Q
.
S̃
. = ⟨Ĥ(t)Ŝ⟩ − β3(t)⟨Ĥ(t)Ĥ(t)⟩

⟨ŜŜ⟩ − β3(t)⟨Ĥ(t)Ŝ⟩
= kB TQ =

1
βQ

, (57)

which yields an expression for the state dependence of β3(t) :

β3(t) =
⟨ŜŜ⟩ − βQ ⟨Ĥ(t)Ŝ⟩

⟨Ĥ(t)Ŝ⟩ − βQ ⟨Ĥ(t)Ĥ(t)⟩
(58)

with fixed value for βQ . Note the above can be written as

β3(t) = β2
βS − βQ

β2 − βQ
(59)

where we have defined βS =
⟨ŜŜ⟩
⟨Ĥ(t)Ŝ⟩

. This displays a possible singularity if β2 → βQ . At such a time

the equations require special stiffness handling or avoidance by choice of βQ .

4.5. Purity evolution

Purity (denoted by the symbol P), is defined as

P(t) ≡ Tr
(
ρ(t)ρ(t)

)
. (60)

The rate of change of this purity is given by

P
.
(t) =

dP(t)
dt
= 2 Tr

(
ρ(t)ρ.(t)). (61)

Note that Rényi’s [28–30] generalized form of entropy

Rα[ρ] = Tr
[ρ − ρα
α − 1

]
,

yields the Shannon/von Neumann entropy for α = 1, while the ‘‘Rényi entropy’’ for α = 2 is closely
related to the purity R2[ρ] ≡ 1− P(t).

The purity, as well as the entropy, are functions of the length of the polarization vectors and of
the tensor correlations. For example, the purity for one qubit is P(t) = 1+P2A

2 and R2(t) =
1−P2A

2 . For
wo qubits

P(t) =
1+ P2

A + P2
B + Tr

(
T †T

)
4

17 k is the Boltzmann constant (86.17 µeV/Kelvin), where µeV = 10−6 eV.
B
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R2(t) =
3− P2

A − P2
B − Tr

(
T †T

)
4

. (62)

For one qubit on the Bloch ball the von Neumann entropy R1 is zero, R2 is 0 and the purity is
ne. For polarization vectors inside the Bloch ball, the entropy is increased and the purity decreased.
he purity P ranges from 1 to 1/2nq .
Using Eq. (32), we find that the purity is unchanged by the unitary term, but is altered by the

indblad terms. For both the open and closed L2,L3 cases, the purity displays a steady decrease
ut especially for the Lindblad noise control term L1 an increase is likely (see later). Consider

P
.
(t) = 2 Tr

[
ρ(t)L1

]
(63)

= 2 γ1 Tr
[
ρ(t)L(t)ρ(t)L†(t)− ρ(t)ρ(t)L†(t)L(t)

]
= γ1 Tr

[
ρ(t)ρ(t)[L(t) , L†(t)] − [ρ(t) , L(t)]†[ρ(t) , L(t)]

]
.

The trace property Tr
(
AB
)
= Tr

(
BA
)
was again invoked to generate the above results. The last part

puts the purity expression in Lidar form [31]. To assure that purity decreases P
.
(t) ≤ 0 we get the

condition

Tr
[
ρ(t)ρ(t)[L(t) , L†(t)]

]
≤ Tr

[
[ρ(t) , L(t)]†[ρ(t) , L(t)]

]
, (64)

where the right hand side is a positive number. This places a constraint on the Lindblad operators to
yield decreasing purity, but increasing Rényi entropy R2[ρ] = 1−P2. Thus the above restriction to
Lindblad operators that decrease purity also satisfies the requirement that the R2 entropy increases.
Since the Shannon entropy R1

18 generally tracks R2, we can use the above condition on L to give
increased entropy. Note that condition (64) is always satisfied when L(t) is Hermitian [31,32].

However, if we use non-Hermitian Lindblad operators that violate the above condition (64), we
could decrease entropy, and such Lindblads will tend to undo some chaos and impose order. Later
we will invoke this possibility as a method for noise compensation.

4.6. Equilibrium

We assume that the spin–spin and the Rabi terms of the Hamiltonian are turned off at some
time and the Hamiltonian at the equilibrium time tf is of diagonal form Hf → H0. In that limit the
unitary term vanishes [ρG,Hf ] = 0, since the Gibbs density matrix is a function of Hf and βg .

ρG =
e−βgHf

Z
Z = Tr(e−βgHf ). (65)

In the equilibrium (Gibbs density matrix) limit at final time t → tf , β2(tf ) → βg , for a closed
system and β3(tf ) → β ′g , for an open system. The final equilibrium temperature Tg = kB/β ′g for
an open system case is arrived at by evolving along a path of steepest-entropy-ascent (SEA). Note
that in the equilibrium limit both S

.
and Q
.
vanish as expected. The temperature Tg , which can be

associated with a bath in equilibrium, is not the same as TQ . It nevertheless leads to an associated
quilibrium temperature 1/β ′g = Tg as determined by the SEA dynamics and the initial state.
Note that negative absolute temperatures and thus negative βg . values can result since we have

bounded spectrum as discussed in [33–35].
The role of the fixed quantity βQ appears during the process and determines ∆S = βQ ∆Q ,

here for finite increments are

∆S =
∫ t2

t1

dt S̃
.
(t)

18
 These are base e logs. Divide by Log(2) to convert to base 2 logs.
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∆Q =
∫ t2

t1

dt Q
.
(t).

Here the t1, t2 interval encompasses regions where entropy changes occur. Thus βQ fixes the ratio
between the entropy and the energy exchanged during the process between the system and the
bath by means of their heat interaction.

4.7. Semi-positive definite property of Lindblad

The positive-definite property of the density matrix implies that each of the density matrix
eigenvalues are positive or zero. An initial density matrix is assured to be positive-definite by having
inside the Bloch ball observables. Beretta has provided a proof that for L2,L3 the semi-positive
haracter will persist dynamically and here we confirm the validity of that requirement.

. Model master equation results

The major components of this study are relegated to several appendices. Using those studies as
resource, we present the case of a CNOT gate for an open and then a closed system, first with no
oise and then with noise. We also consider the approach to equilibrium as dictated by Lindblad–
eretta (SEA) dynamics. There follows an examination of possible ways to ameliorate the destructive
ffects of noise with emphasis on noise during the gate.
Extension of this study to the dynamics of the two qubit SWAP gate, to the formation of Bell

tates, and to the Toffoli gate, inter alia, are provided separately in the form of Mathematica
ackages [36–38]. The distribution of these codes is done in the hope that they might be useful
n testing various noise correction and noise compensation scenarios.

.0.1. CNOT gate with noise and noise compensation — open system
No environment is an island unto itself.19 An environment is entangled with a quantum system,

hich can be a problem if it forces the system to be classical or sends noise, but can be a resource if it
ends increased purity. Indeed, error correction methodology involves setting up a system of qubits
hat get entangled with a quantum system, without destroying it, and then sends a well-informed
urative signal back to the quantum system through its entanglement. Here the environment itself
lays that role. That idea is realized here by hand-designed Lindblad operators. They are designed
or each type of gate to enhance purity and thus decrease entropy and reduce chaos, without being
estructive even when there is little or no noise. Developing such environment-based realistic
ignals is a major challenge that will be explored in subsequent publications.
It should be noted that the requirement for steepest-entropy-ascent (SEA) is applied to cases

ithout noise or noise compensation. Clearly noise generally causes an increase in entropy above
EA, whereas noise compensation can push the ascent to be lower and even to go below SEA.
As shown later, the SEA contribution to say a CNOT gate can be quite destructive. Therefore, gates

eed to be performed well before the onset of the ultimate SEA, which plays an essential role in the
ltimate equilibrium state, but needs to be on but minimized during gate operations. Therefore, we
irst examine the case of a CNOT gate with noise and noise compensation for zeroed SEA, γ3 → 0.
imits on a tolerable SEA effect will be examined thereafter.
The Lindblad noise and noise compensation setup is described in Appendix D, along with details

