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Abstract

Lindbladian formalism models open quantum systems using a ‘bottom-up’ approach,
deriving linear dynamics from system–environment interactions. We present a ‘top-down’
approach starting with phenomenological constraints, focusing on a system’s structure,
subsystems’ interactions, and environmental effects and often using a non-equilibrium
variational principle designed to enforce strict thermodynamic consistency. However,
incorporating the second law’s requirement—that Gibbs states are the sole stable equilibria—
necessitates nonlinear dynamics, challenging no-signaling principles in composite systems.
We reintroduce ‘local perception operators’ and show that they allow to model signaling-
free non-local effects. Using the steepest-entropy-ascent variational principle as an example,
we demonstrate the validity of the ‘top-down’ approach for integrating quantum mechanics
and thermodynamics in phenomenological models, with potential applications in quantum
computing and resource theories.

Keywords: non-linear quantum thermodynamics; entropy production; no-signaling;
steepest entropy ascent; local perception operators

1. Introduction
The study of open quantum systems broadly falls into two distinct approaches. The

dominant method involves the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) master
equation, typically under the assumption of weak coupling between a quantum system and
its environment (for recent reviews, see [1,2]). This approach derives thermodynamically
consistent reduced system dynamics starting from the Schrödinger equation combined
system-environment evolution and subsequently tracing out environmental degrees of
freedom [3–5]. We refer to this widely adopted strategy as the ‘bottom-up’ approach. Its
effectiveness relies on idealized assumptions regarding the environment and the careful
construction of appropriate Kraus operators, and it typically presumes that the initial state
of the system-environment composite is factorizable.

In contrast, an alternative yet less explored methodology exists: the phenomenological
or ‘top-down’ approach. This paradigm directly posits a general local dynamical law for
the system’s density operator based primarily on thermodynamic and phenomenological
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considerations. It inherently accommodates strongly coupled subsystems and compos-
ite structures. Crucially, it explicitly incorporates the thermodynamic requirement that
Gibbs states are the only conditionally stable equilibrium states [6,7], necessitating a de-
parture from strictly linear evolution. Simmons and Park [6] demonstrated early on that
nonlinearity is essential to achieve a consistent integration of quantum mechanics and ther-
modynamics. It is important to clarify here that our approach is distinct from the nonlinear
quantum mechanics (NQM) recently subjected to stringent experimental tests [8,9]; rather,
it represents a phenomenological route toward thermodynamically consistent, irreversible
and non-equilibrium quantum dynamical models.

Recent experimental advances underscore the practical necessity for top-down phe-
nomenological models, especially in scenarios where detailed environmental modeling is
inaccessible or impractical [10]. Such models naturally describe ‘apparent decoherence’
stemming from unknown environmental interactions, employing minimal empirical param-
eters. Moreover, they conveniently handle situations where multiple conserved quantities,
possibly non-commuting, are relevant at the local level [11].

Among the existing top-down formalisms, the Steepest Entropy Ascent (SEA) frame-
work has emerged as particularly powerful and conceptually robust. Originating from the
foundational works of Hatsopoulos and Gyftopoulos [12–15], and subsequently developed
extensively by Beretta [16–24], SEA integrates thermodynamic irreversibility into quantum
dynamics from first principles. This formalism has been successfully employed across
diverse quantum systems [25–27], including quantum computational scenarios [28,29].
Nevertheless, despite its robustness and conceptual appeal, a rigorous demonstration of
SEA’s compatibility with fundamental quantum principles, particularly the no-signaling
condition, has thus far remained underexplored [22–24,26].

This paper explicitly fills this critical gap. We rigorously prove that SEA dynamics in-
herently satisfy the no-signaling condition, even though its equations of motion incorporate
nonlinearities and nonlocal structures. To this end, we introduce and utilize Local Percep-
tion Operators (LPOs), a conceptual tool that ensures subsystem locality in a nonlinear
dynamical context. We establish the invariance of LPOs under local unitary transformations,
which guarantees that no signaling between non-interacting subsystems emerges from the
SEA dynamics. We further substantiate our claims through nontrivial illustrative examples.
While the primary objective is to demonstrate that SEA-type dynamics respect no-signaling,
we also take this opportunity to clarify the foundational motivation for invoking the SEA
framework in the first place. In doing so, we show how it resolves subtle but important
paradoxes that often go unaddressed in conventional bottom-up approaches.

The paper is structured as follows. Section 2 formally defines signaling and explores
its relationship with nonlinearity. In Section 3, we revisit the philosophical motivations that
led to the inception of SEA dynamics. Section 4 discusses conceptual issues surrounding
quantum state individuality that nonlinear dynamics help resolve. Section 5 introduces a
measure-theoretic representation for mixed ensembles, facilitating the rigorous handling
of nonlinear dynamics. The Local Perception Operators (LPOs) are defined and analyzed
in Section 6, and their critical role in establishing no-signaling is rigorously demonstrated
in Section 7. The composite-system SEA equation is developed structurally in Section 8,
followed by a variational derivation in Sections 9 and 10. Section 11 presents explicit
numerical examples, and Section 12 summarizes our findings.

2. No-Signaling and Nonlinearity
Quantum mechanics (QM), as described by the Schrödinger-von Neumann formalism,

is traditionally characterized by its linearity in state space and time evolution. Mean values
of global and local properties and their time evolutions under unitary (and completely
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positive) dynamics are linear functionals of the density operator. This linearity implies
no-cloning, first shown by Park [30] and later rediscovered by Ghirardi [31], Wootters and
Zurek [32], and Dieks [33]. Linearity also implies no-signaling [34–37]. However, Weinberg
questioned this linear characteristic of QM [38]. He introduced nonlinearity into the opera-
tor formalism of the Schrödinger equation while preserving order-one homogeneity. This
was one of the earliest examples of what is now broadly referred to as nonlinear quantum
mechanics (NQM). Gisin [39] showed that such formalism could facilitate faster-than-light
communication, viz., signaling. Polchinski [40] proposed an alternative method to prevent
signaling by restricting local evolutions in order to depend solely on the corresponding
reduced density operators. However, this formalism still allowed signaling between dif-
ferent branches of the wave function (Everett telephone) [40]. Wódkiewicz and Scully [41]
analyzed the nonlinear evolution of two-level atoms, with solutions later shown to depend
on interpretation [42]. Czachor also showed that a nonlinear operator induces mobility
phenomena (non-conservation of the inner-product of two pure states) [43].

Nonlinearity introduced via stochastic QM through Lindblad operator formalism [44]
for open quantum systems has been shown to respect no-signaling. Weinberg-inspired
nonlinearities, interestingly, enable faster algorithms to solve NP-complete problems in
polynomial time [45]. Later work [46] demonstrated that nonlinearity in QM can be
incorporated without violating no-signaling, as long as time evolution is nonlinear while
state space and operators remain linear. More recently, convex quasilinear maps [47,48]
were shown to support nonlinear QM dynamics without signaling, preserving key features
of QM. Rembieliński and Caban [47] identified this as the minimal allowable deviation
from QM’s linear structure. In a recent work, Kaplan and Rajendran [49] showed that, in
a low-temperature limit, the non-linearity introduced in quantum field theory results in
causal nonlinear quantum mechanics, which is also another version of NQM.

Therefore, introducing nonlinearity in quantum mechanics (QM) can lead to exotic
interactions that are difficult to justify physically. Nonlinear theories, as inspired by
the Weinberg approach, allow for entropy oscillation [43]. The stochastic, jump-induced
mixing of pure states [44] offers a basis for developing a thermodynamically consistent
nonlinear master equation for the density operator of an open system. However, the
search for theoretically consistent nonlinear models of quantum thermodynamics remains
an open challenge. This is where we claim—and later demonstrate in the following
sections—that the ‘top-down’ approach of SEA resolves the signaling problem entirely
(pictorially sketched in Figure 1). From a philosophical perspective, SEA also addresses
other conceptual conundrums, in particular the Schrödinger-Park paradox [50,51], as was
already discussed by Park [52] and Beretta [53].

The no-signaling condition, as noted in [46], is typically enforced by requiring that, in
the absence of mutual interactions between subsystems A and B, the evolution of A’s local
observables depends solely on its reduced state. Formally, we express this as follows:

dρJ

dt
= f (ρJ), (1)

where ρJ is the reduced density operator (local state) of subsystem J. The SEA formalism,
however, adopts a less restrictive perspective [22]. It requires that, if A and B are non-
interacting, the law of evolution must not permit a local operation within B to influence
the time evolution of A’s local (reduced, marginal) state. Consequently, the condition
ρA = ρ′A, applied to the two different states ρ ̸= ρA⊗ρB and ρ′ = ρA⊗ρB, does not
necessitate dρA/dt = dρ′A/dt. This is because the local evolution can still be influenced
by past interactions, such as existing entanglement and correlations, without violating
the no-signaling principle. This highlights two key ideas: (1) analyzing local evolutions
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allows detection of correlations, but only those that can be classically communicated
between subsystems, and (2) in the absence of interactions, nonlinear dynamics can cause
correlations to diminish (spontaneous decoherence) but cannot create new correlations. We
formally express this no-signaling condition as follows (see Section 8 for details),

dρJ

dt
= f (ρJ , (Ck)

J), (2)

where (Ck)
J are ‘local perception operators’ (LPO) (see Section 6 for their definition).