bout the pulses that turn on the gates. A typical example of the random noise pulses is shown in
ig. D.21.
The main result of this study is shown in Fig. 10. In this plot, we see the noise pulses (distributed

ver the gate-on interval) and the noise correction taps (close vertical lines), The evolution for the
-polarization of qubit B PB

z (t) is shown as going from −1 to 1 as expected for a CNOT gate with

19 With apology to John Donne.
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Fig. 10. The effect of noise (N) and noise compensation (NC) on the entropy (S) and z-component polarization of qubit
(PB

z ), for a CNOT gate with control qubit A. Here PB
z (red) and S (blue) are shown as solid curves. The entropy rate

f change for the NC is shown as -ṠNC (green) in the zone of final NC taps, whereas the entropy rate of change for the
oise (N) is shown as ṠN (purple). Since ṠN is positive, it increases entropy. The negative value of ṠNC decreases entropy
nd pushes PB

z closer to where it should be in the noiseless case. The RHS plot is a closer look, where clearly N increases
hile NC decreases entropy. This demonstrates the basic dynamics of selecting a purity increasing Lindblad operator to
artially cancel noise. The results here are obtained by fine tuning parameters with ΓN = ΓNC = 0.2 ≈ ω2 . For N and
C both off, the CNOT fidelity is 99.99%, with noise only it reduces to 94%, but is lifted back up to 98% by NC. The SEA
erm is minimized by taking γ3 ≪ ω2 . This is a partial reduction of noise based on an estimate of the expected noise as
guided by a computed simulation. The red X marks the start and stop of the Rabi pulse.

control on qubit A. The weak noise and noise compensation curves have been scaled up for visibility.
The jagged entropy curve shows how random noise pulses increase the entropy during the gate, but
the noise compensation pulses bring the entropy down, and the value of PB

z (t) is pushed back up to
here it should be without the noise. This is the essential idea of how to use noise compensation
o make up for the noise during the gate. The LHS plot is just a closer look during the correction
aps.

Fig. 11 shows the fidelity of the CNOT gate with control on qubit A as a function of the overall
oise strength ΓN . Without noise, it is a horizontal curve at the 99.9% level, then the fidelity dives
o the 94% level (bottom curve), but is lifted back up to the 98% level by the noice compensation.
here are two versions of the noise compensation settings; the higher curve is for a constant sizable
alue of the ΓNC overall strength which works best for stronger noise, and the other uses a weaker
verall ΓNC strength for the weaker noise region.
It is seen here that there is a partial but significant restoration of entropy provided by the

indblad noise compensation taps, but not a complete correction. Improved designs, perhaps using
hirp taps or better timing can improve these results in any case with these taps, a very simplified
ess demanding version of noise control protocols could close the gap. That needs to be explored.

.0.2. SWAP gate and bell state with noise and noise cancellation — open system
The SWAP Gate and Bell State dynamics with Noise and Noise cancellation for an open system

arallels the prior discussion as can be explored by accessing the QCPITT codes. The distribution of
oise and noise cancellation pulses is of course is more intricate.

.0.3. SEA effect on gates
Here we see the SEA effect on a CNOT gate. The dependence of a CNOT gate’s fidelity on the

alue of γ3 for an open system without noise or noise compensation is shown in Fig. 12 for three
alues of γ . A value of γ ≈ .02 is barely tolerable in the sense that the CNOT gate had a fidelity of
3 3
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Fig. 11. Fidelity of the CNOT gate versus the overall noise strength ΓN . The top horizontal curve at the 99.9% level is for
o noise. The bottom curve is with noise, yielding CNOT gate fidelity at the 94% level. Noice compensation lifts the CNOT
ate fidelity back up to the 98%–96% level as shown in the two middle curves. The upper middle curve uses a constant
trong ΓNC and the lower middle uses a weaker ΓNC in the low noise region.

Fig. 12. CNOT gate spin observables for unitary plus SEA open system evolution; e.g., no noise or noise compensation
terms. Here initial state case |11⟩ and final state is very close to |10⟩. The CNOT appears during the 10 to 20 ns interval,
with a fidelity of 99.96% for β3 = .003. Here βQ = 1/12 is used. For the LHS there is negligible SEA γ3 = .003, whereas
for the middle γ3 = .01 and RHS γ3 = .03 plots the fidelity is reduced as shown in Fig. 13.

99.89%, which places a constraint on the gate versus SEA dynamics. Equilibrium is not established
until much later times ≈1/γ3.

The general condition suggested by these results is that ω2γ3 ≪
.03
ng

, for ng gates in order to
inimize the effect of SEA on the action of the gates.
The establishment of Gibbs equilibrium occurs at the final time tg , where β3(tg ) ≡ β2(tg ) and the

ensity matrix assumes the standard Gibbs diagonal form. In that limit the x and y polarizations
o to zero and only the z-component polarizations and spin correlation take on their equilibrium
alues. The Rabi driving term and the spin–spin interaction acted earlier to produce the CNOT gate
nd then turned off, whereupon the SEA controls the ultimate equilibrium state as determined
30
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T
a

Fig. 13. CNOT gate Fidelity versus SEA strength γ3 for βQ = 1/12. Case is as in prior figure with control for CNOT on
qubit A. To keep the SEA effect from being too detrimental, even before the introduction of noise, we must design a
system with β3 below .03.

by the γ3 and βQ parameters. The CNOT parameters are the strength of the driving term ω2, the
resonance frequency ω and the spin–spin interaction strength J , along with the ωL

A, ω
L
B splitting.

he essential point is to design the system so that the CNOT is done with earlier than the times
ssociated with the SEA and equilibrium regions; thus, we require that γ3 is much smaller than ω2.

In addition, we prefer to avoid the βQ close to β2 region during the dynamic evolution to circumvent
the stiffness issue.

6. Conclusions

The Lindblad–Beretta model equations for the evolution of the density matrix have been applied
to four-level systems that implement non-spatially-separable two-qubits, including single and
double qubit gates and the requirement of steepest entropy ascent for open and closed systems.
Noise and noise compensation effects have been examined with a focus on the CNOT gate. The
detrimental effects of noise can be alleviated by carefully designed Lindblad taps to partially restore
the CNOT gate. The basic noise compensation idea is analogous to magnetizing an iron rod placed
parallel to a magnetic field by tapping it. The result is to decrease entropy by increasing order.

More work is required to enhance the noise compensation by designing explicit electromagnetic
taps for a variety of gates and to ascertain if such steps can reduce the burden and simplify noise
correction protocols.

After completion of our study, an earlier excellent paper suggesting that purity increasing
Lindblad operators can help to stabilize an open quantum system was found. That citation [39]
encourages us to believe we are on the right track to advocate use of Lindblad taps to compensate
for errors.

Several very insightful papers where Beretta’s SEA idea has been examined in a variety of
interesting ways are in [40–42]. For papers that deal with related matters, such as studies of noise
and of methods for solving the Lindblad equation see [43–47].
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Here the focus is on local two-qubit dynamics with noise and noise cancellation. Future devel-
pments will complete the study by addressing non-local effects as needed to model two-qubit
mplementations that involve spatial separation and isolation, by substituting the single-system
ormulation of steepest-entropy-ascent (SEA) non-equilibrium quantum thermodynamics used here
ith the composite-system formulation originally developed for such purpose by Beretta in [9,10,
3], implemented in [8,48] and recently emphasized in the context of no-signaling in nonlinear
xtensions of quantum dynamics in [27].
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ppendix A. One-qubit Rabi resonance

Insight into how a Rabi resonance [49] can produce a quantum gate is presented here. The single
ubit density matrix is specified by the time dependence of the polarization vector P⃗(t). An exact

solution for the one-qubit density matrix and associated polarization vector is obtained by applying
two rotations about two axes as described in the original Rabi oscillation paper [49].