ALICE BOB

X
No Exotic Communication

Faster Than Light Communication

Non-linear Quantum Evolution

Steepest Entropy Ascent Evolution

Figure 1. Schematic representation of no-signaling situation in the case of nonlinear quantum
evolution. Alice and Bob are correlated but are non-interacting in a nonlinear quantum theory (we
imply the nonlinearities via the texture of the embedding background in the schematic). In the
top part, a non-linear quantum evolution as described by Polchinski [40] or Gisin [39] may entail
faster-than-light communication in some form (denoted as the telephone booth; see text for details). In
the bottom part, instead, the embedding nonlinear steepest-entropy-ascent evolution cannot establish
a similar exotic communication.

3. Philosophical Motivations Leading to SEA
Philosophically, SEA evolution was designed to conceive the irreversible equilibra-

tion and decoherence as a fundamental spontaneous dynamical feature, contrary to the
coarse-graining approach. Entropy, the second law, and irreversibility could attain a more
fundamental status as deterministic outcomes of quantal evolution [54], without contradict-
ing standard QM. From the outset [16,17], nonlinearity was recognized as essential [6,55]
for this purpose. While the prevalent notion was—and still is—that the second law is
emerging and statistical, the pioneers of SEA believed that the many ‘knots of thermody-
namics’ [55,56] could, at least conceptually, be untied by elevating it to a more fundamental
stature. This motivated Hatsopoulos and Gyftopoulos (HG) to develop a unified theory of
mechanics and thermodynamics [12–15]. They laid the foundation for what is now known
as resource theory in quantum thermodynamics by extending ontological quantum states to
include both pure and mixed density operators. The HG unified (resource) theory explicitly
defines and fully characterizes the concept—later rediscovered as ‘ergotropy’ [57]—of
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maximum work extractable in a unitary process with cyclic parameter changes (theorems
3.2 and 3.3 in [13], which pioneered also the use of ‘majorization’ in quantum theory).

Beretta’s doctoral thesis [58] aimed to complete the HG theory with two key goals:
(1) to design an equation of motion that establishes the second law of thermodynamics
as a theorem, ensuring Gibbs states are the only conditionally stable equilibrium states;
and (2) to develop an unambiguous statistical representation of heterogeneous ensembles
formed by the statistical mixing of homogeneous (pure) ensembles as one-to-one with the
full set of pure and mixed density operators.

The outcome of the first objective was the SEA formalism, including the introduction of
local perception operators. SEA formalism proved to be both robust and versatile, making
it a powerful tool for thermodynamically consistent non-equilibrium modeling. Its appli-
cations expanded beyond its original scope to include phenomenological models in areas
such as decoherence [59], mesoscopic transport rheology [60,61], phase transitions [62], and
quantum computing [27–29,63].

The second objective led to the representation of generic ensembles using measure-
theoretic distributions over the set of ontological states. In the context of quantum ther-
modynamics, an “unambiguous statistical representation of heterogeneous ensembles”
ensures a clear distinction between intrinsic quantum uncertainties and classical statistical
mixing. This approach—detailed in Section 5 following [53,58]—represents heterogeneous
ensembles as distributions over the full set of pure and mixed density operators, thus avoid-
ing ambiguities associated with von Neumann’s statistical interpretation and resolving the
Schrödinger-Park paradox.

4. Nonlinear Dynamics and the Ontic State Conundrum
From a foundational perspective, the HG approach of assigning ontological sta-

tus to the full set of density operators, pure and mixed, offers a potential resolution
to the Schrödinger–Park paradox concerning the ambiguity of individual quantum
states [50,51,53]. As noted by Park [52], treating density operators as one-to-one with
homogeneous ensembles resolves ambiguity under two conditions: (1) that they evolve uni-
tarily for short times, with nonlinear dynamics dominating over longer periods; and (2) that
a full tomography, even for heterogeneous preparations, must include both linear and
nonlinear observables, such as entropy, adiabatic availability, ergotropy, and free energy.

The von Neumann prescription [64] (Chapter III) assigns a density operator to a sta-
tistical mixture of pure states, with mixing coefficients reflecting ignorance. However,
Schrödinger [50] questioned this from the outset due to the non-unique decomposition of
a mixed density operator into weighted sums of pure states. von Neumann’s approach
irrecoverably blends quantal probabilities with non-quantal statistical weights, creating the
ambiguity highlighted by Schrödinger and Park. To understand how a law of nonlinear
evolution may resolve this issue, let Π̂0

1 and Π̂0
2 be two distinct homogeneous preparations.

At time t = 0, they generate two initial ensembles of identically prepared, strictly isolated,
and non-interacting systems. The ‘hat’ on Π denotes the homogeneity of the preparation,
and superscript ‘0’ refers to time t = 0. According to the traditional statistical formulation
by von Neumann, a preparation, Π̂, is homogeneous if and only if it cannot be replicated us-
ing any statistical composition of two different preparations. The statistics of measurement
outcomes from a homogeneous preparation are represented as a pure (idempotent) density
operator, ρ̂, satisfying ρ̂ = ρ̂2. Consider a third (heterogeneous) preparation, Π0

3, obtained
via the statistical mixture of Π̂0

1 and Π̂0
2 with a fixed weight, 0 < w < 1, so that, formally,

we may write Π0
3 = w Π̂0

1 + (1−w) Π̂0
2. To obtain quantum statistical mechanics (QSM)

consistent with Gibbs–Boltzmann, Fermi–Dirac, and Bose–Einstein equilibrium distribu-
tions, von Neumann postulated that a heterogeneous preparation, such as Π0

3, should be
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represented as a mixed density operator, ρ0
3 = w ρ̂0

1 + (1−w) ρ̂0
2. This formulation, partly

due to the linearity of quantum mechanics, has served as the foundation for successful
frameworks such as equilibrium QSM and the Lindbladian theory of open systems.

These successes often lead us to overlook the Schrödinger–Park paradox or accept it
as a seemingly enigmatic aspect of quantum theory. It arises when interpreting a heteroge-
neous ensemble. If we assume that each member of the ensemble is prepared in either state
ρ̂0

1 (with probability w) or ρ̂0
2 (with probability 1−w), excluding all other states, we face

a contradiction. The same mixed density operator, ρ0
3, allows infinitely many alternative

decompositions. For instance, the decomposition ρ0
3 = w′ ρ̂0

4 + (1−w′) ρ̂0
5 suggests that the

ensemble consists only of ρ̂0
4 and ρ̂0

5, excluding ρ̂0
1 and ρ̂0

2. This inconsistency challenges the
notion of individual states in a heterogeneous ensemble and complicates the interpretation
of QSM. Under a linear evolution map for the homogeneous preparations, Π̂t = Lt(Π̂0),
and mixing of homogeneous preparations with time-invariant weights, we have

Πt
3 = w Π̂t

1 + (1−w) Π̂t
2 = wLt(Π̂0

1) + (1−w)Lt(Π0
2) (3)

and, via the linearity of Lt, Πt
3 = Lt(Π̂0

3). Thus, the von Neumann recipe gives ρt
3 = w ρ̂t

1 +

(1−w) ρ̂t
2 and, for linear observables, it yields the correct statistics of measurements,

Tr
(

A ρt
3
)
= w Tr

(
A ρ̂t

1
)
+ (1−w) Tr

(
A ρ̂t

2
)
. (4)

It also entails that, for an N-level system, a full tomography of a heterogeneous prepa-
ration requires the measurement of a quorum of only N2−1 independent linear observables.

Instead, if the evolution map for homogeneous preparations is nonlinear,
Π̂t = Nt(Π̂0), and the statistical mixing weights remain time-invariant, we obtain

Πt
3 = w Π̂t

1 + (1−w) Π̂t
2 = wNt(Π̂0

1) + (1−w)Nt(Π0
2) (5)

and, in general, due to the nonlinearity of Nt, this does not satisfy Πt
3 ̸= Nt(Π̂0

3). This
contradicts the von Neumann prescription, which would assign the density operator
ρt

3 = w ρt
1 + (1−w) ρt

2 to preparation Πt
3 and ρ0

3 = w ρ0
1 + (1−w) ρ0

2 to preparation Π0
3.

As noted by Rembieliński and Caban [47], a sufficient condition for a nonlinear map to be
no-signaling is convex-quasilinearity. That is, it must always admit a w′, with 0 ≤ w′ ≤ 1,
such that ρt

3 = w′ ρt
1 + (1−w′) ρt

2. Ferrero et al. [46] made a similar observation but left its
interpretation as an open problem.

The HG ontological hypothesis alleviates this interpretation issue. Regardless of how
a density operator is decomposed, w and 1−w no longer represent epistemic ignorance.
This is because both pure and mixed density operators have ontic status, meaning they
represent homogeneous preparations.

5. Measure-Theoretic Representation of Statistics from Mixed Ensembles
To resolve the Schrödinger-Park paradox about individual states in QSM without

contradicting the successes of QM, Beretta [58] proposed replacing the von Neumann
prescription for measurement statistics from mixed ensembles with an unambiguous
representation akin to classical statistical mechanics. The recipe assigns to every preparation
Π (whether homogeneous or heterogeneous) a normalized measure µΠ defined on the
(ontic) quantal state domain P , which consists of the mathematical objects representing
homogeneous preparations (homogeneous ensembles). The normalization condition is

µΠ(P) =
∫
P

µΠ(dρ) = 1. (6)
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In usual von Neumann QSM, the quantal state domain PQSM is the set of all one-
dimensional projection operators (i.e., the idempotent density operators) defined on the
Hilbert space of the system. Instead, the HG-unified theory assumes the broader quantal
state domain PHG consisting of the set of all possible density operators ρ, idempotent
and not.

Among the measures defined on P , the Dirac measures, defined as follows, play a
crucial role. Let E denote any subset of P , and then

δρ(E) =

1, if ρ ∈ E
0, if ρ /∈ E

(7)

The support of a Dirac measure, δρ̃, i.e., the subset of P for which it is nonzero, is a single
point coinciding with the state operator ρ̃.

The statistical mixing of preparations, Π3 = w Π1 + (1−w)Π2, is represented by the
weighted sum of the corresponding measures,

µΠ3 = w µΠ1 + (1−w) µΠ2 . (8)

This representation removes ambiguities because of the following:

1. No Dirac measure can be decomposed into a weighted sum of different Dirac mea-
sures, satisfying von Neumann’s definition of homogeneous preparations.

2. Any measure has a unique decomposition into a weighted sum (or integral) of
Dirac measures—removing the Schrödinger–Park paradox. This ensures that each
member of a heterogeneous ensemble is in some well defined (albeit unknown)
individual state.

The expected mean value of any physical observable represented by the (linear or
nonlinear) functional g defined on P is given for preparation Π3 = w Π1 + (1−w)Π2 by

⟨g⟩Π3
=
∫
P

g(ρ) µΠ3(dρ)

=
∫
P

g(ρ)
[
w µΠ1(dρ) + (1−w) µΠ2(dρ)

]
= w

∫
P

g(ρ) µΠ1(dρ) + (1−w)
∫
P

g(ρ) µΠ2(dρ). (9)

If the component preparations are homogeneous, i.e., if µΠ̂1
= δρ1 and µΠ̂2

= δρ2 , then

⟨g⟩Π3
= w

∫
P

g(ρ) δρ1(dρ) + (1−w)
∫
P

g(ρ) δρ2(dρ)

= w g(ρ1) + (1−w) g(ρ2)

= w ⟨g⟩Π̂1
+ (1−w) ⟨g⟩Π̂2

. (10)

For example, for P =PHG and g(ρ) = −kB Tr(ρ ln ρ), this gives the ‘proper’ expected value
of measurements of the von Neumann entropy, i.e., the weighted sum of the entropies of
the component homogeneous sub-ensembles.

It is noteworthy that, for observables represented by linear functionals on P , such as
g(ρ) = Tr(Gρ), we have

⟨g⟩Π3
= w Tr

(
G ρΠ̂1

)
+ (1−w) Tr

(
G ρΠ̂2

)
= Tr

(
G [w ρΠ̂1

+ (1−w) ρΠ̂2
]
)

= Tr
(
G WΠ3

)
= g(WΠ3) , (11)
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where WΠ3 is the usual von Neumann statistical operator, defined by the weighted sum of
the density operators representing the component homogeneous sub-ensembles,

WΠ3 = w ρΠ̂1
+ (1−w) ρΠ̂2

. (12)

WΠ3 is clearly an element of the convex completion, C(P), of the quantal state domain P .
Notice that, in general C(PQSM) = C(PHG) = PHG, and for a qubit PQSM and PHG map to
the Bloch sphere and the Bloch ball, respectively. An evaluation of the linear functional
g(·) = Tr(G·) at WΠ3 provides the correct expected mean value of measurements of the
corresponding observable on the heterogeneous ensemble.

But WΠ3 does not fully describe the heterogeneous preparation Π3, because different
preparations can yield the same linear tomography. In other words, the linear tomography—
obtained by measuring the expected mean values ⟨qj⟩ of a quorum of N2−1 independent
linear observables Qj and solving ⟨qj⟩ = Tr

(
Qj W

)
for W—is insufficient to characterize a

preparation. A decomposition of W into different weighted sums of density operators has
no meaning in this theory, but it emphasizes that different heterogeneous preparations may
result in the same linear tomography. Even within orthodox QSM (P =PQSM), resolving
the intrinsic quantum probabilities of homogeneous preparations from the extrinsic uncer-
tainties of mixing requires additional independent information beyond linear tomography.

The measure-theoretic description of preparations enables a statistical quantum the-
ory in which both linear and nonlinear functionals of the density operator correspond to
independently and directly measurable properties of a quantum system, such as entropy,
ergotropy, and adiabatic availability. A nonlinear evolution equation for the density op-
erators in P , i.e., for the homogeneous preparations, may provide additional nonlinear
observables by measuring linear and nonlinear observables at different times. As already
realized by Park [52], nonlinearity holds the promise of preserving and reintegrating the
notion of an individual state into quantum theory.

6. Local Perception Operators (LPOs)
In linear QM, the system’s composition is specified by declaring the following:

1. The Hilbert space structure as the direct product H =
⊗M

J=1 HJ of the subspaces of
the M component subsystems.

2. The overall Hamiltonian operator H = ∑M
J=1 HJ⊗IJ + V, where HJ (on HJ) is the

local Hamiltonian of the J-th subsystem, IJ is the identity on the direct product
HJ =

⊗
K ̸=J HK of all the other subspaces, and V (on H) is the interaction Hamiltonian.

The linear von Neumann law of evolution, ρ̇ = −i[H, ρ]/h̄, has a universal structure
and involves local evolutions through partial tracing,

ρ̇J = − i
h̄
[HJ , ρJ ]−

i
h̄

TrJ([V, ρ]). (13)

Thus, we recover the universal law ρ̇J = −i[HJ , ρJ ]/h̄ for the local density operator
ρJ = TrJ(ρ) if the subsystem J does not interact with the others (i.e., if V = IJ⊗VJ).

Instead, a fully nonlinear evolution equation for the density operator cannot have a
universal structure because the subdivision into subsystems must be explicitly embedded
into the structure of the dynamical law (see [24] for more on this). A different subdivision
requires a different equation of motion. The complex structure of the SEA evolution
law reflects the cost of abandoning linearity but ensures compatibility with the crucial
constraint that correlations should not build up, and signaling should not occur between
subsystems, other than via the interaction Hamiltonian V through the standard Schrödinger
term −i[H, ρ]/h̄ in the evolution law.
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Seldom used in composite quantum dynamics but crucial, in our opinion, are the
physical observables first introduced in [17] and later (starting with [19]) referred to as
‘local perceptions of global observables’. These are represented via the ‘local perception
operators’ (LPO) on HJ , defined along with their ‘deviation from the local mean value’
operators and covariance functionals as follows:

(X)J
ρ = TrJ [(IJ⊗ρJ)X] , (14)

∆(X)J
ρ = (X)J

ρ − IJ Tr
[
ρJ(X)J

ρ

]
, (15)

(X, Y)J
ρ = 1

2 Tr
[
ρJ

{
∆(X)J

ρ, ∆(Y)J
ρ

}]
, (16)

where ρJ = TrJ(ρ). For a bipartite system, AB, the LPOs (X)A
ρ (on HA) and (X)B

ρ (on HB)
are the unique operators that, for a given X on HAB and for all states ρ, satisfy the identity

Tr
[
ρA(X)A

ρ

]
= Tr[(ρA⊗ρB)X] = Tr

[
ρB(X)B

ρ

]
. (17)

This confirms that they encapsulate all the information that A and B can infer about the
global observable X by classically sharing their local states.