A rotating wave approximation (RWA) simulates the exact treatment of unitary evolution with
a time-dependent Hamiltonian, that is fully accomplished using a time-ordered unitary operator. A
simple truncation of the full time-ordered product does not suffice to represent a unitary operator,
which motivates using the RWA, as described clearly in [50]. Using a simplified version of the driving
term is also part of the RWA because the driving signal is usually only approximately of the simple
rotating magnetic field form used here.

In preparation for later use, consider how a rotation, specified by a time-dependent unitary oper-
ator U(t), transforms an initial density matrix ρ1(t) to a new density matrix ρ2(t) = U(t)ρ1(t)U†(t).
Taking a time derivative and setting h̄ to one, we obtain20

ρ
.
2(t) (A.1)

= U
.
ρ1(t)U†(t) + U(t)ρ1(t)U

.†
(t)+ U(t)ρ

.
1(t)U

†(t)

= U
.
(t)U†(t)ρ2 + ρ2U(t)U

.†
(t)+ U(t)ρ

.
1(t)U

†(t)

=
[
U
.
(t)U†(t), ρ2

]
− i

[
U(t)H1(t)U†(t) , ρ2

]
ρ
.
2(t) = −i

[
H2(t) , ρ2(t)

]
H2(t) ≡ U(t)H1(t)U†(t)+ i U

.
(t)U†(t) .

20 The dot denotes a time derivative and
[
A , B

]
is a commutator.
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dt (U

†(t)U(t)) = 0. The new density matrix ρ2 and Hamiltonian H2 are defined in
the rotated frame.21

A simpler derivation uses the Schrödinger equation:

H1(t)|ψ1(t) ⟩ = i |ψ
.
1(t)⟩ (A.2)[

U(t)H1(t)U†(t)
]
U(t)|ψ1(t) ⟩ = i U(t)|ψ

.
1(t) ⟩

= i
d
dt

(
U(t)|ψ1(t)⟩

)
− i U
.
(t)U†(t) U(t)|ψ1(t) ⟩

H2(t)|ψ2(t)⟩ = i |ψ
.
2(t)⟩,

with |ψ2(t)⟩ = U(t)|ψ1(t) ⟩.
This shows how to generate the density matrix and Hamiltonian in a rotating frame defined by

a unitary operator U(t). Note that although the transformation is generated by a unitary operator,
due to the time dependence of U , it is not a canonical transformation, the energy spectrum is not
preserved. We get a new Hamiltonian. Transformation to a rotating frame is a change in view. We
will apply these general steps to one and two-qubit systems next. These properties also apply to a
second rotation and also to multi-qubit systems.

A.1. NOT gate case

Consider a one-qubit Hamiltonian22 with non-degenerate levels plus a Rabi driving term:

H(t) ≡ −
h̄ωL

2
σz +

h̄ω2

2

(
cos(ωt) σx − sin(ωt) σy

)
(A.3)

=
Ω⃗0(t) · σ⃗

2
Ω⃗0(t) = ω2(cos(ωt)x̂− sin(ωt)ŷ)− ωLẑ (A.4)

his Hamiltonian produces a pure NOT gate in a rotating frame as shown later. The Rabi driving term
f strength ω2 arises from rotating a magnetic field in the x–y plane with an angular frequency of
. The time evolution of the polarization vector in the original (lab) frame is obtained from

dP⃗(t)
dt
= Tr

(
σ⃗ ρ
.
(t)
)
= −

i
h̄
Tr
(
σ⃗ [H(t), ρ(t)]

)
(A.5)

≡ Ω⃗0(t) × P⃗(t)

Px
.
(t) = ωLPy(t)− ω2 Pz(t) sin(ω t)

Py
.
(t) = −ωLPx(t)− ω2 Pz(t) cos(ω t)

Pz
.
(t) = +ω2 ( Py(t) cos(ω t)+ Px(t) sin(ω t) ) .

The magnitude of the polarization vector P is a constant:

dP(t)
dt
=

1
2
P⃗(t) ·

dP⃗(t)
dt
=

1
2
P⃗(t) · (Ω⃗0(t) × P⃗(t)) = 0.

The above coupled equations describe a spin precessing about a moving Ω⃗0(t) axis.

.1.1. First rotation
Following the original Rabi resonance paper [49], a sequence of rotating frames are invoked to

olve these equations. A unitary operator U1(t) ≡ e−
i
2 ω σz t , transforms to a frame rotating about

21 For U(t)→ ei v t , H2(t)→ U(t)H1(t)U†(t)− v, with v a Hermitian operator.
22 We now denote the laboratory frame Hamiltonian H (t) simply as H(t).
1
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Fig. A.14. The components of Ω⃗ for the (a) NOT and the (b) Hadamard one-shot gates. Note that at resonance ω ≡ ωL ,
the angle χ ≡ 0 and the angle χh ≡

π
4 .

he z-axis with an angular frequency ω. The Hamiltonian in the rotating frame H2 is obtained from
he above general rule as: H2 ≡ U1(t)H(t)U†

1 (t)+ i U
.
1(t)U

†
1 (t) :

H2 =
ω − ωL

2
σz +

ω2

2
σx =

Ω⃗ · σ⃗

2
, (A.6)

ith Ω⃗ ≡ (ω−ωL) ẑ+ω2 x̂. Note that in this rotating frame the Hamiltonian H2 is time-independent
with a pure NOT gate.

The magnitude of Ω⃗ is Ω ≡
√
(ω − ωL)2 + ω2

2 . The following coupled equations:

dP⃗(t)
dt
= Ω⃗ × P⃗(t) (A.7)

dPx
dt

(t) = −(ω − ωL)Py(t)

dPy
dt

(t) = +(ω − ωL)Px(t)− ω2 Pz(t)

dPz
dt

(t) = +ω2 Py(t)

describe the polarization P⃗ in the first rotating frame. The length of the polarization vector in the
rotating frame is still constant and it precesses about the fixed vector Ω⃗ which defines a new axis
f precession in the x–z plane.

.1.2. Second rotation
A second rotation using that new axis of precession is generated by U2(t) = e+i

1
2 Ω⃗·σ⃗ t , which

yields a new Hamiltonian H3 = 0, and thus to a fixed polarization vector p⃗ in the second rotation
frame. The direction of the second rotation is defined by Ω sin(χ ) = (ω − ωL) and Ω cos(χ ) = ω2,
and its magnitude as Ω ≡

√
(ω − ωL)2 + ω2

2 as shown in Fig. A.14.

A.1.3. Solution
The fixed density matrix in the second rotating frame is then time independent: ρ3 = 1

2 (σ0+p⃗.σ⃗ ),
here p⃗ is the fixed initial polarization. From ρ3, we rotate back to the first rotation frame density
atrix ρ = U†(t)ρ U (t) to determine a solution for the polarization vectors in the first rotation
2 2 3 2
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rame P⃗(t) :(Px(t)
Py(t)
Pz(t)

)
= M(t) ·

(px
py
pz

)
, (A.8)

here M(t) is the matrix⎛⎝cos2(χ )+ sin2(χ ) cos(Ω t) − sin(χ ) sin(Ω t) sin(2χ ) sin(Ω/2 t)2
sin(χ ) sin(Ω t) cos(Ω t) − cos(χ ) sin(Ω t)
sin(2χ ) sin(Ω/2 t)2 cos(χ ) sin(Ω t) sin2(χ )+ cos2(χ ) cos(Ω t)

⎞⎠ .

he vector (Px(t), Py(t), Pz(t)) equals p⃗ = px, py, pz at time t = 0. At the Rabi resonance value of
→ ωL we get Ω → ω2 and χ → 0. For this on-resonance case, we get a simple rotation about

he x̂ axis.(Px(t)
Py(t)
Pz(t)

)
=

(1 0 0
0 cos(ω2 t) − sin(ω2 t)
0 sin(ω2 t) cos(ω2 t)

)
·

(px
py
pz

)
(A.9)

Now we invoke a Rabi pulse time tp = π/ω2 called a π pulse. At that Rabi pulse time tp the
polarization vector in the first rotating frame is exactly that of a NOT gate:

{px, py, pz}
NOT
−−→ {px, −py, −pz}.

Rotating back to the original frame involves one more reverse transformation ρ = U†
1 (t) ρ2 U1(t)

which yields the laboratory frame solution.
For an initial state {px, py, pz} = {0 , 0 , pz} from Eq. (A.8) the final z polarization is

Pz(t) = pz
(
1− 2

ω2
2

Ω2 sin2(
Ω t
2

)
)
,

which is the standard result. At resonance and at time tp = π/ω2, the result is a simple flip or NOT
gate Pz(tp) = −pz .

The evolution of the polarization at the Rabi resonance in the first rotation and original lab frames
for the case of a pure one-qubit NOT gate are shown in Fig. A.15.

Far from resonance, χ → π/2, and M(t) reduces to a rapid rotation about the z-axis. The
z-polarization then is fixed, and for small initial polarizations in the x–y plane, the result is a
narrow precession cone. This essentially turns off the Rabi resonance. It is this basic mechanism
that provides the selectivity for the controlled gates later.

A.1.4. Pulses
Parts of the Hamiltonian H(t) are turned on and off using electromagnetic pulses to produce

gates. Error functions (erf) are used to produce steady, sharp and continuous switches23:

θon(t, ta) =
1
2
{1+ erf [(t − ta)/τa ]}, θoff(t, tb) =

1
2
{1+ erf [(tb − t)/τb]},

here ta, tb are the turn on and off times with associated widths τa, τb24 An on/off switch over an
nterval is:

θ (t, ta, tb) = θon(t, ta) θoff(t, tb).

For example, a controlled gate involves turning on the nondegeneracy or Larmor frequency
part of the Hamiltonian, then the splitting term and finally the Rabi term, with reversed order
for the turn-offs. For example, for the one qubit case which does not have a spin–spin term, we
use ωL(t) = ωL θ (t, ta, tb) to turn on the Larmor frequency and both ω2(t) = ω2 θ (t, tc, td) and
(t) = ω θ (t, tc, td) to turn on the Rabi. This pulse sequence is illustrated in Figs. A.16 and A.17

23 At times we use an tanh based pulse.
24 We typically set τ = tb−ta , with n ≥ 150 to produce rapid but smooth pulses.
n
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Fig. A.15. Polarization evolution for a single non-degenerate qubit at the Rabi resonance (ω ≡ ωL) with a π pulse of
uration tp = π/ω2 . Not gate case: in the laboratory (left) and first rotating (right) frames. The angular frequency is
aken to be ωL = 100 GHz and the strength of the Rabi driving term is ω2 = ωL/40. The horizontal dashed line indicates
he flipped −py value. In the laboratory frame the x and y polarizations oscillate with the period TL = 0.0628, which is
maller than the driving period T2 = 1.25664. The envelope of the x, y polarizations arises from the fixed length of the
otal polarization. Units of time are defined by h̄ = 1.

Fig. A.16. Pulses for Larmor in blue: {ta, tb, τH } = {0.31415, 1.57080, 0.00838} and for Rabi in red: {tc, td, τR} = {0.62832,
.25664, 0.00419}.
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Fig. A.17. Pulsed version of Fig. A.15, where during the initial time of 5 TL there is degeneracy and no precession, then
the Larmor precession is turned on for a period of 5 TL and then the Rabi driving term is applied for the π pulse time.
his is followed by a turn-off of the Larmor precession and finally of the level splitting. These steps will be applied in
he two-qubit case later.

.2. Hadamard gate case

The prior steps can be modified to generate a Hadamard by use of a Rabi resonance. A π/2 pulse
n the first rotation frame is not the same as a pure Hadamard gate for which {px, py, pz}

Hadamard
−−−−−→

{pz,−py, px}. It can be adjusted to replicate a pure Hadamard by additional gates, but it is simpler
to develop a one-shot Hadamard setup. Such a setup is obtained by using Hamiltonian

H ′(t) ≡ −
h̄ωL

2
σz +

h̄ω2

2

(
cos(ωt) σx − sin(ωt) σy + σz

)
/
√
2 . (A.10)

his Hamiltonian produces a pure Hadamard gate in a rotating frame. In this Hamiltonian the driving
agnetic field is rotating about the z-axis with an angular frequency ω with a fixed component in

he z-direction. The length of the total B-field as specified by the value ω2 is the same as used for
he NOT gate, but the magnetic field vector now precesses at an angular frequency ω about the
-axis at a π/4 angle from that z-axis. This choice is made to facilitate a one-shot Hadamard gate.
The unitary transformation U1(t) ≡ e+

i
2 ω σz t , again transforms to a frame rotating about the

-axis with an angular frequency ω . The Hamiltonian in the first rotating frame Ĥ ′ is obtained using
˜ ′(t) ≡ U(t)H ′(t)U†(t)+ i U

.
(t)U†(t),

Ĥ ′ =
(ω − ωL

2
+
ω2
√
2

)
σz +

ω2
√
2
σx =

Ω⃗h · σ⃗

2
,

ith Ω⃗h ≡ (ω − ωL +
ω2√
2
) ẑ + ω2√

2
x̂ . The magnitude of Ω⃗h is Ωh ≡

√(
ω − ωL +

ω2√
2

)2
+

1
2ω

2
2 . For

→ ω , Ω⃗ → ω .
L h 2
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The first rotated frame polarization vector P⃗ ′ satisfies:

dP⃗(t)
dt
= Ω⃗h × P⃗(t) (A.11)

dPx
dt

(t) = −(ω − ωL +
ω2
√
2
)Py(t)

dPy
dt

(t) = +(ω − ωL +
ω2
√
2
)Px(t)−

ω2
√
2
Pz(t)

dPz
dt

(t) = +
ω2
√
2
Py(t)

or the polarization P⃗ . The length of the polarization vector in the rotating frame is fixed and the
ector Ωh defines a new axis of precession.
A second rotation using that new axis of precession Ũ ′2(t) = e+i

1
2 Ω⃗h·σ⃗ t yields a new Hamiltonian

H̃ ′3 = 0, and thus to a fixed polarization vector p⃗ in the second rotation frame. The direction of the
second rotation is defined by sin(χh) = (ω−ωL+ω2/

√
2)/Ωh and cos(χh) =

ω2√
2
/Ωh. The associated

ixed density matrix in the second rotating frame is then ρ̃3 =
1
2 (σ0 + p⃗ · σ⃗ ). From ρ̃3 , we rotate

back to the first rotation frame density matrix ρ̂2(t) = Ũ ′
†
(t) ρ̃3 Ũ ′(t) to determine a solution for

the polarization vectors in the first rotation frame P⃗ ′(t) :⎛⎝P ′x(t)
P ′y(t)
P ′z(t)

⎞⎠ = Mh ·

(px
py
pz

)
, (A.12)

where Mh is the matrix⎛⎝cos2(χh)+ sin2(χh) cos(Ωh t) − sin(χh) sin(Ωh t) sin(χh) cos(χh)(1− cos(Ωh t))
sin(χh) sin(Ωh t) cos(Ωh t) − cos(χh) sin(Ωh t)
sin(χh) cos(χh)(1− cos(Ωh t)) cos(χh) sin(Ωh t) sin2(χh)+ cos2(χh) cos(Ωh t)

⎞⎠
The vector (P ′x(t), P

′
y(t), P

′
z(t)) equals p⃗ = {px, py, pz} at time t = 0. The above result is identical to

Eq. (A.8), except for the appearance of new Ωh and χh quantities which reflect the new orientation
of the driving B-field.