Operator (X)A
ρ can be viewed as the projection onto HA of the operator X weighted

according to the local state ρB of subsystem B. However, it is a local observable for
subsystem A, which depends on the overall state, ρ, and the overall observable, X. Its
local mean value, Tr

[
ρA(X)A

ρ

]
, differs from the mean value, Tr(ρX), for the overall system,

AB, except when A and B are uncorrelated (ρ = ρA⊗ρB). It was dubbed ‘local perception’
because, even if B performs a local tomography and sends the measured ρB to A via
classical communication, the most that A can measure locally about the overall observable
X is (X)A

ρ .
The overall energy and entropy of the composite system are locally perceived within

subsystem J through the operators (H)J
ρ and (S)J

ρ defined on HJ by Equation (14), respec-
tively, with X = H, the overall Hamiltonian, and X = S(ρ), the overall (non-negative)
entropy operator defined by

S(ρ) = −kBBln(ρ) , (18)

where we define the discontinuous log function

Bln(x) =

ln(x), for 0 < x ≤ 1,

0, otherwise.
(19)

Note that the ‘locally perceived overall entropy’ operator

(S)J
ρ = − kB TrJ [(IJ⊗ρJ)Bln(ρ)] , (20)

is different from the ‘local entropy’ operator

S(ρJ) = −kBBln(ρJ) . (21)

Its local mean value, Tr
[
ρJ(S)

J
ρ

]
= −kB Tr

[
(ρJ⊗ρJ)Bln(ρ)

]
, is different from the local

entropy Tr
[
ρJS(ρJ)

]
= −kB Tr

[
ρJ ln

(
ρJ

)]
. Only when ρ = ρJ⊗ρJ are they related via

Tr
[
ρJ(S)

J
ρ

]
= Tr

[
ρJS(ρJ)

]
+ Tr

[
ρJS(ρJ)

]
= −kB Tr[ρ ln(ρ)].

(22)
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Likewise, the ‘locally perceived overall Hamiltonian’ operator (H)J
ρ differs from the ‘local

Hamiltonian’ operator HJ . Its local mean value, Tr
[
ρJ(H)J

ρ

]
= Tr

[
(ρJ⊗ρJ)H

]
, is different

from the local mean energy, Tr
(

ρJ HJ

)
, and only when V = IJ⊗VJ are they related via

Tr
[
ρJ(H)J

ρ

]
= Tr

(
ρJ HJ

)
+ Tr

(
ρJ HJ

)
= Tr(ρH). (23)

However, it is noteworthy that, when the overall observable, X is ‘separable for subsystem
J,’ in the sense that X = XJ⊗IJ + IJ⊗XJ , then, even if ρ ̸= ρJ⊗ρJ , the deviations and
covariances reduce to their local versions,

∆(X)J
ρ = ∆XJ = XJ − IJ Tr

[
ρJ XJ

]
, (24)

(X, Y)J
ρ = 1

2 Tr
[
ρJ

{
∆XJ , ∆YJ

}]
. (25)

In general, the mean interaction energy, Tr
(

ρJVJ J

)
, and the mutual information,

Tr
(

ρJµJ J

)
, between subsystem J and the rest of the system, J, are given via the respective

mean values of the following global operators:

VJ J = H − HJ⊗IJ − IJ⊗HJ , (26)

µJ J = Bln(ρ)− Bln(ρJ)⊗IJ − IJ⊗Bln(ρJ) , (27)

whose LPOs satisfy the identities

Tr
[
ρJ(H)J

ρ

]
− Tr

[
ρJ(VJ J)

J
ρ

]
= Tr

(
ρJ HJ

)
+ Tr

(
ρJ HJ

)
= Tr(ρH)− Tr

(
ρJVJ J

)
, (28)

Tr
[
ρJ(S)

J
ρ

]
+ kB Tr

[
ρJ(µJ J)

J
ρ

]
= −kB Tr

[
ρJ ln

(
ρJ

)]
− kB Tr

[
ρJ ln

(
ρJ

)]
= −kB Tr[ρ ln(ρ)] + kB Tr

(
ρJµJ J

)
. (29)

7. No-Signaling and LPOs
To formalize the no-signaling definition following [22], as discussed above, we adopt

the view that local operations can be acted on a subsystem, J, only by means of a controlled
time dependence of its local Hamiltonian operator, HJ , or its interaction operator, VJB, with
some other subsystem, B (possibly a properly modeled environment or heat bath). Hence,
we adopt the following:

Definition 1 (No-signaling). If J and J are non-interacting, no local aspect of the time evolution
of J can be affected by local unitary operations acted on J, nor by other aspects of the local time
evolution of J.

Accordingly, consider a composite, AB, in state ρ. A local unitary operation on B
changes the state to

ρ′ = (IA⊗UB) ρ (IA⊗U†
B) , (30)
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where UB is an arbitrary unitary operator (U†
BUB = IB). Using the properties of the partial

trace, in particular (ZAB is a generic composite system operator),

TrB[(IA⊗XB)ZAB] = TrB[ZAB(IA⊗XB)] , (31)

TrA[(IA⊗XB)ZAB(IA⊗YB)] = XB TrA(ZAB)YB , (32)

we obtain the identities

ρB = TrA[(IA⊗U†
B) ρ′ (IA⊗UB)] = U†

Bρ′BUB, (33)

ρ′A = TrB[(IA⊗UB) ρ (IA⊗U†
B)]

= TrB[(IA⊗U†
BUB) ρ]

= TrB[(IA⊗IB) ρ] = ρA, (34)

which confirms that a local operation on B does not affect the local state, ρA, of A. This
result supports the usual idea [46] that, for no-signaling, it is sufficient that the dynamical
model implies evolutions of local observables that depend only on ρA. But it is seldom
noted that this is not a necessary condition.

Next, we prove that not only the local reduced state ρA but also the LPO (F(ρ))A

of any well-defined nonlinear function, F(ρ), of the overall state (such as the entropy
function S(ρ) defined earlier) remains unaffected by local unitary operations on B, as per
Equation (30). Since the SEA formalism is based on these local perception operators, this
result is an important lemma in the proof that SEA is no-signaling.

So, let us apply Equation (30) to a generic observable represented by a linear operator
on H that we denote as F(ρ), whether it is a nontrivial function of ρ, such as S(ρ), or not
a function of ρ, such as H. The corresponding LPO for subsystem A, according to the
defining Equation (14), is given by

(F(ρ))A = TrB[(IA ⊗ ρB)F(ρ)]. (35)

A function of ρ is defined from its eigen-decomposition via

F(ρ) = ΛF(D)Λ† = ∑
j

F(λj)
∣∣λj
〉〈

λj
∣∣, (36)

where ρ = ΛDΛ†, D = ∑j λj|j⟩⟨j|, and Λ = ∑j
∣∣λj
〉〈

j
∣∣. Since unitary transformations do

not alter the eigenvalues,

F(ρ′) = Λ′F(D)Λ′† where Λ′ = (IA ⊗ UB)Λ . (37)

Therefore, using Equation (33) in the last step, we obtain

(F(ρ′))A = TrB[(IA ⊗ ρ′B)F(ρ′)]

= TrB[(IA ⊗ ρ′B) (IA ⊗ UB)ΛF(D)Λ†(IA ⊗ U†
B)]

= TrB[(IA ⊗ U†
Bρ′BUB)ΛF(D)Λ†]

= TrB[(IA ⊗ ρB) F(ρ)] = (F(ρ))A . (38)

This confirms that local unitary operations on B do not affect the LPOs of A. Hence, the
proper use of LPOs in a nonlinear evolution equation does not cause signaling issues.
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8. The Local Structure of Dissipation in Composite-System SEA Dynamics
We are now ready to introduce the final but essential ingredient of a general composite-

system nonlinear QM or master equation. This involves the system’s structure-dependent
expressions, which determine how each subsystem contributes separately to the dissipative
term in the equation of motion for the overall state, ρ. As discussed above—and recognized
in early SEA literature [17,22,24]—the composite-system nonlinear evolution must explicitly
reflect the internal structure of the system. This requires declaring which subsystems are to
be protected from nonphysical effects such as signaling, the exchange of energy, or the build-
up of correlations between non-interacting subsystems. Using the notation introduced
earlier, the structure proposed in [17,24] for the dissipative term, which supplements the
usual Hamiltonian term, is given by

dρ

dt
= − i

h̄
[H, ρ]−

M

∑
J=1

{D J
ρ, ρJ} ⊗ ρJ , (39)

where the ‘local dissipation operators’ D J
ρ (on HJ) may be nonlinear functions of the

local observables of J, the reduced state ρJ , and the local perception operators of overall

observables. For the dissipative term to preserve Tr(ρ), operators {D J
ρ, ρJ} must be traceless.