Now at the Rabi resonance value of ω→ ωL, Ωh → ω2 and χh →
π
4 . For this on-resonance case

Px(t) =
px
2
( 1+ cos(ω2t) )−

py
√
2
sin(ω2t)+

pz
2
( 1− cos(ω2t) )

Py(t) =
px
√
2
sin(ω2t)+ py cos(ω2t)−

pz
√
2
sin(ω2t)

Pz(t) =
px
2
( 1− cos(ω2t) )+

py
√
2
sin(ω2t)+

pz
2
( 1+ cos(ω2t) ).

ow we invoke a π pulse time t ′p =
π
ω2

. Thus at that Rabi pulse time t ′p the polarization vector in
he first rotating frame is exactly that of a Hadamard gate:

{px, py, pz}
HAD
−−→ {pz,−py, px}.

otating back to the laboratory frame readily yields the results in the original frame.
The evolution of the polarization at the Rabi resonance in both the first rotation and the original

ab frames for the case of a pure one-qubit Hadamard gate are shown in Fig. A.19 (see Fig. A.18).

.3. Other gates

Other quantum gates can be generated by Rabi resonance techniques. For example, the phase

hift gate Rφ =
(
1 0

iφ

)
= P0+eiφ P1, where P0 = (σ0+σz)/2, P1 = (σ0−σ3)/2 are spin projection
0 e
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Fig. A.18. Hadamard case: Polarization evolution for a single non-degenerate qubit at the Rabi resonance (ω ≡ ωL) with
π pulse of duration tp = π/ω2 . One-shot Hadamard gate case: in the laboratory (left) and (b) in first rotating (right)

rame. The angular frequency is taken to be ωL = 100 GHz and the strength of the Rabi driving term is ω2 = ωL/40. The
ashed line indicates the flipped −py value. In the laboratory frame the x and y polarizations oscillate with the period
L = 0.0628, which is smaller than the driving period T2 = 1.25664. The envelope of the x, y polarizations arises from
he fixed length of the total polarization.

Fig. A.19. Pulsed version for Hadamard see Fig. A.19, where during the initial time of 5 TL there is degeneracy and no
precession, then the Larmor precession is turned on for a period of 5 TL and then the Rabi driving term is applied for
he Pi pulse time. This is followed by a turn off of the Larmor precession and finally the level splitting. These steps will
e applied in the two-qubit case later.
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perators, can be generated by a simple first rotated frame Hamiltonian H1 =
1
2

(
ω−ωL+ω2

)
σz . At

resonance, this is simply a rotation about the z-axis by an angle ω2 t = φ, which creates the change
{px, py, pz}

Phase
−−→ {px cos(φ)− py sin(φ), px sin(φ)+ py cos(φ), pz}. That is exactly how Rφ affects the

ne qubit density matrix. A controlled phase operator can then be setup using the procedures dis-
ussed herein for the CNOT gate. For φ = π this is a controlled-Z gate. A simple change to the discus-
ion here leads to a controlled-Y gate. Thus a full set of one and two qubit operators can be produced
y Rabi resonance methods as is well known. This obviates the need for a bias pulse used in [1].

ppendix B. Two-qubit Rabi resonance

The above discussion can be directly applied to two-qubits in the absence of a spin–spin
nteraction. The Hamiltonian is then a tensor product sum HAB(t) = HA(t)⊗ I2 + I2 ⊗ HB(t), where
A and HB can be taken as either the above NOT or Hadamard gate forms or simply cases with zero
abi driving ωA

2 → 0 and/or ωB
2 → 0. Here ωA

2, ω
B
2 are the possibly different Rabi driving strengths

or qubits A and B. There can also be different frequencies ωA
L , ω

B
L and thus the prior discussion

pplies for each qubit separately. Here we take ωA
= ωB

= ω, and ωA
2 = ω

B
2 = ω2. This reflects the

pplication of the Rabi field over the whole sample.
With two qubits that interact with, for example, a spin–spin interaction, the Rabi oscillations are

uch more complicated. Driving one qubit affects the other. The extra degeneracy provided by a
pin–spin interaction is needed [25] to produce a controlled gate system, so this case is considered
ext.
Can an analytic or perhaps a good approximate solution to Rabi oscillation for two spin–spin

oupled qubits be obtained? In that spirit, the prior steps of two rotations including a spin–spin
nteraction

VSS =
1
4

( σ⃗A · σ⃗B − I4 )

σ⃗ A
· σ⃗ B
≡

∑
i=1,3

σ⃗ A
i ⊗ σ⃗

B
i . (B.1)

re now considered.

.0.1. First rotation
Applying the first rotation procedure to qubits A and B with the same driving frequency U1(t) ≡

+
i
2ωσ

A
z t
⊗ e+

i
2ωσ

B
z t , the spin–spin is unchanged. This is a transformation to a frame with static B-

fields and pure NOT or pure Hadamard operators. Now let us focus on CNOT gate dynamics. The
two-qubit Hamiltonian in the first rotation frame is:

H2 = HA
2 ⊗ σ0 + σ0 ⊗ HB

2 + VSS (B.2)
HA

2 = Ω⃗A · σ⃗ /2 & HB
2 = Ω⃗B · σ⃗ /2

Ω⃗A
≡ (ω − ωA

L ) ẑ + ω
A
2 x̂

Ω⃗B
≡ (ω − ωB

L ) ẑ + ω
B
2 x̂

Here each qubit precesses about its respective Ω⃗A and Ω⃗B axis, along with the unchanged spin–
spin interaction. This Hamiltonian is time-independent and thus Laplace transformation methods
can be invoked. However that involves a 15 × 15 secular equation inversion which is rather
complicated. A Picard iteration method can also be invoked.

In this rotation frame, the time evolution of the 15 spin observables are described by
d
dt

P⃗A(t) = Ω⃗A
× P⃗A(t)−

J
2
A⃗ (B.3)

d
dt

P⃗B(t) = Ω⃗B
× P⃗B(t)+

J
2
A⃗

d←→
T (t) = Ω⃗A

×
←→
T (t)−

←→
T (t) × Ω⃗B

+
J
ξ⃗ · (P⃗A(t)− P⃗B(t)),
dt 2
40
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here ξ⃗ = (ϵi,j,1, ϵi,j,2, ϵi j 3), using the Levi-Civita symbol ϵ. Equations for the spin correlation
functions

←→
T can also be obtained involving the nine spin observables:

(1) axial vector

A⃗(t) = ⟨σ⃗A × σ⃗B⟩; Ai(t) =
∑

j,k=1,3

ϵi j k Tj,k(t),

(2) scalar:

S(t) = ⟨σ⃗A · σ⃗B⟩ =
∑
i,1,3

Ti,i(t),

and
(3) traceless symmetric form

τ (t)→
1
2
(Ti,j(t)+ Tj,i(t))−

1
3
δi,j S(t).

uch equations can provide insights into the dynamical changes.
The (B.3) equations also lead to the results

d
dt

(P2
A (t)+ P2

B (t)) = −J(P⃗
A(t)− P⃗B(t))A⃗ (B.4)

d
dt

Tr
(
←→
T t←→T

)
= +J(P⃗A(t)− P⃗B(t))A⃗ .

rom Tr(ρ2(t)) = 1
4P

2
A (t) + P2

B (t) + Tr
(
←→
T t←→T

)
≤ 1, we conclude that P2

A (t) ≡ P⃗A(t) · P⃗A(t) ≤

, P2
B (t) ≡ P⃗B(t) · P⃗B(t) ≤ 1, and Tr(

←→
T t←→T ) ≤ 2. For numerical solutions, we solve the density

atrix evolution equations and then display the spin observables.

.0.2. Second rotation
In this case, invoking a second rotation U2(t) = ei H

A
2 t
⊗ ei H

B
2 t yields a nonzero Hamiltonian for

a nonzero spin–spin interaction (J ̸= 0):

H3(t) =
J
4

[
S⃗A(t) · S⃗B(t)− I4

]
(B.5)

S⃗A(t) = ei H
A
2 t
· σ⃗ A
· e−i H

A
2 t

S⃗B(t) = ei H
B
2 t
· σ⃗ B
· e−i H

B
2 t ,

rom which approximate solutions might be based on the exact solution with just VSS . Unfortunately,
uch steps led to rather complicated expressions and thus direct numerical solutions proved to
e more propitious. A useful analytic solution, perhaps based on the precession of each qubit

S⃗
.
α(t) = Ω⃗α × S⃗(t) for α = A, B with the control qubit’s axis Ω⃗A close to the z-axis and the
OT qubit’s axis Ω⃗B close to the x-axis might be possible. Once the spin–spin interaction’s effect is
ncluded, one could transform back to the second rotation frame and reveal the detailed dynamics.
uch information will be gleaned from the numerical results in the main text.
So now return to the main text for the two-qubit CNOT gate results, where the influence of noise,

xternal Bath, and entropy constraints on CNOT dynamics are examined.

.0.3. Bell state and swap gate cases
To generate the four Bell states, we need to act on qubit A with a Hadamard and then a CNOT

ate, with control on qubit A and not on qubit B. We keep the Larmor splitting on. To carry out
hat sequence we use two different pulse setups. For the Hadamard, we keep the spin–spin off,
nd set the Rabi frequency ω = ωL , and use the Hadamard rotating magnetic field, as discussed
A
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i
i

n Appendix A.2. Once that is finished, the spin–spin strength is turned on and the Rabi frequency
s selected to be ω = δ111,1 which generates the CNOT gate. This will be used to track entanglement
evolution with noise.

A swap gate is generated by three sequential CNOT gates; namely, CNOT(1, 2) · CNOT(1, 2) ·
CNOT(1, 2). Thus, with both the full degeneracy and the spin–spin terms on, we use a pulse with
ω = δ111,0 for a time τ = π

ω2
followed by ω = δ110,1 for the same duration time τ and finally by ω = δ111,0

for time τ . A sample result is shown in Fig. 8. This will be used to track swap gate sensitivity to
noise.

Appendix C. Toffoli gate and Rabi resonance

The three-qubit Toffoli gate can also be generated by a Rabi resonance method. It is a simple
generalization of the CNOT gate. Indeed, it can be called a CNNOT gate in that two qubits need to
be 1, to have a NOT gate act on the third qubit. The three qubit density matrix is in general:

ρ(t) =
1
8
(I8 + χP

A (t)+ χ
P
B (t)+ χ

P
C (t)+ χ

T
1 (t)+ χ

T
2 (t)+ χ

T
3 (t)+ χ

T
4 (t))

χP
A (t) =

∑
i=1,3

PA
i (t) σ

A
i ⊗ σ

B
0 ⊗ σ

C
0

χP
B (t) =

∑
i=1,3

PB
i (t) σ

A
0 ⊗ σ

B
i ⊗ σ

C
0

χP
C (t) =

∑
i=1,3

PC
i (t) σ

A
0 ⊗ σ

B
0 ⊗ σ

C
i

χ T
1 (t) =

∑
i,j=1,3

T AB
i j (t) σ

A
i ⊗ σ

B
j ⊗ σ

C
0

χ T
2 (t) =

∑
i,j=1,3

T AC
i j (t) σ A

i ⊗ σ
B
0 ⊗ σ

C
j

χ T
3 (t) =

∑
i,j=1,3

T BC
i j (t) σ A

0 ⊗ σ
B
i ⊗ σ

C
j

χ T
4 (t) =

∑
i,j,k=1,3

T ABC
i j k (t) σ A

i ⊗ σ
B
i ⊗ σ

C
k . (C.1)

For three-qubits the density matrix has 63 real spin observables. The relations between the density
matrix and the 63 spin observables are:

P⃗A(t) = Tr( (σ⃗A ⊗ σ0 ⊗ σ0) ρ(t) ) ≡ ⟨σ⃗A ⊗ σ0 ⊗ σ0⟩

P⃗B(t) = Tr( (σ0 ⊗ σ⃗B ⊗ σ0) ρ(t) ) ≡ ⟨σ0 ⊗ σ⃗B ⊗ σ0⟩

P⃗C (t) = Tr( (σ0 ⊗ σ0 ⊗ σ⃗C ) ρ(t) ) ≡ ⟨σ0 ⊗ σ0 ⊗ σ⃗C ⟩
←→
T AB(t) = Tr( ( ⃗σ A ⊗ σ⃗B ⊗ σ0) ρ(t) ) ≡ ⟨ ⃗σ A ⊗ σ⃗B ⊗ σ0⟩

←→
T AC (t) = Tr( ( ⃗σ A ⊗ σ0 ⊗ σ⃗C ) ρ(t) ) ≡ ⟨ ⃗σ A ⊗ σ0 ⊗ σ⃗C ⟩

←→
T BC (t) = Tr( (σ0 ⊗ ⃗σ B ⊗ σ⃗C ) ρ(t) ) ≡ ⟨σ0 ⊗ ⃗σ B ⊗ σ⃗C ⟩

TABC (t)→ Tr( (σi ⊗ σj ⊗ σk) ρ(t) ) ≡ ⟨σi ⊗ σj ⊗ σk⟩. (C.2)

There are three polarizations 3× 3 = 9, three double spin correlations 3× 9 = 27, plus one triple
spin correlation 3× 3× 3 = 27, with a net of 9 + 27 + 27 = 63 spin observables.
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For the three qubit state |q1, q2, q3⟩ with q1, q2 as the control and q3 as the action qubit we have

he circuit TC=: , with q1, q3 as the control and q2 as the action qubit we have the circuit

TB=: , and with q2, q3 as the control and q1 as the action qubit we have the circuit TA=:

. The corresponding matrices25 are:

TC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.3)

TB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.4)

TA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C.5)

The main action of these Toffoli operators are that:

TC |1, 1, 1⟩ = |1, 1, 0⟩ and TC |1, 1, 0⟩ = |1, 1, 1⟩ (C.6)

TB|1, 1, 1⟩ = |1, 0, 1⟩ and TB|1, 0, 1⟩ = |1, 1, 1⟩ (C.7)

TA|0, 1, 1⟩ = |1, 1, 1⟩ and TA|1, 1, 1⟩ = |0, 1, 1⟩ (C.8)

or all other kets there are no qubit changes. How can this be implemented using the prior CNOT
pproach?

.1. Hamiltonians

The main ingredients are again non-degenerate qubit levels, spin–spin interactions and Rabi
riving fields along with appropriate choices of the resonant Rabi driving frequencies. The non-
egenerate qubit levels are again produced by a constant magnetic field in the ẑ direction, with a

25 These operators are defined by: TC = I8 + P1 ⊗ P1 ⊗ (σx − σ0), TB = I8 + P1 ⊗ (σx − σ0) ⊗ P1 , and
TA = I + (σ − σ )⊗P ⊗P , where P denotes a spin projection operator.
8 x 0 1 1 1
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radient in the qubit line-up x̂ direction, which yields a Hamiltonian

H0 = −
ωA

L

2
σz ⊗ σ0 ⊗ σ0 −

ωB
L

2
σ0 ⊗ σz ⊗ σ0 −

ωC
L

2
σ0 ⊗ σ0 ⊗ σz, (C.9)

or qubits A, B and C. We assume these frequencies are non-degenerate ωA
L > ωB

L > ωC
L .

The spin–spin interactions acts between pairs of qubits:

VSS =
J
4

( σ⃗A · σ⃗B − I8 )+
J
4

( σ⃗A · σ⃗C − I8 )

+
J
4

( σ⃗B · σ⃗C − I8 )

σ⃗ A
· σ⃗ B
≡

∑
i=1,3

σ⃗i ⊗ σ⃗i ⊗ σ0

σ⃗ A
· σ⃗ C
≡

∑
i=1,3

σ⃗i ⊗ σ0 ⊗ σ⃗i

σ⃗ B
· σ⃗ C
≡

∑
i=1,3

σ0 ⊗ σ⃗i ⊗ σ⃗i

I8 ≡ σ⃗0 ⊗ σ⃗0 ⊗ σ0 (C.10)

where we use a common strength J for each of the qubit pairs. It provides additional level splitting
that allows for the controlled qubits to cause selective NOT gate action.