To preserve Tr(ρH) [and possibly other conserved properties or charges, Tr(ρCk)], operators

{D J
ρ, ρJ}(H)J

ρ [and {D J
ρ, ρJ}(Ck)

J
ρ] must also be traceless. The rate of change of the overall

system entropy s(ρ) = −kB Tr[ρ ln(ρ)] is

ds(ρ)
dt

= −
M

∑
J=1

Tr
[
{D J

ρ, ρJ}(S)
J
ρ

]
. (40)

The local nonlinear evolution of subsystem J is obtained via partial tracing over HJ , i.e.,
in general,

dρJ

dt
= − i

h̄
[HJ , ρJ ]−

i
h̄

TrJ([V, ρ])− {D J
ρ, ρJ} , (41)

where we recall that the second term in the RHS can be expressed, for weak interactions
and under well-known assumptions, in Kossakowski–Lindblad form.

Before introducing the SEA assumption, as promised after Equation (2), we note that,

for all possible choices of D J
ρ, Equation (39) defines a broad class of no-signaling nonlinear

evolution equations. These form a broader class of nonlinear laws that are not restricted by
the sufficient but not necessary condition that dρJ/dt be a function of ρJ only.

Finally, one way to introduce the SEA assumption in the spirit of the fourth law of
thermodynamics [65–68], i.e., to implement the maximum entropy production principle
(MEPP) in the present context [69], is to employ a variational principle.

9. General Composite System Version of the SEA Variational Principle
For the purpose of this section, we adopt the formalism developed for this context

in [17,20,24]. To easily impose the constraints of preservation of non-negativity and self-
adjointness of ρ during its time evolution, we define the generalized square root of ρJ ,

γJ(t) =
√

ρJ(t)U (U any unitary operator), so that

ρJ = γJγ
†
J . (42)
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The dissipative term in Equation (41) is rewritten as

−{D J
ρ, ρJ} = γ̇d

J γ†
J + γJ γ̇

d†
J (43)

with γ̇d
J = −D J

ργJ . (44)

Next, on the set L(HJ) of linear operators on HJ , we define the real inner product, (·|·),

(X|Y) = Tr
(

X†Y + Y†X
)

/2 , (45)

so that the unit trace condition for ρJ is rewritten as (γJ |γJ) = 1, implying that the γJ ’s lie
on the unit sphere in L(HJ). Their time evolutions, γJ(t), follow trajectories on this sphere.
Along these trajectories, we can express the distance traveled between t and t+dt as

dℓJ =
√
(γ̇J | ĜJ(γJ) |γ̇J)dt , (46)

where ĜJ(γJ) is some real, dimensionless, symmetric, and positive–definite operator on
L(HJ) (superoperator on H) that plays the role of a local metric tensor field (and may be a
nonlinear function of γJ).

The rates of change of the overall system entropy, s(ρ), Equation (40), and of the
overall system mean value of conserved properties ck(ρ) = Tr(ρCk), where [Ck, H] = 0, can
be rewritten as

ds(ρ)
dt

=
M

∑
J=1

ṡ|J ṡ|J =
(

2(S)J
ργJ

∣∣∣γ̇d
J

)
, (47)

dck(ρ)

dt
=

M

∑
J=1

ċk|J ċk|J =
(

2(Ck)
J
ργJ

∣∣∣γ̇d
J

)
, (48)

exhibiting additive contributions from the subsystems.
Finally, we state the variational principle that leads to expressions for the γ̇d

J
and the

D J
ρ that define the composite-system version of the SEA equation of motion. The time

evolution ensures that the ’direction of change’ of the local trajectory γJ(t), influenced by
the dissipative part of the dynamics, maximizes the local contribution, ṡ|J , to the overall
system’s entropy production rate. This occurs under the constraints ċk|J = 0 that guarantee
no local contribution to the rates of change of the global constants of the motion. With the

introduction of Lagrange multipliers ϑJ
k and τJ for the constraints, the γ̇d

J
’s are found by

solving the maximization problem

max
γ̇d

J

ΥJ = ṡ|J − ∑
k

ϑJ
k ċk|J −

kBτJ

2

(
γ̇d

J

∣∣∣ ĜJ

∣∣∣γ̇d
J

)
, (49)

where the last constraint corresponds to the condition (dℓd
J
/dt)2 = const, necessary for

maximizing with respect to direction only (see [69] for more details). Taking the variational
derivative of ΥJ with respect to |γ̇d

J
) and setting it equal to zero, we obtain

δΥJ

|δγ̇d
J
)
=
∣∣∣2(M)J

ργJ

)
− kBτJ ĜJ

∣∣∣γ̇d
J

)
= 0 , (50)

where we used the identity (X| ĜJ = ĜJ |X), following from the symmetry of ĜJ . We define
(following [23,70]) the ’locally perceived non-equilibrium Massieu operator’
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(M)J
ρ = (S)J

ρ − ∑
k

ϑJ
k(Ck)

J
ρ . (51)

Equation (50) yields ∣∣∣γ̇d
J

)
=

1
kBτJ

Ĝ−1
J

∣∣∣2(M)J
ργJ

)
, (52)

where the Lagrange multipliers ϑJ
k (implicit in (M)J

ρ) are the solution of the system of
equations, obtained by substituting Equation (52) into the conservation constraints,(

(Cℓ)
J
ργJ

∣∣∣Ĝ−1
J

∣∣∣(M)J
ργJ

)
= 0 ∀ℓ . (53)

This system can be solved explicitly for the ϑJ
k’s using Cramer’s rule, to obtain convenient

expressions for the γ̇d
J
’s as ratios of determinants (as in the original formulations). The ϑJ

k’s
are nonlinear functionals of ρ that may be interpreted as ’local non-equilibrium entropic po-
tentials’ conjugated with the conserved properties. For example, for C2 = H, the Lagrange

multiplier ϑJ
2 plays the role of ’local non-equilibrium inverse temperature’ conjugated with

the locally perceived energy, and for the stable equilibrium states of the SEA dynamics, it
coincides with the thermodynamic inverse temperature kBβ J (see below).

Similarly to what was achieved in [69] for a non-composite system, we define the
’local non-equilibrium affinity’ operators

|ΛJ) = Ĝ−1/2
J

∣∣∣2(M)J
ργJ

)
, (54)

so that the overall rate of entropy production becomes

ds(ρ)
dt

=
M

∑
J=1

(ΛJ |ΛJ)

kBτJ
. (55)

(ΛJ |ΛJ) is the norm of 2(M)J
ργJ with respect to the metric Ĝ−1

J
and may be interpreted as

the ’degree of disequilibrium’ of subsystem J. Hence, the necessary and sufficient condition
for the overall state to be locally non-dissipative (no contribution to the overall entropy

production from subsystem J) is that operator 2(M)J
ργJ vanishes.

However, in order for the equation of motion (41) to result independent of the unitary
operators U used (in γJ =

√
ρJ U) to define the generalized square roots of ρJ , we further

restrict the choice of the metric superoperator ĜJ . We assume that ĜJ = L−1
J

ÎJ , with LJ
being some strictly positive, hermitian operator on HJ , possibly a nonlinear function of ρJ ,
so that ĜJ |X) = |L−1

J
X), Ĝ−1

J |X) = |LJ X),

(XγJ |Ĝ
−1
J |YγJ) = 1

2 Tr
[
ρJ(X†LJY + Y†LJ X)

]
. (56)

With the recollection of Equations (43) and (44), and using Equation (52), the dissipative
term in Equation (41) becomes

−{D J
ρ, ρJ} =

2
kBτJ

[
LJ(M)J

ρρJ + ρJ(M)J
ρLJ

]
, (57)

and the system of equations that determines the Lagrange multipliers ϑJ
k in (M)J

ρ is

Tr
(

ρJ

[
(Cℓ)

J
ρLJ(M)J

ρ + (M)J
ρLJ(Cℓ)

J
ρ

])
= 0 ∀ℓ (58)
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so that the dependence on γJ is only through the product γJγ
†
J
, i.e., the local state

operator ρJ .
The metric operator L−1

J
/kBτJ plays a role analogous to the symmetric thermal conduc-

tivity tensor k̂ in heat transfer theory. In that context, k̂ defines the general near-equilibrium
linear relationship, |q′′) = −k̂ |∇T), between the heat flux vector q′′ and the conjugated
‘degree of disequilibrium’ vector, i.e., the temperature gradient ∇T. Here, Equation (57)
expresses a more general linear relationship between the local evolution operator γ̇d

J
and

the non-equilibrium Massieu operator, (S)J
ρ − ∑k ϑJ

k(Ck)
J
ρ. This relation is more general, as

it holds not only near equilibrium but also anywhere far from equilibrium. In the present
quantum modeling context, it represents the nonlinear SEA extension into the far-non-
equilibrium domain of Onsager’s linear near-equilibrium theory, with reciprocity naturally
embedded through the symmetry of any metric. For example, if LJ commutes with the
local Hamiltonian HJ , its eigenvalues can assign different relaxation times to the local
energy levels, capturing their uneven contributions to the rate of local energy redistribution

described by the SEA dissipator D J
ρ.