Finally, we have the Rabi term for each of the three qubits:

VR(t) = V A
R (t)+ V B

R (t)+ V C
R (t)

V A
R (t) =

h̄ωR
2

2

(
cos(ωt) σx ⊗ σ0 ⊗ σ0 − sin(ωt) σy ⊗ σ0 ⊗ σ0

)
V B
R (t) =

h̄ωR
2

2

(
cos(ωt) σ0 ⊗ σx ⊗ σ0 − sin(ωt) σ0 ⊗ σy ⊗ σ0

)
V C
R (t) =

h̄ωR
2

2

(
cos(ωt) σ0 ⊗ σ0 ⊗ σx − sin(ωt) σ0 ⊗ σ0 ⊗ σy

)
(C.11)

Here ωR
2 = ω2 specifies the common strength of the three driving terms and ω denotes the common

Rabi driving frequency. It is the choice of a resonant value for ω along with the spin–spin interaction
and non-degeneracy that produces the control(s) and action dynamics.26

C.2. First rotating frame

As before we first transform to the first rotating frame using the following unitary matrices for
qubits A, B and C with the same driving frequency U1(t) ≡ e+

i
2ωσ

A
z t
⊗ e+

i
2ωσ

B
z t
⊗ e+

i
2ωσ

B
z t , We

again use the rule in Eq. (A.1). The spin–spin term VSS is unchanged. The H0 + V R(t) transforms to
20 + V R

2 (t) in the first rotated frame

H20 = h̄{
ω − ωA

L

2
σz ⊗ σ0 ⊗ σ0 +

ω − ωB
L

2
σ0 ⊗ σz ⊗ σ0 +

ω − ωC
L

2
σ0 ⊗ σ0 ⊗ σz}, (C.12)

or qubits A, B and C.

V R
2 =

h̄ωR
2

2
( σx ⊗ σ0 ⊗ σ0 + σ0 ⊗ σx ⊗ σ0 + σ0 ⊗ σ0 ⊗ σx) (C.13)

ote that in the first rotation frame H20 + V R
2 + VSS is time independent.

26 The above case involves the NOT gate, although other choices could be made to generate controlled-any operator
ases.
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.3. Resonant Rabi frequency

Three Rabi resonant frequencies produce three different Toffoli operators TA, TB, TC . The Rabi
esonant frequencies are determined by the Hamiltonian H20 + VSS . Based on a perturbation
valuation of det(H20 + VSS − ω) ≡ 0, the associated transition Rabi frequencies are:

For TC : δ111110 = ω
L
C + J −

J2

4
(
1
∆1
+

1
∆2

)−
J3

4∆1∆2
.

For TB : δ111101 = ω
L
B + J −

J2

4
(
1
∆
−

1
∆2

)+
J3

4∆∆2
.

For TA : δ111011 = ω
L
A + J +

J2

4
(
1
∆
+

1
∆1

)−
J3

4∆∆1
,

ith ∆ ≡ ωA
L −ω

B
L , ∆1 ≡ ω

A
L −ω

C
L , and ∆2 ≡ ω

B
L−ω

C
L . Selection of w = δ111110, δ

111
101 or δ111011 , along with

a numerical solution of the time-dependent density matrix generates the associated Toffoli gate.

C.4. Numerical Toffoli gates

For example, assume an initial density matrix ρ(0) = |110⟩⟨110|, and taking Rabi driving
resonance frequency ω = δ111110 . The analytic method yields the final density matrix ρ(tf ) =
TC .ρ(0).TC The exact initial nonzero spin observables are: PA

z = PB
z = 1 = −PC

z , T
AB
zz = −T

AC
zz =

−T BC
zz = 1 = T ABC

zzz . The exact final nonzero spin observables are: PA
z = PB

z = 1 = PC
z , T

AB
zz = T AC

zz =

T BC
zz = 1 = −T ABC

zzz . Now calculate the dynamical density matrix numerically. Numerical solution for
the three-qubit first rotation frame density matrix with three Rabi driving resonance frequencies ω
are shown in Fig. C.20.

Appendix D. Noise and Lindblad

D.1. Lindblad noise pulses-LN

The Lindblad term L1 is adopted as a mechanism for introducing external noise effects. When so
used we denote the associated Lindblad operator as L(t)→ LN (t), where we focus on weak single
qubit and distinct pulses of short duration. In that case a single time-dependent LN (t) suffices for
our present study. For example, we define LaN (t) for qubit A as

LaN (t) = σ0 +
∑
µ

ηµ σ⃗ · n̂µ φ(t − tµ), (D.1)

where n̂µ ≡ {sin θµ cosφµ, sin θµ sinφµ, cos θµ} for random values of 0 ≤ θµ ≤ π , and 0 ≤ φµ ≤ 2π
and for random lengths ηµ ≤ 1, and random times tµ, for each integer value of µ = 1 . . . nh.27 The
total number of noise hits on that qubit is nh, where overlapping hits are removed. That is what
is meant by distinct hits. The above steps are also applied to qubit B and the resultant Lindblad
two-qubit noise operator is LN (t) = LaN (t) ⊗ LbN (t). The random time for each noise hit tµ is often
restricted to the time region that a gate is in action to examine the stability of a particular gate.
The strength of a particular hit is Γ ηµ, which is limited to small amplitudes. A typical set of such
noise hits is Fig. D.21.

27 See [8] for how to assure uniform distribution of points within the Bloch ball.
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Fig. C.20. Toffoli gate T: (top) TC with initial qubits = |110⟩ and ω = δ111110; (center) TB with initial qubits = |101⟩ and
= δ111101; (bottom) TA with initial qubits = |011⟩ and ω = δ111011 . The density matrix is solved numerically with typical

able 2 values. Precision of this calculation is Tr(ρ(tf ) · T · ρ(ti) · T ) ≡ 99.99%. The other 54 observables are quite precise
s indicated by a Hilbert–Schmidt distance study.

.2. LNC noise compensation with purity increase and associated entropy decrease

The condition for selecting Lindblad noise that decreases purity and consequently increases
ntropy is given in Eq. (63). Let us examine this for a single qubit. Here we use L1 → LN for
oise and in addition L → L for noise compensation.
1 NC
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t

Fig. D.21. Noise pulses on two qubits for 12 hits, with overlaps dropped for each qubit. The solid red curves are for qubit
A and the dotted blue are for qubit B. The pulses have common widths of 0.2, with random strengths. The black dots
indicate the on/off times of the CNOT gate pulse; so this generates external Lindblad noise during that gate.

The Lindblad operator is expanded as L(t) =
∑

i=0,3 Li σi, then L†(t) =
∑

i=0,3 L
∗

i σi. The i = 0
terms do not contribute and we obtain the contribution of LNC to the rate of change of purity P(t)
as

P
.
(t) = 2 Tr(ρ LNC )

P
.
(t) =

∑
i,j=1,3

L∗i Mi,j Lj

Mi,j = 2 γNC Tr
(
ρ σj ρ σi −

1
2
(ρ ρ + ρ ρ)σi σj

)
. (D.2)

Here ρ is a dynamically calculated density matrix at a selected time, whereas ρ is a guessed density
matrix used to specify LNC , see later. Let us equate these for now. Then with γNC set to one,

Mi,j = 2 Tr
(
ρ σj ρ σi − ρ ρ σi σj

)
(D.3)

where M = MR + i MI is now a 3 × 3 Hermitian matrix with trace −2 and zero determinant. Thus
he three eigenvalues are real, with one zero and the others two sum to −4 P2.

MR = 2 P2

⎛⎝− sin2(θ ) sin2(φ)− cos2(θ ) sin2(θ ) sin(φ) cos(φ) sin(θ ) cos(θ ) cos(φ)
sin2(θ ) sin(φ) cos(φ) − sin2(θ ) cos2(φ)− cos2(θ ) sin(θ ) cos(θ ) sin(φ)
sin(θ ) cos(θ ) cos(φ) sin(θ ) cos(θ ) sin(φ) − sin2(θ )

⎞⎠
(D.4)

MI = 2 P

( 0 cos(θ ) − sin(θ ) sin(φ)
− cos(θ ) 0 sin(θ ) cos(φ)

)
. (D.5)
sin(θ ) sin(φ) − sin(θ ) cos(φ) 0
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he three eigenvalues of M are λ0 = 0, λ+ = +2 P(1 − P), λ− = −2 P(1 + P), where P ≤ 1 is the
agnitude of the inside the Bloch ball polarization vector. The normalized eigenvectors for these

hree eigenvalues are:

V⃗0(θ, φ) = n̂P =
P⃗
P
= {sin θ cosφ, sin θ sinφ, cos θ}

V⃗+ =
1
√
2
{− cos θ cosφ − i sinφ,− cos θ sinφ + i cosφ, sin θ}

= V⃗R + i V⃗I

V⃗− =
1
√
2
{− cos θ cosφ + i sinφ,− cos θ sinφ − i cosφ, sin θ}

= V⃗R − i V⃗I (D.6)

V⃗R =
1
√
2
{− cos θ cosφ,− cos θ sinφ, sin θ} =

1
√
2
V⃗0(θ −

π

2
, φ)

V⃗I =
1
√
2
{− sinφ,+ cosφ, 0} =

1
√
2
V⃗0(−

π

2
, φ −

π

2
) , (D.7)

here P =
√
P2
x + P2

y + P2
y is the magnitude of the polarization vector with components P⃗ =

{Px, Py, Pz} for a single qubit density matrix ρ. We see above that the eigenvectors with nonzero
eigenvalues are related to the zero eigenvalue case by simple rotations.

Now selecting V⃗+ will produce increased purity and lower entropy. If we identify the eigenvec-
tors of M as {V⃗0, V⃗+, V⃗−} → {L1,L2,L3}, we can associate the positive eigenvalue with increasing
purity and the negative eigenvalue with decreasing purity. The zero eigenvalue part yields no
change in purity. The usual constraint is to have Lindblad operators that decrease Purity and thus
increase entropy. Here to use this structure for noise control (NC), we select Lindblad operators
with the above positive eigenvalue of M, which yields increased purity and decreased entropy.
That step reverses the increase in entropy associated with noise. It also means that we violate the
condition given in Eq. (64) and now can invoke non-Hermitian Lindblad operators as a noise control
mechanism.

In the above discussion, we identify the eigenvectors of M as a way to define three types of
indblad operators; one that does not change purity L1, one that increases purity L2 and one that
ecreases purity L3. The density matrix used to define M and the associated polarization vector
⃗ : {Px, Py, Pz} in general differs from the polarization vector P⃗ : {Px, Py, Pz} associated with a
ubit’s dynamically calculated values, including possible noise effects. In a real case one calculates
⃗ from the dynamic equations and guesses P⃗ based on values that one would like to realize at a
articular time, such as towards the end times of a gate. The role of P⃗ , and P⃗ in influencing changes
n purity28 is given by δP

.
(t) = 2 Tr(ρ L1), where ρ is based on the dynamic P⃗ and L1 uses the best

uess values P⃗

L1 : δP
.
(t) = 0

L2 : δP
.
(t) = +

2(1− P)
P

(P⃗ · P⃗)

L3 : δP
.
(t) = −

2(1+ P)
P

(P⃗ · P⃗). (D.8)

In the P⃗ → P⃗ limit this reduces to the earlier result. Note the middle case above is the key one
with an increase in Purity provided P⃗ · P⃗ is positive. A good guess must satisfy that condition if a
decrease in entropy is needed to control noise.

28 Our focus in these sections is on the contribution from the L , which must be added to that from other L terms.
1
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An additional insight into the role of the Lindblad operator L in L1 is seen by the effect on the
ne-qubit polarization:

L1 : δ P⃗
.
(t) = −2 P⃗ + 2

P⃗ · P⃗
P

P⃗
P

P⃗→P⃗
−−→ 0

L2 : δ P⃗
.
(t) = −P⃗ + (2−

P⃗ · P⃗
P

)
P⃗
P

P⃗→P⃗
−−−−→ 2

1− P
P

P⃗

L3 : δ P⃗
.
(t) = −P⃗ − (2+

P⃗ · P⃗
P

)
P⃗
P

P⃗→P⃗
−−−−→ −2

1+ P
P

P⃗ (D.9)

imits for the three Lindblad cases are shown. From these results, it follows that entropy decreases
nd the associated eigenvalues are pushed closer together for L2. It can be shown that the Lidar
ondition (64) can be broken using the Lindblad operator L2, which is also non-Hermitian.
Evaluating L1 for each of the above Li. cases yields a simple result:

L1(L1) = −

[
P⃗ − (P⃗ · n̂P) n̂P

]
· σ⃗

P⃗→P⃗
−−→ 0

L1(L2) = −
1
2

[
P⃗ − (2− P⃗ · n̂P )n̂P

]
· σ⃗

P⃗→P⃗
−−→

1− P
P

(σ⃗ · P⃗)

L1(L3) = −
1
2

[
P⃗ + (2+ P⃗ · n̂P )n̂P

]
· σ⃗

P⃗→P⃗
−−→ −

1+ P
P

(σ⃗ · P⃗) (D.10)

where n̂P ≡
P⃗
P . This result can be used to recover the Purity, polarization and entropy rates

contributions from L1.
The above one-qubit case discussion to two or more qubits. For the two qubit case the M is
16 × 16 Hermitian matrix with 6 positive, 6 negative and 4 zero eigenvalues. The largest of

he positive eigenvalues and its associated eigenvector would be the most effective choice for an
ntropy reduction for two-qubit Lindblad noise pulses. Double noise hits are less likely and hence
e do not pursue such cases here, but simply apply single-qubit NC Lindblad pulses on each qubit.

.3. LNC simple noise compensation via decrease in entropy

The above analysis allows one to select a Lindblad operator that perforce increases purity and
ecreases entropy. That is an operator that restores order in some sense. Ideally, one could use
ophisticated, albeit costly, error correction methods to optimally design such a Lindblad entropy
ecreasing operator. As a simple alternative, one could assume that the barrage of noise would bend
owards increasing entropy and use an entropy reduction series of Lindblad pulses to counter the
ffect of noise. The advantage of this uninformed step is that one need not invoke the heavy costs of
rror correction; the disadvantage is that it is a gamble without assurance of success. Nevertheless
f one knows from model calculations where the system should be, that could affect the design of
he noise canceling steps (NC). This scheme is explored in the main text, where it is indeed seen to
ancel noise.

ppendix E. Noise compensation Lindblad in Hamiltonian form

To gain insight on how to implement noise compensation via selection of a Lindblad that
ncreases purity and decreases entropy, it is helpful to cast LNC into Hamiltonian form. We would
ike to find some approximate Hamiltonian Hη(t), albeit non-hermitian, that allows the substitution
LNC (t)→ i [ρ(t),Hη(t)]. We can see if the associated condition

i Tr( Ωκ
[ρ(t),Hη(t)] )↔ Tr(Ωκ LNC )

can be satisfied. Here Ωκ denotes the full set of spin operators for nq qubits. For example, for one
ubit Ω = σ⃗ . In general the above condition cannot be satisfied.
However, one direct way to find an approximate solution is to invoke the pseudoinverse (Moore–

Penrose inverse) of the commutator term. For example, for one qubit use H (t) = σ⃗ · h⃗ (t) to find an
η η
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pproximate solution for h⃗η . That was carried out numerically for one and two qubits and the result
s a non-hermitian Hamiltonian. The task then is to generate such a Hamiltonian using absorptive
agnetic and possibly electric field pulses. That task is relegated to a future study.
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