Like in heat transfer, the conductivity tensor for an isotropic material is k̂ = k Î; here,
an analogous simplification is obtained when LJ = IJ , the identity operator on HJ . This
corresponds to assuming a uniform Fisher–Rao metric.

Another noteworthy observation is that operators Ck, to be global constants of
the motion (or ’charges’), must commute with the global Hamiltonian operator H, but
they need not commute with each other. Therefore, the SEA formalism may also find
application in the framework of quantum thermodynamic resource theories that con-
template ’non-commuting charges’ and ’non-Abelian thermal states’, as discussed in
Yunger Halpern et al. [11] and Murthy et al. [71].

10. Simplest Composite-System SEA Equation of Motion
For simplicity, we proceed by assuming the following: (1) a uniform Fisher–Rao

metric, with ĜJ = ÎJ , so that ĜJ |X) = |X) and LJ = IJ ; and (2) only two global con-
served properties, c1(ρ) = Tr(ρI) (the normalization condition) and c2(ρ) = Tr(ρH) (mean
energy conservation).

The first assumption allows the obtaining of

D J
ρ = − 2

kBτJ

[
(S)J

ρ − ∑kϑJ
k(Ck)

J
ρ

]
. (59)

and the system of Equation (58) reduces to

∑
k

ϑJ
k Tr
[
ρJ

{
(Cℓ)

J
ρ, (Ck)

J
ρ

}]
= Tr

[
ρJ

{
(S)J

ρ, (Cℓ)
J
ρ

}]
. (60)

The second assumption, C1 = I and C2 = H, together with definitions (15) and (16),
allows the writing of the SEA dissipators in the compact forms

− {D J
ρ, ρJ} =

2
kBτJ

{∆(M)J
ρ, ρJ}

=
2

kBτJ

∣∣∣∣∣∣∣
{∆(S)J

ρ, ρJ} {∆(H)J
ρ, ρJ}

(H, S)J
ρ (H, H)J

ρ

∣∣∣∣∣∣∣
(H, H)J

ρ

, (61)
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and the local non-equilibrium inverse temperatures conjugated with the locally perceived
energy as

ϑJ
2 =

(H, S)J
ρ

(H, H)J
ρ

. (62)

As a result, the local evolution of each subsystem, J, is along the direction of steepest
ascent of the locally perceived overall composite-system entropy, compatible with the
conservation of the locally perceived overall composite-system energy and the conditions
of unit-trace and non-negativity of the overall density operator, ρ. The rate of entropy
production may be expressed as

ds(ρ)
dt

=
M

∑
J=1

4
kBτJ

(M, M)J
ρ

=
M

∑
J=1

4
kBτJ

∣∣∣∣∣∣∣
(S, S)J

ρ (H, S)J
ρ

(H, S)J
ρ (H, H)J

ρ

∣∣∣∣∣∣∣
(H, H)J

ρ

, (63)

showing clearly that it is non-negative since the numerators in the summation are Gram
determinants. When the J-th term in the sum vanishes, we say that the local state ρJ is
‘non-dissipative’. If all local states are non-dissipative, then so is the overall state ρ. A
non-dissipative ρ represents an equilibrium state if it commutes with H; otherwise, it
belongs to a unitary limit cycle of the dynamics.

For ρ to be non-dissipative, there must exist β Js, such that, for every J,

ρJ∆(Bln(ρ))J
ρ = −β JρJ∆(H)J

ρ , (64)

or, equivalently,

ρJ∆
[
Bln(ρJ)+β J HJ+β J(VJ J)

J
ρ+(µJ J)

J
ρ

]
= 0 , (65)

where VJ J is the Hamiltonian interaction operator defined in Equation (26), and µJ J the
mutual information operator defined in Equation (27). Clearly, for VJ J = 0 and µJ J = 0,
Equation (65) is satisfied by the Gibbs states

ρJ = exp
(
−β J HJ

)
/ Tr

[
exp

(
−β J HJ

)]
. (66)

Section 11.3 provides a numerical illustration of local time evolutions that converge to
limit cycles obeying Equation (65). These examples also illustrate another noteworthy possi-
bility. Specifically, without violating the no-signaling condition nor the second-law principle
of global entropy non-decrease—which is always guaranteed by virtue of Equation (63) and
the properties of Gram determinants—it is possible that the local entropy of a subsystem be
decreasing during part of the time evolution. Indeed, for correlated states, the non-decrease
in local entropy is not a second-law requirement. We hope that the observation that a local
entropy decrease may be thermodynamically consistent in the presence of strong entan-
glement will stimulate the design of experimental verifications, as well as foundational
discussions in the framework of quantum thermodynamic resource theories, even beyond
and outside the SEA framework.

Regarding no-signaling, we note the following:

1. If subsystem J is non-interacting, VJ J = 0, then

∆(H)J
ρ = HJ − IJ Tr

(
ρJ HJ

)
= ∆HJ (67)
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and
(H, H)J

ρ = Tr
[
ρJ(∆HJ)

2
]

(68)

depend only on the local HJ and ρJ ;

2. If J is uncorrelated, µJ J = 0, then

∆(Bln(ρ))J
ρ = Bln(ρJ)− IJ Tr

(
ρJ ln

(
ρJ

))
(69)

and

(Bln(ρ), Bln(ρ))J
ρ = Tr

[
ρJ

(
ln
(

ρJ

))2
]

(70)

depend only on the local ρJ .

Therefore, it is only when J is both non-interacting and uncorrelated in that its lo-

cal dissipation operator, D J
ρ, depends only on the local HJ and ρJ . In this case, the local

equation of motion Equation (41), along with D J
ρ given by Equation (61), reduces exactly

to the non-composite system version of SEA evolution [16]. Instead, if J is either inter-

acting or correlated, D J
ρ and, therefore, the local nonlinear SEA evolution, according to

Equations (41) and (61), is determined not only by the local HJ and ρJ but also by the local
perceptions of the overall Hamiltonian operator H and/or the overall entropy operator
Bln(ρ), nonetheless without violating the no-signaling condition.

To prove no-signaling, assume that subsystem J is correlated but not interacting with
any of the subsystems in J. Now, switch on an arbitrary interaction that may involve the
subsystems in J but not subsystem J, so that the only change in the overall Hamiltonian H
is the term HJ , which changes to H′

J
. Within J, the locally perceived deviation operators

are ∆(H)J
ρ and ∆(Bln(ρ))J

ρ, and hence, the SEA dissipator D J
ρ, as well as all the terms in the

RHS of Equation (41), are not modified by such a change. Therefore, acting within J makes
it impossible to affect the time evolution of ρJ and any local observable of J.

We also mention the following in the spirit of non-linear evolutions. In the case of
a general open quantum dynamics, the requirement that a map, Wt(ρ), be completely
positive and trace-preserving (CPTP) is quite restrictive [72–74]. In fact, the reduced
dynamics of the subsystem in interaction with the environment need not be CPTP [75–77].
Here, we define CPTP as follows. If M(ρs) is a map acting on a subsystem in state ρs, which
interacts with an initially uncorrelated environment in state ρE and is positive and trace-
preserving—meaning it preserves the trace and ensures that the evolved matrix remains
semi-definite (maintaining probability conservation)—then M(ρs) is CPTP if and only if
the extended map, Λ : M(ρs)⊗IN , remains positive for all Ns [72]. As has been argued
in the literature, the CPTP condition is restrictive because, along with the underlying
assumption of Markovianity, it requires a preparation of the initial state into a product state
of system and environment. But, if there are strong initial correlations between system and
environment, or in fact, if the evolution is non-Markovian in nature, then this requirement
fails, and we are forced to consider PTP (positive and trace-preserving) maps only [78,79].
Given that we are dealing with a theory that does not restrict itself to Markovian evolution,
and that there is no imposition of weak interaction between the subsystems, SEA being
PTP satisfies the requirements for a suitable nonlinear model of quantum thermodynamics
prohibiting signaling.
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11. Non-Interacting Qubits
In extreme cases, Equation (65) shows that, even if the subsystems are entangled, and

therefore, the local states ρJ are mixed, operators D J
ρ may vanish. Equations (39) and (41)

reduce to the standard Schrödinger equation, and the trajectory in state space is a limit
cycle of the SEA dynamics. A noteworthy particular case is when the overall system is in
a pure state. Then, Bln(ρ) = 0 and standard unitary evolutions of pure states emerge as
limit cycles of the nonlinear SEA dynamics. In this section, we discuss a few less trivial

examples, to numerically illustrate some general features of Equation (39) with D J
ρ given

by Equation (61).
We consider examples of mixed and correlated initial states of a two-qubit composite,

AB, that belong to the special class

ρ = 1
4

[
I4 + ∑

j={x,y,z}
(aj σj⊗I2 + bj I2⊗σj + cj σj⊗σj)

]

= 1
4

1+az+bz+czbx−iby ax−iay cx−cy
bx+iby 1+az−bz−cz cx+cy ax−iay
ax+iay cx+cy 1−az+bz−cz bx−iby
cx−cy ax+iay bx+iby1−az−bz+cz

,
(71)

with real aj’s, bj’s, cj’s, such that a2 = a·a ≤ 1, b2 = b·b ≤ 1, c2 = c·c ≤ 3 − a2 − b2,
plus other conditions necessary for non-negativity (see e.g., [80–82]. We will denote the
eigenvalues of ρ as λj and, for shorthand, define

ηj = −kBBln(λj) . (72)

We further assume that the two qubits are non-interacting and have local Hamiltonian
operators given by HJ = ωJh

J · σJ , where σJ denotes the 3-vector formed by the local

Pauli operators of subsystem J, and hJ is the local Hamiltonian unit 3-vector, so that

H = HA⊗I2 + I2⊗HB

= ωAhA·σA⊗I2 + I2⊗ωBhB·σB ,

(H)A
ρ = HA+I2 ωBhB·b ,

(H)B
ρ = I2 ωAhA·a+HB

∆(H)A = ∆HA , ∆(H)B = ∆HB ,

(H, H)A
ρ = [1 − (hA·a)2]ω2

A ,

(H, H)B
ρ = [1 − (hB·b)2]ω2

B ,

(73)

11.1. Bell Diagonal States

Equation (71) gives Bell diagonal states [83,84] (BDS) if aj = bj = 0 for all js (and
Werner states [85] if, in addition, cj = 4w/3 − 1 for all js),

ρBell = 1
4

 1+cz 0 0 cx−cy
0 1−cz cx+cy 0
0 cx+cy 1−cz 0

cx−cy 0 0 1+cz

 = 1
2

( λ2+λ3 0 0 λ3−λ2
0 λ1+λ4 λ4−λ1 0
0 λ4−λ1 λ1+λ4 0

λ3−λ2 0 0 λ2+λ3

)
,

= ρA⊗ρB + ∑
j={x,y,z}

cj σj⊗σj

(74)
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whose eigen-decomposition may be written as

ρBell = UBelldiag(λ1, λ2, λ3, λ4)(UBell)†,

UBell =
σx⊗I2 − σz⊗σx√

2
= 1√

2


0 −1 1 0
−1 0 0 1
1 0 0 1
0 1 1 0

 ,

λ1 = 1
4 (1−cx−cy−cz) , λ2 = 1

4 (1−cx+cy+cz) ,

λ3 = 1
4 (1+cx−cy+cz) , λ4 = 1

4 (1+cx+cy−cz) .

(75)

The overall entropy operator, Equation (18), becomes

S(ρBell) = UBell [diag(η1, η2, η3, η4)](UBell)†

= 1
2


η2+η3 0 0 η3−η2

0 η1+η4 η4−η1 0
0 η4−η1 η1+η4 0

η3−η2 0 0 η2+η3

,
(76)

and the local operators of the SEA formalism

ρA = ρB = 1
2 I2 ,

(Bln(ρ))A = (Bln(ρ))B = − q
4kB

I2 ,

{(Bln(ρ))A, ρA} = {(Bln(ρ))B, ρB} = − q
4kB

I2 ,

{∆(Bln(ρ))A, ρA} = {∆(Bln(ρ))B, ρB} = 0 ,

(H, H)A
ρ = ω2

A , (H, H)B
ρ = ω2

B ,

(H, Bln(ρ))A
ρ = (H, Bln(ρ))B

ρ = 0 .

(77)

where q is defined as
q = η1 + η2 + η3 + η4 . (78)

Therefore, somewhat surprisingly, we find that

−{DA
ρ , ρA} = −{DB

ρ , ρB} = 0 , (79)

i.e., the Bell diagonal states are non-dissipative limit cycles of the nonlinear SEA dynamics
under any Hamiltonian. But most neighboring and other states in the class defined by
Equation (71) are dissipative, as we see in the following examples.

11.2. Separable, but Correlated Mixed States

For a simple example of correlated but separable mixed states, assume Equation (71)
with ax = a, bz = b, and ay = az = bx = by = cx = cy = cz = 0, so that

ρ = 1
4

(
1+b 0 a 0

0 1−b 0 a
a 0 1+b 0
0 a 0 1−b

)
= ρA⊗ρB − 1

4 ab σx⊗σz ,

λ1 = 1
4 (1 − a − b) , λ2 = 1

4 (1 − a + b) ,

λ3 = 1
4 (1 + a − b) , λ4 = 1

4 (1 + a + b).

(80)
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If the two non-interacting qubits have local Hamiltonians HA = σz and HB = σx, we find

−{DA
ρ , ρA} =

(1 − a2)(b f − g)
2kBτA

σx, (81)

−{DB
ρ , ρB} =

(1 − b2)(a f − p)
2kBτB

σz, (82)

where f , g, and p are defined as

f = η1 − η2 − η3 + η4,

g = η1 + η2 − η3 − η4,

p = η1 − η2 + η3 − η4,

(83)

so that the nonlinear evolution is clearly nontrivial. However, it preserves the zero mean
energies of both qubits, and while the overall entropy increases and mutual information
partially fades away, it drives the overall state towards a non-dissipative correlated state
with maximally mixed marginals. We proved above that signaling is impossible, even
though DA

ρ depends not only on a but also on b, and DB
ρ on a, which agrees with our

no-signaling condition in Equation (2).
Figure 2 shows a Bloch-ball representation of the time evolutions of the local density

operators ρA and ρB for an initial state in the class considered in this section, Equation (80),
with a = −0.6 and b = 0.4. The time evolution is computed through a numerical inte-
gration of Equation (39). The local evolutions of the two non-interacting qubits approach
asymptotically the respective local Gibbs states, i.e., the states of maximum local entropy
for the given initial mean local energies, for which Equation (65) reduce to

∆(Bln(ρA)) = −βA ∆HA,

∆(Bln(ρB)) = −βB ∆HB.
(84)

Mutual information, S(ρA) + S(ρB)− S(ρ), and a measure of coherence, Tr
(
ρ2H2 − ρHρH

)
= 1

2 Tr
(
K†K

)
, where K = i[H, ρ], are reduced through the SEA dissipation terms but do

not vanish. Indeed, the Bell observable, Tr(ρ σx⊗σz), which is initially zero, builds up to a
periodic oscillation of constant amplitude.

11.3. Entangled, Separable, and Correlated Mixed States

For a slightly more elaborate example that includes entangled mixed states, assume
Equation (71) with ax = az = a/

√
2, bx = bz = b/

√
2, and cx = cy = cz = 2(a − b)/3, so

that the eigenvalues of ρ and those of its partial transpose are

λ1 = 1
4 (1 + a − b) , λ2 = 1

12 (3 − a − 5b) ,

λ3 = 1
12 (3 + 5a + b) , λ4 = 1

12 (3 − 7a + 7b) ,
(85)

and

λPT
1 = 1

12 (3 + a − b) , λPT
2 = 1

12 (3 − 5a + 5b) ,

λPT
3 = 1

12 (3 + 2a − 2b +
√

d) ,

λPT
4 = 1

12 (3 + 2a − 2b −
√

d) ,

(86)

with d = 25a2 − 14ab + 25b2. Figure 3 shows the complete set of admissible pairs of values
of parameters a and b for the set of correlated mixed states considered in this example,
which encompasses both separable and entangled states. For instance, considering a = −b
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(λ2 = λ3), these states are separable for −3/14 ≤ b ≤ 1/4 and entangled for 1/4 < b ≤ 1/2.
We compute explicitly each term in Equation (61), also for this class of states, to find

{(S)A, ρA} = − (1−a2)( f−5bp)
20
√

2
(σx+σz) ,

{(S)B, ρB} =
(1−b2)(g+5ap)

20
√

2
(σx+σz) ,

(87)

(H, S)A
ρ = − (1−a2)( f−5bp)ωA

20
√

2
(hA

x +hA
z ) ,

(H, S)B
ρ =

(1−b2)(g+5ap)ωB

20
√

2
(hB

x+hB
z ) ,

(88)

(H, H)A
ρ = [1− 1

2 (h
A
x +hA

z )
2a2]ω2

A ,

(H, H)B
ρ = [1− 1

2 (h
B
x+hB

z )
2b2]ω2

B ,
(89)

− {DA
ρ , ρA} = − (1−a2)( f−5bp)

5
√

2[2−(hA
x +hA

z )
2a2]kBτA

ζA ,

− {DB
ρ , ρB} =

(1−b2)(g+5ap)
5
√

2[2−(hB
x+hB

z )
2b2]kBτB

ζB .
(90)

Here, f , g, and p are defined as

f = 3η1 − 5η2 + 5η3 − 3η4 ,

g = 3η1 + 5η2 − 5η3 − 3η4 ,

p = η1 − η2 − η3 + η4 ,

(91)

ζA =
[
1 − 1

2 (h
A
x +hA

z )
2a2 + 1

2 (h
A
x +hA

z )a2
]
(σx+σz)

− (hA
x +hA

z )h
A·σA ,

ζB =
[
1 − 1

2 (h
B
x+hB

z )
2b2 + 1

2 (h
B
x+hB

z )b
2
]
(σx+σz)

− (hB
x+hB

z )h
B·σB .

(92)

For example, if the two non-interacting qubits A and B have local Hamiltonians HA = σz

and HB = σx, we find

−{DA
ρ , ρA} = − (1−a2)( f−5bp)

5
√

2(2−a2)kBτA
σx, (93)

−{DB
ρ , ρB} =

(1−b2)(g+5ap)
5
√

2(2−b2)kBτB
σz, (94)

so that again the nonlinear evolution is clearly nontrivial in the sense that the local nonlinear
evolution of A (B) does not depend only on ρA (ρB), despite being no-signaling.

For initial states in the class considered in this section, with parameter values a and b
corresponding to the four points in Figure 3, Figures 4–7 depict the typical time evolution
of the local density operators ρA and ρB in the local Bloch-balls. These results are obtained
from the numerical integration of the steepest locally perceived entropy ascent equation of
motion, Equation (39), for non-interacting subsystems A and B.
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Figure 2. Bloch-ball representation of the time evolutions of the local density operators ρA and ρB

of non-interacting qubits A and B with local Hamiltonians HA = σz and HB = σx. The evolution
follows the steepest locally perceived entropy ascent equation, Equation (39), with h̄ = 1 and
kB = 1. The initial state of the composite system AB is the separable, correlated mixed state given by
Equation (80) with a = −0.6 and b = 0.4. Insets show the time evolutions of global [S(ρ)], local [S(ρA),
S(ρB)], and locally perceived [(S)A

ρ = (S)B
ρ ] entropies, mutual information [S(ρA) + S(ρB)− S(ρ)],

concurrence—a coherence measure [Tr
(
ρ2H2 − ρHρH

)
], and the Bell observable Tr(ρ σx⊗σz). The

local evolutions approach the respective local Gibbs states. Without violating the no-signaling
condition, dissipation causes a (non-complete) reduction in mutual information and coherence, while
the Bell observable builds up to a steady state oscillation.

Figure 3. Ranges of admissible values of parameters a and b for the separable and entangled initial
states in the class defined in Section 11.3. The four points denoted with the symbol o∗ represent the
initial states chosen to illustrate the local time evolutions in Figures 4–7. The two points near the
λ1 = 0 line represent the strongly entangled states for which Figures 6 and 7 show a local entropy
decrease for one of the subsystems, while the second-law principle of global entropy non-decrease is
not violated.
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Figure 4. Bloch-ball representation of the time evolutions of the local density operators ρA and
ρB of non-interacting qubits A and B with local Hamiltonians HA = σz and HB = σx, resulting
from numerical integration of the steepest locally perceived entropy ascent equation of motion,
Equation (39). The initial state of the composite system AB is the separable, correlated mixed state in
the class of states defined in Section 11.3 with a = 0.7 and b = 0.4. The local evolutions approach
the respective local Gibbs states. Without violating the no-signaling condition, dissipation causes a
(non-complete) reduction in mutual information and coherence, while the Bell observable converges
to a steady state oscillation. Insets are similar to Figure 2.

Figure 5. Bloch-ball representations of the time evolution of two non-interacting qubits, obtained
from numerical integration of Equation (39) with initial entangled mixed states from the class defined
in Section 11.3. The values of (a, b) are (0.84, 0.43). Due to entanglement, local evolutions approach
limit cycles with local entropy lower than the corresponding local Gibbs states. Insets are similar to
Figure 2.
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Figure 6. Bloch-ball representations of the time evolution of two non-interacting qubits, obtained
from numerical integration of Equation (39) with initial entangled mixed states from the class defined
in Section 11.3. The values of (a, b) are (−0.65, 0.34). Due to entanglement, local evolutions approach
limit cycles with local entropy significantly lower than the corresponding local Gibbs states. Strong
entanglement leads to a local entropy decrease in subsystem B and A, respectively, without violating
the global entropy non-decrease dictated by the second law. Insets are presented in Figure 2.

Figure 7. Bloch-ball representations of the time evolution of two non-interacting qubits, obtained
from numerical integration of Equation (39) with initial entangled mixed states from the class defined
in Section 11.3. The values of (a, b) are (−0.34, 0.65). Due to entanglement, local evolutions approach
limit cycles with local entropy significantly lower than the corresponding local Gibbs states. Strong
entanglement leads to a local entropy decrease in subsystem B and A, respectively, without violating
the global entropy non-decrease dictated by the second law. Insets are similar to Figure 2.

Whereas, for a separable initial state, Figure 4 shows that the local states approach the
respective local Gibbs states, it is clear from Figures 5–7 that the presence of entanglement
does not allow the local states to approach the respective local Gibbs states. Indeed, the
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local evolutions approach non-dissipative unitary limit cycles where {DA, ρA} = 0
and {DB, ρB} = 0, and therefore, Equation (65) is satisfied. Without violating the no-
signaling condition, dissipation causes a (non-complete) reduction in mutual information
and coherence, while the Bell observable Tr(ρ σx⊗σz) and concurrence converge to steady
state oscillations.

12. Conclusions
In this work, we have explored the no-signaling principle and its implications for

nonlinear dynamics in quantum theory. We examined the measure-theoretic representation
of mixed ensembles by providing a consistent framework for handling nonlinearities and
describe ensemble mixing unambiguously. This approach also offers a conceptual basis
for developing nonlinear quantum dynamical models for non-equilibrium systems and
addressing unresolved questions about individual quantum states. Additionally, we re-
viewed the original philosophical motivations underlying the steepest entropy ascent (SEA)
nonlinear evolution law, which trades linearity for strong thermodynamic consistency.

Our analysis demonstrates that the SEA formalism provides a valid framework for
describing evolution or designing master equations. These can be applied in nonlinear
extensions of quantum mechanics (QM) or in phenomenological models of open quantum
systems within quantum thermodynamics. Our key focus was the no-signaling principle.
We introduced a criterion for no-signaling based on local perception operators (LPOs), a
generalization of the traditional density-operator-based definition. Unlike the conventional
assumption that local evolution depends solely on local properties, SEA formalism incorpo-
rates the local effects of preexisting correlations and coherence through LPOs. Our detailed
examination of the foundations and properties of LPOs highlights their potential as key
tools for constructing signaling-free, nonlinear, and non-local non-equilibrium dynamical
models, even outside of the SEA framework.

By inherently respecting the no-signaling condition, the SEA formalism upholds the
principle of causality and aligns with the axiomatic paradigm proposed by Popescu and
Rohrlich [86] for quantum theories. Furthermore, the SEA approach addresses conceptual
challenges such as the Schrödinger–Park paradox, offering insights into a thermodynami-
cally consistent integration of quantum mechanics and non-equilibrium thermodynamics.
Related to the no-signaling property, our discussion of LPOs and supporting numerical
examples strengthens the conjecture—supported by prior numerical results from Cano-
Andrade et al. [25]—that SEA evolution is universally compatible with decoherence prin-
ciples. Specifically, SEA evolution ensures that correlations and entanglement cannot
build up between non-interacting systems but can decay partially or completely, a process
mediated via LPOs.

An intriguing implication of SEA formalism is its compatibility with thermodynamic
principles while allowing for scenarios where, under strong entanglement, the local en-
tropy of a subsystem may temporarily decrease during the evolution, without violating the
no-signaling condition or the global entropy non-decrease dictated by the second law. We
emphasize that, differently from the Lindbladian ‘bottom-up’ approach in which quantum
thermodynamic second law(s) emerge from statistical approximations of the linear unitary
dynamics induced by system-environment interactions, the SEA ‘top-down’ approach
builds strong second-law compatibility directly into the nonequilibrium dynamics varia-
tional principle, constrained by the phenomenological details about the system’s structure,
subsystems’ interactions, and environmental effects. However, because of the inherent
nonlinearity of the SEA formalism, the solution becomes more complex, and a full analyt-
ical calculation can become intractable [27]. Additionally, the relaxation times τJ remain
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heuristic parameters, which are not derived from first principles and need to be tuned with
respect to a given experimental set-up.

We hope this study provides a foundational basis for exploring applications of SEA
modeling in quantum computing. Our comprehensive approach and observations aim to
stimulate constructive discussions and inspire further studies, particularly in developing
thermodynamically consistent models for non-equilibrium processes. These findings have
potential applications in modeling the dynamics of quantum systems, advancing quantum
technologies, and contributing to the framework of quantum thermodynamic resource
theories, even beyond the SEA paradigm.
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